
1

EROP to Augmented Drools Translator

Adrian Delchev

Updated May 2020.

2

Abstract

In today’s technology driven world the presence of computing in the business and e-commerce
spheres is becoming ever more dominant. The demand for automation of certain tasks and
business operations is what makes the need of electronic contracts a pressing matter. Unlike a
conventional paper based contract, which is likely to be polluted by ambiguities and legal
jargon, an electronic executable contract is a translation of the latter that can be enforced by
and acted upon by a contract management system.

Even though that at a high level of abstraction a contract is simply a document that
specifies how the signing parties are to behave in various situations, the translation of a
traditional paper-based contract to its electronic equivalent has proven to be a time consuming
and a challenging task. The need of a specification language that is able to capture the essence
of a contract in simple terms and definitions has been an ongoing research topic for many
years. That research led to the development of the EROP language. EROP, which stands for
events, rights, obligations and prohibitions, is a contract specification language that captures
the building blocks of a contract into sets of events, rights and prohibitions.

3

Declaration

“I declare that this document represents my own work except where otherwise stated”

4

Acknowledgements

I would like to thank my supervisor, Dr. Ellis Solaiman, for the advice and support provided
during the course of this project.

5

Table of Contents

Contents
Table of Contents ... 5

1 Introduction .. 7

1.1 Document Map ... 8

1.2 Motivation and Context of the problem .. 10

1.3 Aims and Objectives ... 11

2. Background.. 13

2.1 Contract Specification Languages ... 13

2.1.1 DocLog ... 14

2.1.2 CONTRACT .. 15

2.1.3 Other Contract Specification Languages ... 15

2.1.4 EROP, Augmented Drools and the CCC ... 16

2.2 From EROP to Augmented Drools .. 18

2.2.1 Mapping to Java Beans ... 18

2.2.2 Drools to R2ML ... 19

2.3 Summary of research. ... 19

3 Developing a solution .. 20

3.1 Design and analysis. ... 21

3.1.1 Compiler Analysis.. 21

3.1.2 Parser Generators .. 25

3.1.3 Solution Architecture ... 26

3.1.4 Functional and Non-functional requirements. .. 28

3.2 Implementation .. 30

3.2.1 ANTLR Grammar. ... 30

3.2.2 The Rule Structure Classes. .. 32

3.2.3 Lookup and Mapping ... 35

3.3 Testing ... 36

4. Results, Evaluation and Conclusion... 38

4.1 Contract in EROP translation Case study ... 38

4.2 Evaluation .. 43

6

4.2.1 Outcome and Role player Constraints ... 43

4.2.2 Resetting Rop sets. ... 44

4.2.3 Case study evaluation ... 45

4.2.3 Evaluation of Aims and Objectives. .. 47

4.2.4 Evaluation of Functional and Non-functional Requirements .. 48

4.2.5 Evaluation of the Software Engineering aspects .. 49

4.2.6 Skills learned ... 50

4.2.7 Conclusion .. 51

4.2.8 Future Work .. 52

5 References .. 53

6 Appendixes ... 55

6.1 User Manual ... 55

6.2 Mapping FR tests .. 58

6.3 Full translation of the Contract presented in section 4 .. 67

6.4 Original Contract from section 4 in Augmented Drools .. 71

6.5 Formal refined grammar of EROP ... 76

7

1 Introduction

In the fall of 2014 I began work on a rather ambitious final year project with little previous
experience in the field but with a clear vision in mind of the desired outcome. Over the course
of the year my understanding of the problem matured and alongside that – my approach and
aims of the project themselves matured. The result of those changes is reflected in the final
design of the translator and it represents what I believe is a beneficial piece of software that
would enable EROP to move closer to a concrete language rather than remaining a conceptual
one. Throughout this document I try to present a concise and condensed report even for
individuals with little knowledge of the field of electronic contracts and translation methods.

To ameliorate the navigation of this document I provide a content map of the document below.
Those with different interests can use the map to skip sections or jump to points of interest
quickly and easily. For each section I provide a brief introduction of the content to be covered
and the addressed areas.

I begin with exploring my motivation for the topic of my final year project and the move on to
outlining my aims and objectives and how I focused my development around them. At the end
of the chapter I make note of the changes in my process throughout the year and how that
affected my approach.

8

1.1 Document Map

The document is divided into the following sections:

• Section 1 – Scene setting

Firstly I examine the origin of my interest and my motivations for the topic as my final year
project. This is meant to provide a context to the field and an introduction to some specific
topics discussed later in the document. I also present my initial aims and objectives;
showing what my intentions were when I first began work on the project and exploring the
path I chose for developing the solution.

• Section 2 – Background

Section 2 provides an introduction into the world of electronic contracts and their
significance as well as recent development in the field and the origin of the CCC and the
EROP Language. It also provides a summary of contract specification languages and how
different ones compare to one another and provides more reasoning as to why a translator
is needed as well as some examples of translation techniques.

• Section 3 – Developing a solution

After exploring different types of translation techniques and their application for the project
at hand I present different projects and how they tackled the task of translation between
languages. I also review fundamental parts of any language to language translation and
examine the tools used for the development of the project and their inner working and
architecture. Alongside that I present the incremental stages of the development process
and how they led to the final design. Finally I present some of the test cases showcasing
different parts of the language syntax and how they translate to AD.

• Section 4 – Results, Evaluation and Conclusion

In order to show the correctness of the translator I provide case study, showing the
mapping from EROP to AD and any changes to the original definition of the language since
its first introduction. I then consider some of the functionality that was made redundant by
newer versions of AD and how the developed piece of software relates to the original aims

9

and objectives of the project. I also review the ease with which the produced translator can
be implemented and used with the CCC.

In the final review of the project I summarize my findings in relation of my evaluation of the
original aims and objectives and any amendments to them. I consider each aim individually
and critically examine whether or not it has been achieved and how it contributed to the
development of the overall solution. I also highlight some of the directions for possible
future development and improvement of the translator and its integration with the CCC.

• Appendix

Throughout the document I try to omit as much of the low-level development specific
details and technicalities. For the ones wishing to review some of the particular finer details
of different aspects of the development and testing process I provide the following content.

List of appendixes:

User Manual

Test Cases

Full translation of a sample contract

Formal refined grammar of EROP

10

1.2 Motivation and Context of the problem

During my work placement I worked for a company in which interactions with business
clients were heavily based on contractual bases. The majority of client communication was
based on establishing the parameters of the contract signed between the company and the
client. Even after the initialization of a contract, operations on said contract continued to be the
driving force for speedy problem resolution and good client-provider relations. I worked
specifically on a piece of software called CMS, short for Contract Management System. Its
purpose was to keep the contracts up to date with information regarding the actions of the
signing parties. The system dealt with almost every aspect of the client-provider cycle – Are the
agreed upon goods delivered, is the financial part of the contract complied by, are there
external consequences affecting the ability to provide goods or services. The amount of
information stored in a contract absolutely astounded me but even so – I couldn’t help notice
that all that information had to be manually monitored and edited if need be. That was the
beginning of my interest in contract management systems and the automation of contract
compliance monitoring.

The demand for innovative ways of automating the process of contract compliance
monitoring is coming both from the industry as well as the academia [1]. A well designed
contract management system can reduce the manual aspect of contract compliance monitoring
greatly and ensure that business processes of partners comply with the contract being
enforced. Making sure that business operations and processes between the signing parties of a
contract are carried out correctly and actually stipulate by the contract itself requires a
management system to monitor the interactions. Such service called the CCC (Contract
Compliance Checker) has been developed as an independent, third party monitoring service by
researchers [2] to address the issue of contractual monitoring. The system itself was designed
with the conceptual language called EROP in mind. EROP stands for events, rights, obligations
and prohibitions and is a contract specification language that relies on the JBoss Rules[3],
commonly known as Drools , for rule management.

The implementation of the CCC uses the EROP ontology - a set of the concepts and
relationships within the domain of business to business interaction used for modeling the
execution of business operations between partners and reasoning about the compliance of
their actions. The EROP ontology is implemented in JAVA as an extension to the Drools engine,
which allows for a better, more direct mapping of the EROP specification language to the
concrete implementation. Having the option to express a contract in the EROP language allows
for a broader user base since only a limited technical knowledge will be required to convey a
contract in EROP as opposed to writing it in the extended Drools directly for monitoring. As it

11

currently is, a translation from EROP to the extended version of Drools (also known as
Augmented Drools or AD) is a manual process, which requires the contract specification in
EROP to be mapped to its AD equivalent. The automation of the process will contribute to the
completeness of the paper to electronic contract translation process and allow for immediate
use in the CCC.A translation engine for EROP to AD mapping will eliminate the need of manual
translation, potentially eliminating any translation and mapping related errors and better
utilization of the time spent expressing a paper contract as its electronic equivalent.

1.3 Aims and Objectives

The overall aim and end goal of the project is to design and implement a translation engine that
would automate the process of EROP to AD translation and provides a valid and correct output
for an input that complies with the specifications of the EROP language. I will measure the
effectiveness of my solution by comparing already confirmed translations from the original
papers that introduced the EROP language as well as comparing hand written and manual
translations. In order to determine the extent to which the developed tool is successful I will
evaluate the following objectives:

• Iteratively develop a solution using a modular programming approach and
development of unit tests.

The resulting solution should be designed with a module structure in mind encapsulating
different functionality and allowing for easier maintenance and enhancement in the future
if needed. A clear architectural design and diagrams should be provided showing the inner
workings at high level of abstraction and explaining the design decisions that led to the final
solution. Example modules to be contained within the solution I/O, parsing, mapping,
translation modules.

• Define test cases that show different syntax and logic parts of the language

The test cases used to evaluate the effectiveness of the tool should be selected with clear
goal in mind and show the variety of the language concepts and constructs present in the
EROP language and how the translation process effectively transforms them in their
respective AD counterpart. The translation methodology should be made available as well
as the formal grammar of the EROP language including a detailed analysis and reasoning
behind any amendments, modifications and removals of the original version.

12

• Research current translation methods and strategies and the use they find in the
development of the tool.

A big part of the development of the tool will be looking into existing translation tools and
their effectiveness. The ideal solution will use various different sources for the final
implementation picking and choosing the best practices and applications of the translation
techniques, while noting the strengths and weaknesses of the different approaches in a
written form. Any external packages and libraries used for the development of the tool
should be noted and a high level overview of their workings and how they contribute
towards the effectiveness of the solution should be given. Common translation methods
should also be explored

13

2. Background

The presence of contracts in our society is ubiquitous – from every day simple oral agreements
that we take for granted to formally specified and notarized documents that have strong and
profound effect on our lives. Their wide use today is undeniable and its roots can be traced
back to ancient societies [4]. The advancement of electronic commerce has increased the sheer
number of contracts an organization can take part in, resulting in difficulties in keeping up with
the requirements of an electronic market. Creating a contract is a task that requires significant
resources and efforts – from hiring adept personnel to formally specify and verify the contract
parameters to negotiation between parties and mediation with the business. Electronic
contracting aims to automate the process of contract establishment and execution while
reducing development costs and in order to achieve that a contract has to captured in a
language that has the expressive power to specify all the contract’ content while eliminating
any ambiguities [3] .

2.1 Contract Specification Languages

In order for a contract to be eligible to be monitored and enforced by a contract compliance
system of any kind it has to be formally specified in a language that has the ability to capture
the requirements of a contract including legal requirements, clauses and internal policies as
well as the acting parties and their actions. Given that the desired outcome of a contract
monitoring and compliance service is automation and execution of contracts with minimal
human interference, the language that captures the contract has to be precise and free of
ambiguities so that the need of manual conflict resolution does not arise.

14

2.1.1 DocLog

In [5] the authors discuss the implications of e commerce on the life of different entities
without existence of a proper legal framework that is capable of regulating the behavior In
terms of rights and obligations of users. It highlights that usually electronic message standards
focus on practicality with the aim of ease of processing by back-office systems instead of
human readability, which in turn leads to the omission of important elements of the purchase
order, namely the General Terms and Conditions. Another drawback of message exchange
based contract standards is the detachment of messages from meaning and consequences as
well as concepts such as obligations, permissions and prohibitions.

The proposed contract representation language called DocLog aims to extend existing message
standards, adding natural text to the messages and thus allowing negotiation and
interpretation by human users. It also introduces the concept of legal advice system that is
capable of providing, while not as sophisticated as an actual experienced law professional, legal
advice about exchanged messages. DocLog uses a tri-layer structure that combines data, text
and semantic oriented approaches for exchanging contract terms. The data layer aims to
provide the contract data is such a way that it can easily and efficiently be processed by a
transaction processing system [6]. The text approach is represented by a Natural language layer
that strives to present the contract terms in a way that is easily comprehendible by human
users. It uses XML to structure the content of a contract which allows the support for individual
clauses, sub clauses, sections, sub sections and allows the use of version and approval
management systems.

While DocLog does provide a relatively human readable way of capturing contract
specifications, it doesn’t provide any means of monitoring the captured contract or allow any
manipulations on the captured properties of the contract. Furthermore several important
aspects of contract specifications cannot be captured using the DocLog language. Temporal
aspects such as – “Buyer has to submit payment no later than 5 days after making an order” as
well as exceptional circumstances within contracts that specify what is to be done when an
aberration from the norm of contract occurs are not presented in the original version of
DocLog. Nevertheless the underlying architecture of the language provides insights on
communication between different layers of the language and mapping between layers using
EDI Translator [7].

15

2.1.2 CONTRACT

The CONTRACT Project [8] aims to develop a well-defined conceptual framework for contract
based systems to which application entities can be mapped as well as to support management
of contracts throughout any of the stages of a contract’ life-cycle.

The presented administrative architecture [9] supports the management of e-contracts and
defines the ontology used in a business partnership for the underpinned contract. This is
covered in four steps:

• Consistency based off-line verification and achievability of contract aims given the
possible reachable system states.

• Definition and compilation of the application specific processes that facilitate the
execution of the contracts such as – enactment, monitoring, updating, termination,
renewal etc.

• Definition of the roles of the interaction agents.
• Identifying different components and services used by acting agents necessary for them

to play their respective roles in the partnership.

The main focus of the framework as discussed in [10] is centered around corrective monitoring ,
where violation of contractual norms are detected and then tried to be fixed using corrective
measures as opposed to predictive monitoring where such violations are predicted by using the
agent’s behavior and actions are taken in order to completely avoid undesired behavior. The
actual contracts are captured in an XML based language with a multi-layer architecture, whose
inner working and capabilities are discussed in detail in [11].

The language is capable of expressing different contract structures such as clauses, parties,
groups and actions using deontic notions such as obligations, permissions and prohibitions and
even though it uses a relatively high level declarative style of writing its implementability is
unclear. It is possible to represent concepts, intuitively acceptable to humans but unfortunately
it is not possible to unambiguously translate them in a from that would allow it to be processed
by machines. Unlike DocLog, the language offers a degree of exception handling; however it
appears to be limited and is not the main focus of the project and neither is usability.

2.1.3 Other Contract Specification Languages

16

There are myriad other options when it comes to contract specification but unfortunately most
of the available languages either do not focus on usability and practicality or don’t have a
contract monitoring system in which they can be integrated with ease.

• Rule ML [12] is a semantically neutral language for representation of rules but
unfortunately significant parts of the translation between natural language contract to
RuleML and then a language that can be formally verified cannot be automated.

• BPEL [13] uses event calculus to represent actions and their corresponding effects and is

not targeted towards business contracts but for specifying web service interactions. It
offers a less declarative approach than the other presented languages. Exception
handing is present but recovery from exceptional cases is limited the biggest issue
seems to be usability. The abstract notation may be too daunting for non-technical
personnel to use for commercial purposes.

• Heimdahl [14] is a platform for monitoring obligation policies and it uses xSPL [15] for

the specification of those policies. xSPL’ syntax is declarative but some of the language
constructs are not intuitive and might be difficult to understand for people without a
technical background. Exception handling also doesn’t appear to be possible directly.

2.1.4 EROP, Augmented Drools and the CCC

As introduced in [3] EROP is a contract specification language that focuses on execution and
business resolution of a business partnership. The language relies heavily on events, rights and
obligations, and it captures the information of a conventional paper-based contract into sets of
the fore-mentioned constructs. One of the most significant additions that distinguish EROP
from other contract specification languages is the extended capabilities that allow for reasoning
and providing resolution of unforeseen circumstances that arise from business and technical
failures. One of the strengths of the language stem from the fact that at its level of operation
the low level details are abstracted away, allowing contract writers to concentrate on
expressing the business operations of a contract. Another selling point of the language is its
ease of use even for non-technical personnel and the already existing implementation of its
ontology that allows for contractual compliance monitoring.

A contract written in EROP consists of two sections – a declaration section – where all the
acting role players, business operations and composite obligations used in the rules are defined
and a rule section that captures operations and manipulations of the entities specified in the

17

contract as well as any actions and exceptional behavior. The formal grammar of the language
as well as more details on the EROP syntax will be provided in a later section.

The EROP ontology as specified in [3] is “a set of concepts and of their relationships within the
domain of B2B interaction that we employ to model the evolution of interactions between
business partners, for the purpose of reasoning about the compliance of their actions with their
stated objectives in their agreements.” The ideas of the EROP ontology have been implemented
as set of Java classes that capture the properties and available operations on those properties;
the implementation extends the rule language offered by the Drools rule engine, adding various
different construct to reason about and manipulate the operations of business partners within
a contract. The implementation of the ontology, also known as Augmented Drools is less
abstract and readable than EROP and closer to Java in style. It also needs additional code for
convenience and housekeeping purposes that are needed for the implementation of the
ontology to work but bot necessary for human reader, initializing a contract in EROP.

The EROP language maps completely to Augmented Drools, which makes it possible for direct
language to language mapping. In this sense, the problem of creating a precise and formal
grammar of the EROP language becomes one of translating EROP to Augmented Drools, which is the
main topic of this work and will be explored in detail in the upcoming sections.

The Contract Compliance Checker - for short the CCC is the contract compliance monitoring
service as introduced in [2]. It is a neutral entity conceptually standing between the interacting
parties and its purpose is to monitor the exchange of events between participating entities and
infer whether or not the business operations these events relate to are compliant or non-
compliant to a specified contract. The architecture of the CCC is illustrated in Fig. 1 but any
further discussion on the inner workings of the CCC will be limited as it’s not the topic of the
work presented here. For the purposes of this project it is important to note that all contract
expressed in EROP or Augmented Drools can be put into the CCC for contract compliance
monitoring.

18

Fig1. Representation of the CCC architecture taken from [3]

2.2 From EROP to Augmented Drools

As mentioned in the previous section EROP maps directly to Augmented Drools given that the
former is derived from the latter. In this case a translation between EROP to Augmented Drools
essentially comes down to automating the mapping between the two languages. The
translation techniques common for all most types of translations will be discussed and
reviewed in detail in the next section, here I give some of the more specific techniques
available.

2.2.1 Mapping to Java Beans

As discussed in [16], the translation of rules expressed in language based on natural or close to
natural format to a rule standard can be accomplished by two-fold mapping where the
extracted natural language is mapped to Java beans, which serve as intermediary for the

19

translation between the source language and JBoss Drools production rules. The translation
technique uses a straight forward verb and noun concepts grammar that captures the
parameters of the source language and is then mapped into rules.

Although the paper describes natural or close to natural language mapping, which requires
more effort in comparison to EROP to AD mapping because of the lack of rule structure of the
source language, it is interesting to note that an intermediary layer in the face of Java Beans is
used in order to capture the required information to build an operational rule.

2.2.2 Drools to R2ML

The Authors of [17] discuss the approach used by Object Oriented rules systems such as Drools
and ILOG Jrules. Such systems are built on top of Java vocabularies – in the case of Drools, Java
beans are used as facts to represent the domain of the rules and their vocabulary in user
applications. Different vocabularies are used by rules through the import declaration, specified
inside of the rule file. The paper describes the approach used to translate from Drools using the
low level structure of the language such as beans to translate rules to R2ML, which is an XML
based Rule Markup Language.

Even though the direction of translation described in the paper goes in the opposite direction of
the one desired from the EROP to AD translator, it does highlight the importance and benefits
of using an XML structure or language for translation to Drools.

2.3 Summary of research.

I this section I covered the essential characteristic s that a contract specification language
should possess. I reviewed some of the most popular languages used to express a contract
including their strengths, weaknesses and the ideas they are based on.

I proceeded to review EROP – the conceptual contract specification language, developed by
researchers at Newcastle University. I highlighted what makes EROP stand out from other
contract specification languages as well as the structure of the language and its concrete
implementation in the face of the EROP ontology. I also did a cursory review of the CCC and the
entire architecture of the system, showing how EROP and its ontology fit within it.

20

The conducted research demonstrates that among the presented contract specification
languages, none has the expressive power or the ability to deal with exceptional circumstances
arising from business or technical failures as EROP does. All of the presented languages require
an extensive technical background and may be daunting for a non-technical person to use. In
addition to that some of them are merely a notation for expressing contracts, with no definitive
means of monitoring the expressed contract for compliance. EROP along with the CCC
represents a complete solution for capturing contract requirements and then monitoring and
enforcing them.

At the end of the section I briefly covered some specific translation techniques, without going
into details about the common translation strategies as that is presented in a later section. A
translator from EROP to AD has to be based on direct mapping and may make use of
intermediary representations to hold its data. As presented in the reviewed approaches,
JavaBeans-like structures and XML are capable of accomplishing the desired goal and have been
used by other similar projects. The next section covers some of the fundamentals in translation
and how they are applied in the development of the EROP to AD translator.

3 Developing a solution

The development of an EROP to Augmented Drools translator is a task that requires extensive
analysis of current techniques and translation technologies. My initial aim was to approach the
development process incrementally, dividing the overall project into several specific sub
projects that would be united in the end to produce the final solution. During the initial stages
of the development process the focus was on analysis and comprehension of the state of the
art of the translation scene. The analysis revealed the parts of common translation techniques
that would be essential for developing a translation and also gave an insight into the
architectural design of the solution. The use of external, third parties libraries was taken into
consideration and the necessity of such has been reviewed in greater detail later in this section.

The programming language used for the development of the solution is JAVA. As its
implementation dependencies have been reduced to a minimum and it provides the required
functionality to achieve the task at hand. The target of the translation – the implementation of
the EROP ontology is also in JAVA, which makes the choice to use the language as a logical one

21

as it will promote consistency throughout the contract compliance monitoring solution
[2]developed by the University researchers.

3.1 Design and analysis.

In my case the design and analysis stage has proved to be the lengthiest one during the
development process. It included analysis of existing technologies and ideas and how they can
be applied to the EROP to AD translator. During that stage I reviewed most common techniques
in compilers and translators and the inner working of different technologies, trying to extract
useful architectural designs patterns that can be applied to the task at hand.

3.1.1 Compiler Analysis.

Generally, the purpose of a programming language is two-fold [18] – they serve as a notation of
describing computations to both machines and people. Other than formally expressing a
programmer’s intention, they exist for the purpose of bridging the gap between different layers
of abstractions – the higher layers that are easier to comprehend and safer to use and lower
levels that are often times more efficient and flexible. But for a program to be run it needs not
only to be expressed in a programming language- a language that is more human oriented , but
it also needs to be translated to a language that a computer understands. Such translation
software is known as a compiler.

A typical compiler breaks the mapping of a source language to the target language to several
stages [19]. Most commonly the first of those is the analysis stage – it breaks a source program
into pieces and verifies the grammatical structure of the source language on them. The
resulting pieces are then used for the creation of an intermediary representation of the source
language. The analysis stage’s duty is to detect syntactical and semantical compliance or
inconsistency. The intermediate representation built by the analysis stage is called a symbol
table and after its creating it is then passed to the next stage of the process. The second stage is
the synthesis, where a translation to the target language is created using the intermediary
representation of the source language. In a sense the analysis part is the front end and the
synthesis is the back end of a compiler. When reviewed in more detail, the processes of a
translation are executed in a sequence of steps (fig2.)

 22

23

Fig2. Common phases of compiler translation inspired by [19]

The initial step of the translation process is carried out by the Lexical analyzer. Its purpose is to
read the characters making up a source program or a file and use them to create meaningful
sequences called lexemes, producing tokens containing the parsed information, which is then
used in the syntax analysis stage. To put things into context an input in the form of the EROP
language such as:

POAcceptance in buyer.rights

Would be broken down by a lexical analyzer into the following lexemes:

PAAcceptance is a lexeme that would be mapped to the token (id,1), where the 1 is
pointing to the position of PAAcceptance in the generated symbol table containing
information such as value and type.

in and . Would be mapped to the tokens (in) and (.) because they are both operations
of the language

Similarly to POAcceptance, buyer and rights will be mapped to (id,2),(id,3)

And the resulting token mapping would be:

(id,1) (in) (id,2) (.) (id,3)

The next step of a translation process within a compiled is the syntax analysis, also known as
parsing. It uses the tokens created by the lexical analyzer to create a tree like intermediate
representation of grammatical structure of the source language. Most commonly [19] the
intermediary representation is known as a syntax tree in which each parent node represents an
operation and the children nodes of the parent represent the arguments needed to complete
the operation. Using the above breakdown of input characters into tokens, the resulting syntax
tree for the given input would look like:

24

The node labelled as dot indicates that the operation must be completed using the children
nodes and that the produced result should serve as the right hand side of the operation
labelled in.

The next step of the process is the semantic analyzer. It uses the information stored in the
symbol table as well as the generated by the syntax analyzer tree in order to check that the
source program complies semantically with the definition of the language. One of the most
important parts of the semantic analysis is type checking – in other words where the operands
are from the appropriate type for the specified operator. For instance in most programming
languages an array is indexed using an integer value, if the compiler detects anything that does
not match the expected type it is supposed to notify the user for the inconsistency, in the case
of EROP an example would be the definition of a business operation. As stated in [3] a business
operation is defined by a generic string that starts with an upper letter. In that sense a string
with a lower letter would be the wrong type when trying to define a business operation and
therefore the compiler would have to return an error.

25

The step following the semantic analysis is the intermediate code generation. As stated in [19]
the intermediary translation can be more than one or it can be expressed in a variety of
different forms. The most important properties of the intermediate representation are that it
should be easy to produce and it should be easy to translate into the target language.

The final step of the compiler’s process is the code generation, which uses as an input the
intermediate representation of the source program and maps that to the target language,
where different approaches are used depending on the differences or similarities between the
source and target languages.

The detailed view of a compiler’ inner workings have been invaluable to the development and
design process of the final solution. It has contributed towards the understanding of how
typical language translators work and what the most common aspects in them are. Given the
semantic similarities between EROP and Augmented Drools (the former is derived from the
latter) a translation process between the two languages doesn’t need to include all of the steps
undertaken by a typical compiler, namely the code optimization step is redundant. Furthermore
in order to speed up the development process and avoid needless low level errors oversights,
specialized tools [19] that have efficiently implemented some of the outlined principles can be
used.

3.1.2 Parser Generators

Parser generators are a specific class of software development tools that are able to generate
the framework needed for a program to implement a parser from a set of rules called grammar.
A few different methods exist for parsing a given stream of character input but the two most
important ones are top-down and bottom up analysis algorithms [20] as they apply to the
widest range of input grammars and context-free grammars and are appropriate to use in a
parser generator.

Tools such as parser generators have been used in the creation on compilers and translators are
their history can be traced back to the early days of computing with examples dating back to
1965 [21]. The two major advantages of using parser generators are firstly – development time
– once proficient in writing grammars using a generated lexer and parser expedites the
development process immensely. The second advantage of parser generators is correctness by
construction, meaning that the generated parser accepts exactly the language specified in the
grammar used to create it [21].

26

Today a wide range of parser generators exist, with all of them employing similar input parsing
techniques and differing from one another in terms of style of grammar specification,
algorithms used to parse the input, language of the generated parser files and so on.

As mentioned in the development of EROP, a parser generator called ANTLR was considered
when thinking about the translation between EROP and Augmented Drools [3].

3.1.2.1 ANTLR

ANTLR is a parser generator that has a wide range of uses including reading, processing,
executing or translating structured text or binary files. The latest version of ANTLR [22] –
ANTLR4 support actions and attributes flexibility, meaning that different actions can be defined
in separate files from the grammar and essentially decoupling it from the target language,
enabling easier targeting of multiple languages.

ANTLR can also be used to generate tree parsers and processors of abstract syntax trees. It uses
EBNF as a format of its grammar input and has support for popular IDEs. An additional benefit is
that it generates a lexer as well as a parser and the resulting generated files are in JAVA format,
which makes it consistent with AD and the language used for the development of the EROP to
AD translator.

ANTLR is also widely popular and is used by Twitter for query parsing, processing over 2 billion
queries a day as well as in projects such as Groovy, Hibernate, IntelliJ IDEA and many more [22]

3.1.3 Solution Architecture

After reviewing the most common translation techniques and approaches, the architectural
design of the EROP to Augmented Drools translator started to emerge. The use of parser
generator would enable a more rapid development and allow to some extent to reuse the
formal grammar of EROP as specified in [3]. The use of ANTLR would also mean that the first
three steps of typical compiler architecture can be accounted for and there is no need to create
spate entities for the desired functionality. As noted earlier, machine independent code
optimizer wouldn’t be practical because of the similarities of the target and source languages,
which essentially means that the intermediary code generator can interact directly with the
code generator where the mapping is made and the final result is produced.

27

As discussed in previous section the accomplishment of an intermediary layer can be
accomplished by an implementation similar to JavaBeans. The disadvantages of using JavaBeans
directly are that it supplies nullary constructors for all of its subclasses, which means that they
are at risk of being instantiated in an invalid state. The problem stems from the fact that a
compiler cannot detect such instantiation which can lead to troublesome debugging and
tracing, especially when using a generated parser. Nevertheless in order to accommodate the
intermediary code generation layer of the EROP to Augmented Drools translator, similar in
concept Collection of Java classes can be implemented that captures the essence of the building
blocks of the EROP language. The collection of those classes, well as any additional classes
required to accommodate communication between different layers of the architecture, will be
discussed in the implementation section. The initial conceptual design of the translator is
depicted in Figure 3.

Figure 3. The Conceptual architectural design of an EROP to AD translator

28

3.1.4 Functional and Non-functional requirements.

Using the background research and analysis combined with the mapping examples provided in
[3] the functional and non-functional requirements of the translator have been established. The
requirements have been divided into two section – General – capturing generalized
requirements of the system as a whole and Mapping specific, capturing how the translator
should handle details of the mapping process.

3.1.4.1 Functional Requirements

Mapping specific:

• FR1. The translator should always include the classes from the EROP Ontology.
• FR2. The translator should create any instances of the ontology classes used in the rule

referencing.
• FR3. The translator should create ROP sets for every declared role player.
• FR4. The translator should maintain integrity of style conventions when translating

names of business operations or composite obligations (capital in EROP but lowercase in
AD)

• FR5. The translator should first translate the declaration section and only then the rules
section.

• FR6. The translator should correctly translate keywords in EROP to the corresponding
method calls in AD

• FR7. The translator should split rules in EROP that have an f-then-else section into two
rules in AD.

General

• FR8. The translator should use a parser generator to parse an input file
• FR9. The translator should be able to create an intermediate representation of the

parsed input
• FR10. The translator should be written in JAVA
• FR11. The translator should be of the form of a standalone GUI application, an

executable script or both.

29

3.1.4.1 Non-Functional Requirements

General

• NFR1. The EROP input file should not be modified in the translation process.
• NFR2. The translator should work with the latest version of AD
• NFR3. A user manual should be created to show how the translator can be used.
• NFR4. The system should be well structured, encapsulating different functionality.

30

3.2 Implementation

The Implementation of the project has been an iterative process employing the agile software
methodology and going back and forth between design, implementation and testing once the
initial design modelling was finished. The length of the implementation sprits has been
relatively short with sprints ranging from one to two weeks. This stage of the development of
the solution involved an implementation of the grammar used for ANTLR as well as any java
classes needed to make the translator operational.

3.2.1 ANTLR Grammar.

A grammar file in ANTLR is simply a file that specifies the syntax and different constructs of the
language and how they connect with one another. On a high level of abstraction the grammar
consists of lexer and parser rules that once specified are then embedded in the generated by
ANTLR lexical and syntactic analyzers. The lexer rules begin with an upper case letter, as
opposed to the parser rules and are used to tokenize the input. Lexer rules are essentially the
fundamental, building blocks of a language. Parser rules on the other hand are more complex
rules that can contain rules themselves as well as tokens characterized as fundamental to the
Language.

As specified in [3], a contract expressed in the EROP language consists of two parts –a
declaration section, where all the role players and business operations are defined and a rule
section, where the different rules used for compliance monitoring are captured. From that we
can infer that the root structure of the language is a contract file and everything else is
contained within that file. That can be represented in ANTLR as the entry point of any received
input and it would have any number of children depending on what a contract file can contain
and what different constructs in the contract file can contain themselves. To put things into
context, Fig4 gives a partial visual representation of what the structure of a contract file defined
in the EROP language.

31

Figure 3. Partial representation of EROP grammar

As depicted in the partial representation, a declaration section can have one or more
declarations and each declaration is a business operation, role player or composite obligation
declaration. The role player declarations as well as the identifier are specified at the lowest
level to give a feeling of what rules, sitting at the bottom of the rule hierarchy would look like. A
role player declaration simply consists of the keyword ‘Roleplayer’ followed by whitespace and
one or more identifiers and ending with a semicolon. The one or more quantifier makes it
possible to declare multiple roleplayers in a single line as specified in [3]. An identifier is simply
a string starting with lower case and the ability to contain uppercase letters as well as digits.

A grammar is an important part of ANTLR, but by itself it doesn’t provide much functionality
because the associated parser is only able to tell us whether an input conforms to the language
specification given. In order to build translation or any type of applications for that matter,
there is a need for the parser to trigger some sort of action, whenever it encounters input
sequences, phrases or tokens of interest. Fortunately ANTLR provides two mechanisms that
allow invocation of actions – it automatically generates parse –tree listeners and visitors to
enable building language applications [32]. A listener is an object that is able to respond
whenever it detects rule entry and exit events triggered by a parse tree walker as it discovers
and finishes nodes – which means that ANTLR automatically generates the interfaces for any
entry or exit events. The most profound difference between listeners and visitors is that listener
methods don’t have the obligation to explicitly call methods to walk their children – that gives
flexibility in a scenario where only specific parts of the input language should trigger events.

32

The alternative is visitors – they must explicitly activate visits to their child nodes in order to
keep the traversal of the tree going. In the case of an EROP to Augmented Drools translator the
alternative method makes much more sense as parsing of all the input information is needed.

The provided functionality allows for triggering specific events when a rule from the grammar is
entered. There is still the need for implementing specific actions when such events occur. Given
that reusability is an important part of the software development process it would make sense
to reuse common concepts instead of creating duplication. Identifier is an example of
commonly repeating grammar structure that can be reused. It is used to describe business
operations, composite obligations as well as roleplayers, not to mention that it can occur not
only in the declaration section but also in the rule set when roleplayers and business operations
are referenced or their ROP sets manipulated.

In order to allow reusability while keeping the ability to distinguish for which part of the
grammar common grammatical structures refer to I’ve implemented two additional JAVA
classes that serve as a buffer for the ANTLR parser and population classes that create the
intermediary representation of the EROP language. Those classes are Variables Flagger and
Variables memory. Their purpose is to respectively activate various different flags whenever the
ANTLR tree walker enters different rules and then use those flags in order to make decisions on
where the contents of the parsed file should be stored. The separation of communication
between the ANTLR parser and the intermediary representation of EROP follows good software
development guidelines and practices as it encapsulates and abstracts away the logic needed to
make the decisions about where the parsed information goes. It also helps with testing and
contributes to the modular approach design, which is one of the development aims of the
project.

3.2.2 The Rule Structure Classes.

As discussed in the analysis section, the intermediate code generator of the translator can be
accomplished by custom Java classes inspired by various different techniques. The resulting
Java classes would have to capture the structure of the corresponding language constructs and
any information they hold that are needed for linking the intermediary representation to the
final target language.

33

The hierarchical structure of the classes corresponds to the implementation of the ANTLR
grammar and is based on the language constructs of EROP as presented in [3] and the initial
draft of the grammar provided in the fore-mentioned paper. The resulting classes and their
functions are as follows:

• EventMatchCondition – represents the conditions an event match has to satisfy in order
for the event to be triggered. It follows the structure field – operator – value and as
specified in the full language grammar (included in the appendix) the field value can be
any one from botype/outcome/originator/responder as specified in [3]

• Constraint – the constraint class is a generalized collection of any constraints that can
be specified on a rule. It can hold any of the following :

o RopConstraint – capturing the presence of absence of particular business
operations or composite obligations in a role player’ ROP sets.

o HistoricalConstraint – used to condition the triggering of rules depending on the
presence or absence of certain events or the times a specified event occurred.

o TimeDirect and TimePartialComparisons – constraints used to enforce additional
checks on the timestamp of a given event. TimeDirectComparison is used to
check of a timestamp the same as, before or after a specified point in time. The
TimePartialComparison is used to check if an event timestamp is within a given
range of hours, minutes, years, days or months.

o OutcomeConstraint – used to specify a constraint on the outcome of an event
such as Success, Fail, BizFail etc.

• RhsAction – represents the right hand side of a rule – anything between the ‘then’ and
‘end’ part of a rule. It can contain conditional statement, outcome or pass actions as
well as any manipulation on a role player’s ROP sets or the outcomes of a business
operation.

• IfStatement – a conditional structure that is used to capture additional constraints in
the RHS of a rule. It comes with its own left and right hand side and even though it
doesn’t alter the EROP language’s structure it allows for a more natural and productive
style of writing.

• AddOrRemAction – used to gather information about any manipulation of a role player’
ROP sets such as adding or removing Rights/Obligations/Prohibitions.

• Rule – the root class in the rule class structure architecture that contains all the
information required to represent and recreate a rule.

34

35

Figure 4 shows the architectural hierarchy of the classes in the Rule Structure and how they interact
with one another.

3.2.3 Lookup and Mapping.

With a suitable ANTLR grammar and an intermediate Structure to represent EROP, the only
thing left to make a working translator is a Mapper. The Mapper Functionality is executed by
the Translator Java Class. Its purpose intuitively is to translate different parts of the rules from
the intermediary format to the final target language – Augmented Drools. Given that the
intermediary format is quite close to the target Language a direct mapping, with some decision
making is a suitable option for the translation.

The Translator also includes decision making logic that allow it to determine whether a single
rule in the source language needs to be broken down into multiple ones in Augmented Drools.
This is most commonly due to conditional statements in the rule structure of the source
language and is due to the fact that conditional statements do not exist in Augmented Drools. A
quick example to illustrate the mapping process is given:

rule “Rule1” rule “Rule1IfThen”
when e matches (eventMatchConds) when $e: Event (eventMatchConds)

eval (booleanConditions)
then then

if (booleanConditions) actionBlock1
then end

actionBlock1
else

actionBlock2 rule “Rule1IfElse”
end when $e: Event (eventMatchConds)

eval (! booleanConditions)
then

actionBlock2
end

In general a rule in EROP containing an if else statement maps to two rules in Augmented
Drools – one with the if condition added to the when condition set in AD and the then
action added to the right hand side of the AD rule. The second rule contains the negated if
condition to the when condition set and the else action added to the right hand side of the AD
rule. It’s worth noting that the second rule only needs to be generated if there is an else action

36

block, in the case where there is only an if action block, the second rule doesn’t need to be
translated.

The final piece of the translator is the Lookup, implemented as a Java Class using an XML file
containing the corresponding mappings of methods of the EROP Ontology classes to the
keywords in EROP. The design is inspired by the various XML languages used as an intermediary
layers as discussed in the previous sections and is also quite practical because it encapsulates all
the mapping to a single file. In the case when the name of a method is changed in Augmented
Drools, the only change needed to be made to the Translator is in the lookup file.

3.3 Testing

Testing played an integral part in the development of the project and, as mentioned earlier, has been
interleaved with the incremental design and implementation. Unit tests have been developed to test the
correctness of the classes of the rules structure and in fact were needed to determine the need for the
buffer classes needed to help with the population of the rule structure classes.

Another, perhaps even more crucial part of the testing process was the development and testing of the
ANTLR grammar. It was developed incrementally, which helped identify some of the drawbacks of the
original grammar of the language as presented in [3]. That resulted in amendments and changes that
will be presented in the next section along with a discussion.

37

A collection of test cases has been added to the appendix section in order to showcase different test
scenarios and how the translator handles various different language constructs and their translation.
Testing has also enabled the generation of results that would help in the evaluation of the project
objectives. The changes made as a result of testing helped in the construction of the final architectural
model of the project that as depicted in Fig 4.

Figure 4. Final architecture of the project after a few rounds of incremental testing and development

38

4. Results, Evaluation and Conclusion

4.1 Contract in EROP translation Case study.

In order to critically examine and determine the correctness of the developed tool as well as
any addition, enhancements and/or omissions that need to be made to both the EROP language
or the Augmented Drools implementation, I present a case study in which the concepts of a
contract represented in the latest version of Augmented Drools are extracted and serve as key
points that are then used to express the same contract in EROP. Once the contract is in EROP it
can then be ran through the translator and the produced translation can be evaluated against
the original contract, expressed in Augmented Drools. The two main aspects on which the
translation will be judged are ability to express concepts and correctness of the produced
translation with regards to the original of the contract.

The contract used for the case study is between two parties, which will be referred to by simply
Buyer and Seller. The original contract in its entirety, expressed in Augmented Drools can be
found in the appendix section. The clauses of the contract extracted from the original are as
follows:

• C1: The buyer has the right to submit a buy request, having send a buy request, a
buyer’s right so submit any further ones is revoked until the current one is resolved. At
the same time, the seller gains an obligation to either accept or reject the received buy
request.

• C2: In the event of one or more business failures during the buy request, the first
business failure should be noted and any further business failures should reset the Rop
sets of the role players.

• C3: Having received a rejection of a buy request, the pending obligation is satisfied and
the buyer can have its right to send additional buy requests restored.

• C4: In the event of one or more business failures during the rejection of the buy request,
the first business failure should be noted and any further business failures should reset
the Rop sets of the role players.

• C5: After receiving an acceptance of a buy request from the seller, the pending
obligation has been satisfied and the buyer receives a new obligation to pay the seller as
well as the right to cancel the order.

• C6: In the event of one or more business failures during the acceptance of the buy
request, the first business failure should be noted and any further business failures
should reset the Rop sets of the role players.

39

• C7: After a payment has been received, the buyer has satisfied its obligation; he loses
the obligation to pay as well as the right for a cancellation and regains his right to
submit further buy requests.

• C8: In the event of one or more business failures during payment of the buy request, the
first business failure should be noted and any further business failures should reset the
Rop sets of the role players.

• C9: After the buyer sends a cancellation, he loses the obligation to pay and the right to
submit further cancellations.

• C10: In the event of one or more business failures during cancellation of the buy
request, the first business failure should be noted and any further business failures
should reset the Rop sets of the role players.

Two role players are defined in the contract along with the following business operations:
BuyRequest, Payment, BuyConfirm, BuyReject, and Cancelation. The clauses of the contract as
specified above, define how the ROP sets of the roleplayers change during the course of the
interaction.

A file in EROP starts with the definition of the role players, business operations and composite
obligations used in the contract.

roleplayer buyer, seller;
businessoperation BuyRequest, Payment, BuyConfirm, BuyReject, Cancelation;
compoblig ReactToBuyRequest(BuyConfirm, BuyReject)

The second part of the contract contains definition of the rules of the specified roleplayers and
interactions between them. The rule for a received Buy Request can be derived from C1 of the
contract. It occurs when a successful buy request is received.

rule "BuyRequestReceived"
when e matches (botype == BUYREQ,originator == buyer,responder ==

store,outcome == success)
BuyRequest in buyer.rights

end

then
buyer.rights -= BuyRequest(seller)
seller.obligs += ReactToBuyRequest(buyer,”01-01-2016 12:00:00”)

40

The second rule can be derived by C2 and as specified it requires specific actions to be executed
depending on a certain condition. The rule can be modelled using a conditional structure in
EROP.

rule "BuyRequestBnessFailure"
when e matches (botype == BUYREQ,originator == buyer,responder ==

store,outcome == tecFail)
BuyRequest in buyer.rights

then
if (BuyRequest.BizFail == false)

then BuyRequest.BizFail == true
else reset buyer

reset seller

end

endif

The third rule of the contract is derived from C3 and is triggered whenever the seller rejects a
buy request from the buyer.

rule "BuyRequestRejected"

when e matches (botype == BUYREJ,originator == store,responder ==
buyer,outcome == success)

ReactToBuyRequest in seller.obligs

end

then
seller.obligs -= ReactToBuyRequest(buyer)

The fourth rule of the contract is directly derived from C4 and is very similar in definition to
BuyRequestBnessFailure. It occurs when a business failure occurs during a rejection of a buy
request.

rule "BuyRequestRejectedFailures"

when e matches (botype == BUYREJ,originator == store,responder ==
buyer,outcome == tecFail)

ReactToBuyRequest in seller.obligs
then

if (BuyConfirm.BizFail == false)
then BuyConfirm.BizFail == true
else reset buyer

reset seller

end

endif

41

The fifth rule defines what happens when a successful confirmation of the buy request is
received, it is derived from C5.

rule "BuyRequestConfirmation"

when e matches (botype == BUYCONF,originator == seller,responder ==
buyer,outcome == success)

ReactToBuyRequest in buyer.obligs

end

then
seller.obligs -= ReactToBuyRequest(buyer)
buyer.obligs -= Payment(seller)
buyer.rights -= Cancellation(seller)

The sixth rule, similarly to the second and fourth rules describes what happens in the event of
failures during the confirmation.

rule "BuyRequestConfirmationFailuress"

when e matches (botype == BUYCONF,originator == seller,responder ==
buyer,outcome == tecFail)

ReactToBuyRequest in seller.obligs
then

if (BuyConfirm.BizFail == false)
then BuyConfirm.BizFail == true
else reset buyer

reset seller

end

endif

The seventh rule, derived from C7, captures what occurs in the event of a successful payment.

rule "PaymentReceived"

when e matches (botype == BUYPAY,originator == buyer,responder ==
store,outcome == success)

Payment in buyer.obligs

end

then
buyer.obligs -= Payment(seller)
buyer.rights -= Cancellation(seller)

The eight rule describes what happens in the event of exceptional circumstances during
receiving a payment, it is derived from C8.

42

rule "PaymentReceivedBFailures"
when e matches (botype == BUYPAY,originator == buyer,responder ==

store,outcome == tecFail)
Payment in buyer.obligs

then
if (Payment.BizFail == false)

then Payment.BizFail == true
else reset buyer

reset seller

end

endif

The ninth rule captures what happens whenever a cancelation is received.

rule "BuyCancellation"

when e matches (botype == BUYCANC,originator == buyer,responder ==
store,outcome == success)

Cancelation in buyer.rights

end

then
buyer.rights -= Cancellation(seller)
buyer.obligs -= Payment(seller)

The last rule of the contract expresses what is to happen whenever exceptional circumstances
occur during the a buy cancellation

rule "CancellationBFailures"

when e matches (botype == BUYCANC,originator == buyer,responder ==
store,outcome == tecFail)

Cancellation in buyer.rights
then

if (Cancelation.BizFail == false)
then Cancelation.BizFail == true
else buyer reset

seller reset

end

endif

43

4.2 Evaluation

4.2.1 Outcome and Role player Constraints

I will start be discussing the ability of EROP to express concepts present in the latest version of
Augmented Drools as seen in the original of the contract presented in the appendix section.
Clauses 2, 4, 6, 8 and 10 of the contract require the ability to check if a certain business action
has been set as a business failure, this can be characterized as an outcome constraint. In the
original version of EROP outcome constraints exist, but they are targeted at the event match
conditions. For example, in the original specification of EROP the following syntax was possible:

rule "Sample"

when e matches (botype == BUYCANC,originator == buyer,responder ==
store)

e.outcome == success
then

end

Where e is the event name and outcome is a property of the event. This made it possible to
omit certain fields in the event match condition block and specify additional constraints after it.
In the latest version of the implementation of Augmented Drools, an event match block
requires all of the fields (type/originator/responder/status) to be specified. This defeats the
purpose of the Outcome constraints as introduced in the original version of EROP and makes it
so that it is no longer needed in the form that it was introduced; however – in the latest version
of the ontology, as seen in the contract, outcome constraints can be used on business
operations to check for example if the business operation has failed. This is expressed in clauses
2,4,6,8 and 10 of the contract presented in the previous section. The functionality to make such
checks were not present in the original version of EROP, to accommodate it I’ve amended the
original outcome constraint to have the following syntax and role.

BusinessOperation.BizzFail == true/false

The construct can be used both in the Left hand side and the right hand side of a rule, with the
same syntax but a different meaning. When used in the left hand side it is placed after the
event match condition, the same way as it was introduced originally. The role when placed in
the left hand side of a rule is to check if the specified business action has happened, it other
words it is a Boolean condition.

44

When used in the right hand side of a rule – it servers not as a Boolean condition but rather a
way to specify that the condition happened or didn’t happen. In other words when used in the
right hand side of a rule it serves as a setter. The change makes possible expressing clauses
2,4,6,8 and 10 and it updates the no longer needed version of outcome constraints as
expressed in the original version of EROP in [3]

The requirement of the latest version of Augmented Drools that all of the event match
condition fields have to be specified also makes the Roleplayer constraint obsolete. The
following syntax is no longer needed and can be removed from the language.

rule "Sample"
when e matches (botype == BUYCANC)
e.originator == buyer
e.responder == store
then

end

The same as outcome constraints, role player constraints were used to add additional Boolean
conditions after the event match block, given that some of the event match condition fields
were omitted, given that the methods that were used to check for that functionality have been
removed from the implementation of Augmented Drools it is no longer possible to do that.

4.2.2 Resetting Rop sets.

The contract in Augmented Drools has another feature that is not present in the original
specification of the EROP language. It is also captured by clauses 2,4,6,8 and 10 and it gives the
ability to reset the ROP set of a given role player. This is needed to keep the consistency of the
ROP sets of roleplayers in the case of certain exceptional situations such as technical or
business failures. To accommodate that functionality I’ve added the keyword reset to the
grammar of EROP, which enables the contract writer to reset the ROP sets of a given roleplayer.
It can only be used in the right hand side of a rule, similarly to ROP set manipulation. A sample
of the operation is as follows:

rule "CancellationBFailures"
when e matches (botype == BUYCANC,originator == buyer,responder ==

store,outcome == tecFail)
then

seller reset

end

45

4.2.3 Case study evaluation.

When the contract, shown in the previous section is inputted in the Translator it produces the
following results. A rule file in Augmented Drools, like one in EROP, starts with a declaration
section where all the objects and entities used in the file are declared. After some java
statements to import the classes of the EROP ontology, there is a section to declare global
identifiers such as Role Players, Composite Obligations and Business Operations. Augmented
Drools also needs instances of some other EROP ontology classes such as the Relevance Engine
and the Event Logger for reference in the rules. The translator also automatically generates ROP
sets for each Role Player specified in the declaration section (conforming by functional
requirements FR1, FR2, FR3 and FR4). The translated declaration section looks as follows:

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RelevanceEngine engine;
global EventLogger logger;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

The translator correctly generates instances of the Relevance Engine and Event Logger as well
as the two Role Players and their corresponding ROP sets and all the specified Business
Operations (Operations names start with lower case due to the fact that they are java object
and must follow Java style rules, as specified in FR5).

The syntax to define rules in Augmented Drools is the same as in EROP given that the latter is
derived from the former and has the following structure:

rule RuleName

when conditions
then actions

end

The Translator produces the following translation of the first two Rules:

46

rule "BuyRequestReceived"
when $e: Event(type=="BUYREQ", originator=="buyer", responder=="store",

status=="success")
eval(ropBuyer.matchesRights(buyRequest))

end

then
ropBuyer.removeRight(buyRequest, seller);
BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation("ReactToBuyRequest", bos, buyer,”01-01-
2016 12:00:00”));

The placeholder event variable is correctly translated to $e and the event match conditions are
specified in the Augmented Drools format. Constraints on event attributes is imposed outside
the event match using the eval keyword as well as the methods from the Augmented Drools
implementation (as specified in FR6). The right hand side of the rule is translated correctly –
with manipulation of ROP sets going through method calls of the generated ROP sets of
roleplayers. As expected, in the case of composite obligations, an extra line of code is needed to
add a new composite obligation. In the above translation a composite obligation called bos is
created and it consists of two other business operations.

The second EROP rule, derived from clause 2 is translated to two rules in Augmented Drools
because of the conditional structure used.

rule "BuyRequestBnessFailureIfThen"
when $e: Event(type == "buyreq",originator == "buyer",responder ==
"store",status == "tecfail")

eval(buyRequest.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(BuyRequest))

end

then
buyRequest.setBusinessFailure == (true)

rule "BuyRequestBness1stFailureIfElse"
when $e: Event(type == "buyreq",originator == "buyer",responder ==
"store",status == "tecfail")

eval(!buyRequest.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(BuyRequest))

end

then
ropBuyer.reset();
ropSeller.reset();

47

The single rule in EROP is correctly broken down into two rules in Augmented Drools (as
specified in FR7) – the first one consisting of the conditions of the if statement added to the
left hand side of the rule and the then action added to the right hand sand of the rule. This rule
also demonstrates the changed outcome constraints at work, correctly matching them as
Boolean conditions and setters on the appropriate places (Lhs/Rhs). The second rule is
produced by adding the negated conditions of the if statement to the left hand side of the rule,
while adding the then action to the right hand side of the rule. It also demonstrates the
translation of the newly added reset construct that allows a contract writer to reset the ROP
sets of a given role player.

The rest of the translation produces similar results, correct for the constructs used. The full
translation is attached in the appendix section and can be compared against the original of the
contract, which is also included, to verify its correctness.

4.2.3 Evaluation of Aims and Objectives.

When I started capturing the aims and objectives of the project back in November, I specified
three main aims:

• Iteratively develop a solution using a modular programming approach and development
of unit tests.

While the development of the final solution was accomplished in an incremental fashion and
the architectural structure of the solution can be specified as modular, the part of the objective
that I don’t think I’ve accomplished fully is the development of unit tests. This is largely due to
the fact that at the time of specification of the original aims I didn’t exactly know where the
development would take me and what would be required. Having completed the project I can
say that unit testing wouldn’t be the perfect testing strategy in the development of the
translator, because the testing requirements were to a greater extent related to the
development of the right grammar for ANTLR and then testing that grammar with various
different language constructs to ensure that the grammar does it fact allow them to be
expressed and parsed correctly. In that sense I’ve changed the testing strategy and that can be
seen in the appendix related to testing. The aim has largely been met with some minor room
for improvement with regards to the better definition of the test cases at the beginning of the
project.

48

• Define test cases that show different syntax and logic parts of the language

I believe I’ve met this aim of the project as shown in the different test cases attached in the
appendix section as well as the reviewed Case study in the previous section. Testing the
different language constructs not only showed the correctness of the translator but it was also
vital in the discovery of obsolete language structures and the need for new ones, as shown in
the case study. In my opinion the aim was met fully and is perhaps one of the most important
parts of the project aside from the development of the translator itself.

• Research current translation methods and strategies and the use they find in the
development of the tool.

Research was perhaps one of the most crucial parts of the project, consuming a significant
portion of the project’s allocated time. It wasn’t confined to just researching translation itself
but the project also required an extensive background research on electronic contracts,
different contract specification languages and the university research leading to the
development of EROP, the Contract compliance checker and Augmented Drools. The translation
of different translation techniques, the structure and inner workings of compilers in particular
was crucial to the development of the project. The different reviewed papers with translation
techniques to different rules languages were also instrumental for the development of the final
solution. Every translation aspect researched in the background section and especially in the
analysis section found use and if not directly, then at least served as an inspiration in the
development of final architectural design and implementation of the project. The objective has
been met and was the most important one in regards to learning new material and software
development techniques as a whole.

4.2.4 Evaluation of Functional and Non-functional Requirements

The entirety of the Mapping specific functional requirements, as presented in the Design
section have been satisfied as shown in the evaluation of the case study as well as the test
cases provided. The remaining General functional requirements have been proven to be
satisfied throughout the write up. Here is a summary of the functional and non-functional
requirements:

• FR8. The translator should use a parser generator to parse an input file

FR8 has been satisfied by using the ANTLR parser generator. The full grammar used to parse the
EROP language has been included in the appendixes section.

49

• FR9. The translator should be able to create an intermediate representation of the
parsed input

The developed classes from the Rules Structure section serve for the creation of an
intermediary representation of the parsed input. The classes in their entirety have been
discussed earlier along with an UML diagram, showcasing the dependencies between them,

• FR10. The translator should be written in JAVA,
• FR11 - The translator should be of the form of a standalone GUI application, an

executable script or both
• NFR1.The EROP input file should not be modified in the translation process.

These functional requirements have been satisfied, as proved by the user manual provided in
the appendix section.

• NFR2. The translator should work with the latest version of AD

The proposed changes, as discussed in sections 5.2.1 and 5.2.2, make it possible for the
translator to map to and support the latest implementation of Augmented Drools.

• NFR3. A user manual should be created to show how the translator can be used.

A user manual, explaining how the final solution works as well as any required input files and
dependencies has been created and can be found in the appendixes section.

• NFR4. The system should be well structured, encapsulating different functionality.

The final architectural design, as presented in the Testing section, shows that the system is
based on a several layer architecture, encapsulation different functionality and enforcing a
modular design.

4.2.5 Evaluation of the Software Engineering aspects

The software methodology I set out to use at the beginning of the project was agile. I chose it
because I was familiar with it from my time spent on a work placement as a development intern
and I believe that an incremental approach would yield a better tested more robust solution.

After the completion of the project I can’t say that the methodology I employed wasn’t pure
agile. Because of the enormous amounts of background research required to get myself up to
speed with contract specification languages, electronic contracts and translations I couldn’t
start the normal agile spirts of design, implementation and testing right away. This resulted in

50

an initial long design phase, after which the agile sprints including refinements of the original
design as well as incremental implementation and testing started.

The carried out sprints in my opinion increased my productivity, by setting a certain amount of
work, (design, implementation or testing), that had to be done each week. This kept me
engaged in the project work, not allowing me to spend too much time on theory.

The actual agile sprint length varied but it was generally between one and two weeks in length.
One of the most helpful aspects of the process was the fact that implementation and testing
were very close together, which was very useful in the developing and testing of the grammar
needed for ANTLR.

In retrospect, I believe that my approach was suitable for the development of the chosen
project. If I had to do it again, perhaps the biggest change I would make is the degree to which
the current version of Augmented Drools is addressed in the project. More exposure to the
latest version of AD would have ensured that the resulting translator is as accurate and as up to
date as possible.

4.2.6 Skills learned

When I started work on developing a solution I had limited background knowledge of electronic
contracts and anything that relates to them, including research done by the university on the
topic. With the amount of background work that needed to be done in order to develop a
translator I can say that my knowledge of the field has improved substantially.

When researching into translation techniques I learned a great deal about compilers, how they
work and the methods they employ in order to get a translation. During that time I also learned
about translation specific tools such as parser generator, syntax trees and automation tools.
This opened the door to researching parser generators and ANTLR in particular. When
researching how ANTLR works, I learned about different types of grammars and algorithms
employed by parser generators. All that combined with the research skills and information
finding process contributed greatly to the development of my ability to find relevant
information and apply it in a specific way in order to accomplish a desired outcome.

Throughout the project I used JAVA as a programming language, solidifying everything I’ve
learned over the past three years. I also did research in the development of a structured XML
and how to properly parse it in an application as well as the different options available to do
the parsing such as DOM and SAX parsing. In the early stages of development I researched the
development of plugins for IDEs such as Eclipse and IntelliJ IDEA. The development of the final

51

application also helped me gain an understanding in creating executable and deployable JAVA
applications in the form of scrip and a GUI.

The project as a whole gave me an experience of what it is like to carry out all the stages
required in the development of small size software development project. The employed
software methodology improved my time management skills and my ability to estimate how
long it would require me to complete a task. Overall the final year project has been a positive
experience yielding information that goes beyond of what can be covered in a taught module.

4.2.7 Conclusion

The set of aims and objectives set initially - to develop a translation tool, research various
different translation techniques and their application in the development of an EROP to
Augmented Drools translator, as well as the use of a specific structure, development approach
and definition of test cases that showcase how the translator works with different language
constructs were quite ambitious given the timeframe.

As a starting point, an extensive background research was needed given my unfamiliarity with
the concept of electronic contracts and the research conducted by the university on various
different topics relating to electronic contracts, contract specification techniques and
compliance monitoring solutions. Next, the background research focused on translation
techniques and approaches as well as different projects doing translations from different
languages. During that research fundamental aspects of the translation process were
discovered such as parsing, mapping and the typical architecture of compilers and language
applications.

The background research served as a starting point of the architectural design of the developed
solution. With a collection of techniques inspired from compilers and different research papers
focusing on translations from/to rules languages, the initial design was created. Using
incremental development and testing, the right grammar for the used parser generator –
ANTLR was developed. The grammar evolved over the myriad test cases as well as the
presented case study to reveal some of the unneeded language constructs and the need of new
such so that a translation to the latest version of Augmented Drools is possible.

Given that EROP was a conceptual language with no concrete implementation, it seemed that
the need to keep developing it was not a priority. This was evident when the inconsistencies

52

between EROP, which was unchanged since its initial introduction and the latest developed
version of Augmented Drools, were discovered. One of the main challenges in the
development of the translation was the fact that the latest version of the Augmented Drools
implementation was not available for reference. This resulted in me having to use papers and
implementation of Augmented Drools that were outdated and led to the development of
mappings for obsolete methods. Fortunately the regular meetings arranged from my
supervisor with developers of Augmented Drools led to the resolution of such erroneous
mappings and sparkled discussion about EROP.

4.2.8 Future Work

Looking back I believe that the project has been a success - I was able to complete the aims and
objectives I set out to accomplish at the beginning of the project and I gained invaluable insight
in academic research, software methodology and development. Even though the developed
solution is able to generate translations, there are improvements that can be made to enhance
its capabilities. Some of these include:

• Adding more descriptive error handling mechanism – As it currently is whenever the
translator tries to parse a file, it expects the input to follow a certain format as specified
in the grammar. If it doesn’t find what it expects, errors messages are presented that
show the line of the file and character position at which the parser found an unexpected
input. The error messages can be enhanced and made more descriptive and user
friendly.

• Think about integration with the CCC [1][2][3][28] – Currently the translator is a stand-
alone entity, separate from the CCC. It is worth exploring the cost of integrating it with
the CCC and the amount of work required to do so. If it is ever integrated that would
contribute to the completeness of the CCC as a contract compliance monitoring system.

• Enhancing the translator so that it can translate EROP to other Rules Languages – The
developed solution was targeted at EROP to AD translation but with the used
technologies in the face of ANTLR – a grammar has the capability to serve for multi-
language translations. In addition to rule languages such as AD, we could explore
translation to blockchain based languages such Ethereum’s Solidity. In order for
that to be accomplished, the intermediate representation has to be extended and one
that is closer to the new target languages has to be added. A possible alternative is
ePromela[28]. Smart contracts built on blockchain and hybrid based architectures are
discussed and analysed in [29][30][31].

• Integrating the translator with automated contract verification capabilities developed at
Newcastle University[23][24][25][26][27].

53

5 References

[1] Solaiman E, Sfyrakis I, Molina-Jimenez C. Dynamic Testing and Deployment of a Contract Monitoring Service. In:
5th International Conference on Cloud Computing and Services Science (CLOSER 2015). 2015, Lisbon, Portugal:
SCITEPRESS.

[2] Strano M, Molina-Jimenez C, Shrivastava S. Implementing a Rule-Based Contract Compliance Checker. In:
Software Services for e-Business and e-Society: 9th IFIP WG 6.1 Conference on e- Business, e-Services and e-
Society (I3E). 2009, Nancy, France: Springer.

[3] Strano, Massimo 2008, ‘Contract specification for compliance checking of business interactions’,
PhD Thesis, Newcastle University, Newcastle upon Tyne.

[4] B Nicholas, An Introduction to Roman Law (Clarendon 1963) 165-193.

[5]Yao-Hua, Tan. 'Doclog: An Electronic Contract Representation Language'. Database and Expert Systems
Applications, 2000. Proceedings. 11th International Workshop (2000): 1069 – 1073.

[6] Techopedia.com,. 'What Is A Transaction Process System (TPS) - Definition From Techopedia'. Web. May
2015.

[7] EDI Translator. http:\\ Altova.com. May 2015.

[8] The CONTRACT Project. http:\\www.ist-contract.org.

[9] S. Miles, N. Oren, M. Luck, S. Modgil, N. Faci, C. Holt, and G. Vickers. Modelling and Administration of Contract-
based Systems. In Proceedings of the AISB 2008 Symposium on Behaviour Regulation in Multi-agent Systems,
pages 19–24, 2008.

[10] N. Faci, S. Modgil, N. Oren, F. Meneguzzi, S. Miles, and M. Luck. Towards a Monitoring Framework for Agent-
based Contract Systems. In Proceedings of the 12th international workshop on Cooperative Information Agents
XII, pages 292–305. Springer, 2008.

[11] S. Panagiotidi, J. Vazquez-Salceda, S. Alvarez-Napagao, S. Ortega-Martorell, S. Willmott, R. Confalonieri, and
P. Storms. Intelligent Contracting Agents Language. Behaviour Regulation in MAS, AISB, pages 49–55, 2008.

[12] RuleML. The RuleML Markup Initiative. http:\\www.ruleml.org, Apr 2005.

[13] M.B. Juric. Business Process Execution Language for Web Services BPEL and BPEL4WS 2nd Edition. Packt
Publishing, 2006.

[14] P. Gama and P. Ferreira. Obligation Policies: an Enforcement Platform. In Sixth IEEE International Workshop
on Policies for Distributed Systems and Networks, 2005, pages 203–212, 2005.

54

[15] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An Access Control Language for Security Policies
with Complex Constraints. In Proceedings of the Network and Distributed System Security Symposium, pages
89–107, 2001.

[16] Miles, S., Oren, N., Luck, M., Modgil, S., Faci, N., Holt, C., & Vickers, G. (2008). Modelling and Administration of
Contract-Based Systems. In Proceedings of the AISB 2008 Symposium on Behaviour Regulation in Multi-Agent
Systems. (pp. 19 - 24). Unknown Publisher.

[17]G., Aiello. 'Inferring Business Rules From Natural Language Expressions'. Service-Oriented Computing and
Applications (SOCA), 2014 IEEE 7th International Conference (2014): 131 - 136.

[18] MacLennan, Bruce J. (1987). Principles of Programming Languages. Oxford University Press.
p. 1.

[19] Aho, Alfred V. (2013) Compilers; Principles, Techniques And Tools, By Alfred V. Addison Wesley.

[20] Grune, Dick (1999). Parsing Techniques: A Practical Guide. US: Springer.

[21] Knuth, Donald E. 'On The Translation Of Languages From Left To Right'. Information and Control 8.6 (1965):
607-639.

[22] Parr, Terence. The Definitive ANTLR 4 Reference.

[23] Solaiman E, Sun W, Molina-Jimenez C. A Tool for the Automatic Verification of BPMN Choreographies. In: 12th
IEEE International Conference on Services Computing (SCC). 2015, New York City, NY, USA: IEEE.

[24] Solaiman E, Molina-Jimenez C, Shrivastava S. Model checking correctness properties of electronic contracts. In:
Service-Oriented Computing - ICSOC 2003. 2003, Trento, Italy: Springer.

[25] Molina-Jimenez C, Shrivastava S, Solaiman E, Warne J. Contract Representation for Run-time Monitoring and
Enforcement. In: IEEE International Conference on E-Commerce. 2003, Newport Beach, California: IEEE.

[26] Molina-Jimenez C, Shrivastava SK, Solaiman EM, Warne JP. Run-time monitoring and enforcement of electronic
contracts. Electronic Commerce Research and Applications 2004, 3(2), 108-125.

[27] Solaiman E, Sfyrakis I, Molina-Jimenez C. High Level Model Checker Based Testing Of Electronic Contracts. In:
Cloud Computing and Services Science. Springer-Verlag, 2016, pp.193-215.

[28] Solaiman E, Sfyrakis I, Molina-Jimenez C. A State Aware Model and Architecture for the Monitoring and
Enforcement of Electronic Contracts. In: 18th IEEE Conference on Business Informatics (CBI). 2016, Paris, France:
IEEE.

[29] Molina-Jimenez C, Solaiman E, Sfyrakis I, Ng I, Crowcroft J. On and Off-Blockchain Enforcement Of Smart
Contracts. EUROPAR 2018 24th International European Conference on Parallel and Distributed. Turin, Italy: Springer.

[30] Molina-Jimenez C, Sfyrakis I, Solaiman E, Ng I, Wong M, Chun A, Crowcroft J. Implementation of Smart Contracts
Using Hybrid Architectures with On and Off–Blockchain Components. In: The 8th IEEE International Symposium on
Cloud and Services Computing (IEEE SC2) 2018. 2018, Paris, France: IEEE.

[31] Solaiman E, Wike T, Sfyrakis I. Implementation And Evaluation Of Smart Contracts Using A Hybrid On And Off-
Blockchain Architecture. Concurrency and Computation Practice and Experience 2020.

55

55

6 Appendixes

6.1 User Manual

The produced piece of software was written in JAVA [conforming to FR10 and FR11] and is the
form of an executable jar file with no GUI. It contains all the external libraries and files needed
so that it can be run as a stand-alone file. The only dependency on the machine that it will be
run is that it has JRE installed (preferably the latest version).

Running the JAR:

The jar script can be executed through the command line of the used operation system. Here is
an example using Windows 8.1

Open the command line windows at the place where the Jar file is located by holding down the
shift key on the keyboard and right clicking with the mouse. From the menu select “Open
command window here”.

56

Once the command line window is opened the script can be executed by specifying the file
name and using the standard command jar, provided by the JRE. In order to trigger a translation
two parameters have to be provided – the first one representing the path to the input file in
EROP and the second file representing the path to the output file that will contain the
translation to Augmented Drools

The command to run the application is:

Java –jar translator.jar PathOfEropFile PathOfOutputFile

Where PathOfEropFile is the file path on the system to the input file and PathOfOutputFile is
the file path to the output file.

57

If an exception occurs it will be noted in the console window. If the EROP file specified contains
syntactical errors they will also be noted in the console window. The following picture

represents the feedback that is given in the case of syntactically incorrect input file.

It indicates that the problem with the input file occurs on the seventh line and it states that it
found ‘a’ but according to the specified grammar it should have found any of
botype/originator/responder/outcome/timestamp.

If there aren’t errors of any type a ‘Writing to file finished’ message will be printed that would
indicate that the translation has been completed.

58

6.2 Mapping FR tests

• FR1. The translator should always include the classes from the EROP Ontology.

Input:

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;

Output:

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;

59

• FR2. The translator should create any instances of the ontology classes used in the rule
referencing.

Input:

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;

Output:

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

• FR3. The translator should create ROP sets for every declared role player.

Input:

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;

Output:

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

60

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

• FR4. The translator should maintain integrity of style conventions when translating names

of business operations or composite obligations (capital in EROP but lowercase in AD)

Input:

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;

Output:

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

61

• FR5. The translator should first translate the declaration section and only then the rules
section.

Input:

rule "BuyRequestReceived"

when e matches (botype == BUYREQ,originator == buyer,responder == store,outcome ==
success)

end

then

BuyRequest in buyer.rights

buyer.rights -= BuyRequest(seller)
seller.obligs += ReactToBuyRequest(buyer)

rule "BuyRequestBnessFailures"

when e matches (botype == BUYREQ,originator == buyer,responder == store,outcome == tecFail)
BuyRequest in buyer.rights

then
if (BuyRequest.BizFail == false)

then BuyRequest.BizFail == true
else reset buyer reset seller

end

Output:

endif

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

62

global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

rule "BuyRequestReceived"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"success")

eval(ropBuyer.matchesRights(buyRequest))

end

then
ropBuyer.removeRight(buyRequest, seller)
BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation(reactToBuyRequest, bos,buyer)

rule "BuyRequestBnessFailuresIfThen"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"tecfail")

eval(buyRequest.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(buyRequest))

end

then
buyRequest.setBusinessFailure (true)

rule "BuyRequestBnessFailuresIfElse"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"tecfail")

eval((buyRequest.getBusinessFailure() == false) == false)
eval(ropBuyer.matchesRights(buyRequest))

end

then
ropBuyer.reset()
ropSeller.reset()

63

• FR6. The translator should correctly translate keywords in EROP to the corresponding
method calls in AD

Input:

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;
compoblig ReactToBuyRequest(BuyConfirm,BuyReject);

rule "BuyRequestReceived"

when e matches (botype == BUYREQ,originator == buyer,responder == store,outcome ==
success)

then

BuyRequest in buyer.rights

end

rule "BuyRequestBnessFailures"

when e matches (botype == BUYREQ,originator == buyer,responder == store,outcome == tecFail)
BuyRequest in buyer.rights

then
if (BuyRequest.BizFail == false)

then BuyRequest.BizFail == true
else reset buyer reset seller

end

Output:

endif

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;

buyer.rights -= BuyRequest(seller)

64

global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

rule "BuyRequestReceived"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"success")

eval(ropBuyer.matchesRights(buyRequest))
then

end

rule "BuyRequestBnessFailuresIfThen"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"tecfail")

eval(buyRequest.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(buyRequest))

end

then
buyRequest.setBusinessFailure (true)

rule "BuyRequestBnessFailuresIfElse"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"tecfail")

eval((buyRequest.getBusinessFailure() == false) == false)
eval(ropBuyer.matchesRights(buyRequest))

then

end

ropBuyer.removeRight(buyRequest, seller)
BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation(reactToBuyRequest, bos,buyer)

ropBuyer.reset()
ropSeller.reset()

65

• FR7. The translator should split rules in EROP that have an f-then-else section into two rules
in AD.

Input:

rule "BuyRequestReceived"

when e matches (botype == BUYREQ,originator == buyer,responder == store,outcome ==
success)

end

then

BuyRequest in buyer.rights

buyer.rights -= BuyRequest(seller)
seller.obligs += ReactToBuyRequest(buyer)

rule "BuyRequestBnessFailures"

when e matches (botype == BUYREQ,originator == buyer,responder == store,outcome == tecFail)
BuyRequest in buyer.rights

then
if (BuyRequest.BizFail == false)

then BuyRequest.BizFail == true
else reset buyer reset seller

end

Output:

endif

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;

roleplayer buyer,seller;
businessoperation BuyRequest,Payment,BuyConfirm,BuyReject,Cancelation;

66

global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

rule "BuyRequestReceived"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"success")

eval(ropBuyer.matchesRights(buyRequest))

end

then
ropBuyer.removeRight(buyRequest, seller)
BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation(reactToBuyRequest, bos,buyer)

rule "BuyRequestBnessFailuresIfThen"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"tecfail")

eval(buyRequest.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(buyRequest))

end

then
buyRequest.setBusinessFailure (true)

rule "BuyRequestBnessFailuresIfElse"

when $e: Event(type == "buyreq",originator == "buyer",responder == "store",status ==
"tecfail")

eval((buyRequest.getBusinessFailure() == false) == false)
eval(ropBuyer.matchesRights(buyRequest))

then

end

ropBuyer.reset()
ropSeller.reset()

67

6.3 Full translation of the Contract presented in section 4

package BuyerStoreContractEx
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;

global RolePlayer buyer;
global ROPSet ropBuyer
global RolePlayer seller;
global ROPSet ropSeller
global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm;
global BusinessOperation buyReject;
global BusinessOperation cancelation;

rule "BuyRequestReceived"

when $e: Event(type == "buyreq",originator == "buyer",responder ==
"store",status == "success")

eval(ropBuyer.matchesRights(buyRequest))

end

then
ropBuyer.removeRight(buyRequest, seller)
BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation(reactToBuyRequest, bos,buyer)

rule "BuyRequestBnessFailuresIfThen"
when $e: Event(type == "buyreq",originator == "buyer",responder ==

"store",status == "tecfail")
eval(buyRequest.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(buyRequest))

end

then
buyRequest.setBusinessFailure (true)

rule "BuyRequestBnessFailuresIfElse"
when $e: Event(type == "buyreq",originator == "buyer",responder ==

"store",status == "tecfail")
eval((buyRequest.getBusinessFailure() == false) == false)
eval(ropBuyer.matchesRights(buyRequest))

end

then
ropBuyer.reset()
ropSeller.reset()

68

rule "BuyRequestRejected"
when $e: Event(type == "buyrej",originator == "store",responder ==

"buyer",status == "success")
eval(ropSeller.matchesObligs(reactToBuyRequest))

end

then
ropSeller.removeObligation(reactToBuyRequest, buyer)

rule "BuyRequestRejectedFailuresIfThen"
when $e: Event(type == "buyrej",originator == "store",responder ==

"buyer",status == "tecfail")
eval(buyConfirm.getBusinessFailure() == false)
eval(ropSeller.matchesObligs(reactToBuyRequest))

end

then
buyConfirm.setBusinessFailure (true)

rule "BuyRequestRejectedFailuresIfElse"
when $e: Event(type == "buyrej",originator == "store",responder ==

"buyer",status == "tecfail")
eval((buyConfirm.getBusinessFailure() == false) == false)
eval(ropSeller.matchesObligs(reactToBuyRequest))

end

then
ropBuyer.reset()
ropSeller.reset()

rule "BuyRequestConfirmation"
when $e: Event(type == "buyconf",originator == "seller",responder ==
"buyer",status == "success")

eval(ropBuyer.matchesObligs(reactToBuyRequest))

end

then
ropSeller.removeObligation(reactToBuyRequest, buyer)
ropBuyer.addObligation(payment, seller)
ropBuyer.addRight(cancellation, seller)

69

rule "BuyRequestConfirmationFailuressIfThen"
when $e: Event(type == "buyconf",originator == "seller",responder ==
"buyer",status == "tecfail")

eval(buyConfirm.getBusinessFailure() == false)
eval(ropSeller.matchesObligs(reactToBuyRequest))

end

then
buyConfirm.setBusinessFailure (true)

rule "BuyRequestConfirmationFailuressIfElse"
when $e: Event(type == "buyconf",originator == "seller",responder ==
"buyer",status == "tecfail")

eval((buyConfirm.getBusinessFailure() == false) == false)
eval(ropSeller.matchesObligs(reactToBuyRequest))

end

then
ropBuyer.reset()
ropSeller.reset()

rule "PaymentReceived"
when $e: Event(type == "buypay",originator == "buyer",responder ==
"store",status == "success")

eval(ropBuyer.matchesObligs(payment))

end

then
ropBuyer.removeObligation(payment, seller)
ropBuyer.removeRight(cancellation, seller)

rule "PaymentReceivedBFailuresIfThen"
when $e: Event(type == "buypay",originator == "buyer",responder ==
"store",status == "tecfail")

eval(payment.getBusinessFailure() == false)
eval(ropBuyer.matchesObligs(payment))

end

then
payment.setBusinessFailure (true)

70

rule "PaymentReceivedBFailuresIfElse"
when $e: Event(type == "buypay",originator == "buyer",responder ==
"store",status == "tecfail")

eval((payment.getBusinessFailure() == false) == false)
eval(ropBuyer.matchesObligs(payment))

end

then
ropBuyer.reset()
ropSeller.reset()

rule "BuyCancellation"
when $e: Event(type == "buycanc",originator == "buyer",responder ==
"store",status == "success")

eval(ropBuyer.matchesRights(cancelation))

end

then
ropBuyer.removeRight(cancellation, seller)
ropBuyer.removeObligation(payment, seller)

rule "CancellationBFailuresIfThen"
when $e: Event(type == "buycanc",originator == "buyer",responder ==
"store",status == "tecfail")

eval(cancelation.getBusinessFailure() == false)
eval(ropBuyer.matchesRights(cancellation))

end

then
cancellation.setBusinessFailure (true)

rule "CancellationBFailuresIfElse"
when $e: Event(type == "buycanc",originator == "buyer",responder ==
"store",status == "tecfail")

eval((cancelation.getBusinessFailure() == false) == false)
eval(ropBuyer.matchesRights(cancellation))

end

then
ropBuyer.reset()
ropSeller.reset()

71

6.4 Original Contract from section 4 in Augmented Drools

package BuyerStoreContractEx

// Import Java classes for EROP support
import uk.ac.ncl.erop.*;
import uk.ac.ncl.logging.CCCLogger;
// Global variables (persistent objects passed from outside)
global RelevanceEngine engine;
global EventLogger logger;
global TimingMonitor timingMonitor;

global RolePlayer buyer;
global RolePlayer seller;
global ROPSet ropBuyer;
global ROPSet ropSeller;

global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirm
global BusinessOperation buyReject;
global BusinessOperation cancelation;

global Responder responder;

global CCCLogger cccloger;

/* Rule 0: initialize the ROP sets for buyer and seller.
* This rule is launched only when the contract is set up.
* the buyer
* starts with the right to submit a buy request. */

rule "Initialization"

when

then
$e: Event (type == "init")

ropBuyer.addRight(buyRequest, seller, (String)null);

end

/* Rule 1: having received a Buy Request event from the buyer, his right to
submit another
* is temporarily revoked until the current one is completed. The seller gains
* an obligation to either accept or reject the Buy Request. */

rule "Buy Request Received"

72

when
// Verify type of event, originator, and responder

$e: Event(type=="BUYREQ", originator=="buyer",
responder=="store", status=="success")

eval(ropBuyer.matchesRights(buyRequest))
then

// Remove buyer's right to place other Buy Requests

ropBuyer.removeRight(buyRequest, seller);

// Add seller's obligation to either accept or reject order

BusinessOperation[] bos = {buyConfirm, buyReject};
ropSeller.addObligation("React To Buy Request", bos, buyer,

60,2);

end

rule "Buy Request Business 1st Failure"

when
// Verify type of event, originator, and responder
$e: Event(type=="BUYREQ", originator=="buyer",

responder=="store", status=="tecfail")
eval(ropBuyer.matchesRights(buyRequest) &&

buyRequest.getBusinessFailure()== false)

end

then
buyRequest.setBusinessFailure(true);

/*
rule "Buy Request Business 2nd Failure"

when
// Verify type of event, originator, and responder
$e: Event(type=="BUYREQ", originator=="buyer",

responder=="store", status=="tecfail")
eval(ropBuyer.matchesRights(buyRequest) &&

buyRequest.getBusinessFailure()== true)

end

*/

then
ropBuyer.reset();
ropSeller.reset();

/* Rule 2: having received a reject Buy Request event from the seller, the
pending obligation
* is satisfied. Restore buyer's right to submit Buy Requests.
*/

rule "Buy Request Rejected"

when

73

$e: Event(type=="BUYREJ", originator=="store",
responder=="buyer", status=="success")

eval(ropSeller.matchesObligations("React To Buy Request"));

end

then
// Buyer's Obligation is satisfied, remove it
ropSeller.removeObligation("React To Buy Request", buyer);

// Restore buyer's right to submit other Buy Requests
//ropBuyer.addRight(buyRequest, seller, (String)null);

rule "Buy Request Rejected Business 1st Failure"
when

$e: Event(type=="BUYREJ", originator=="store",
responder=="buyer", status=="tecfail")

eval(ropSeller.matchesObligations("React To Buy Request") &&
buyReject.getBusinessFailure()==false)

then

end

buyReject.setBusinessFailure(true);

/*
rule "Buy Request Rejected Business 2nd Failure"

when
$e: Event(type=="BUYREJ", originator=="store",

responder=="buyer", status=="tecfail")
eval(ropSeller.matchesObligations("React To Buy Request") &&

buyReject.getBusinessFailure()==true)
then

ropBuyer.reset();
ropSeller.reset();

end
*/
/* Rule 3: having received an accept Buy Request event from the seller, the
pending obligation
* is satisfied. New obligation on buyer to pay seller. */
rule "Buy Request Confirmation"

when
$e: Event(type=="BUYCONF", originator=="store",

responder=="buyer", status=="success")
eval(ropSeller.matchesObligations("React To Buy Request"));

end

then
// Buyer's Obligation is satisfied, remove it
ropSeller.removeObligation("React To Buy Request", buyer);

ropBuyer.addObligation(payment, seller);
ropBuyer.addRight(cancelation, seller);

74

rule "Buy Request Confirmation 1st Business Failure"
when

$e: Event(type=="BUYCONF", originator=="store",
responder=="buyer", status=="tecfail")

eval(ropSeller.matchesObligations("React To Buy Request") &&
buyConfirm.getBusinessFailure()==false)

then

end
/*

buyConfirm.setBusinessFailure(true);

rule "Buy Request Confirmation 2nd Business Failure"
when

$e: Event(type=="BUYCONF", originator=="store",
responder=="buyer", status=="tecfail")

eval(ropSeller.matchesObligations("React To Buy Request") &&
buyConfirm.getBusinessFailure()==true)

then

end

*/

ropBuyer.reset();
ropSeller.reset();

// Rule 5: buyer pays. Obligation satisfied, The buyer regains the right to
submit Buy Requests.
rule "Payment Received"

when
$e: Event(type=="BUYPAY", originator=="buyer",

responder=="store", status=="success")
eval(ropBuyer.matchesObligations(payment))

end

then
// Buyer's Obligation is satisfied, remove it.
ropBuyer.removeObligation(payment, seller);
ropBuyer.removeRight(cancelation, seller);

rule "Payment 1st Business Failure"
when

$e: Event(type=="BUYPAY", originator=="buyer",
responder=="store", status=="tecfail")

eval(ropBuyer.matchesObligations(payment) &&
payment.getBusinessFailure()==false)

then

end
/*

payment.setBusinessFailure(true);

rule "Payment 2nd Business Failure"
when

$e: Event(type=="BUYPAY", originator=="buyer",
responder=="store", status=="tecfail")

75

eval(ropBuyer.matchesObligations(payment) &&
payment.getBusinessFailure()==true)

then

end
*/

ropBuyer.reset();
ropSeller.reset();

rule "Buy cancelation"
when

$e: Event(type=="BUYCANC", originator=="buyer",
responder=="store", status=="success")

eval(ropBuyer.matchesRights(cancelation))

end

then
// Buyer's Obligation is satisfied, remove it.
ropBuyer.removeRight(cancelation, seller);
ropBuyer.removeObligation(payment, seller);

rule "Cancelation 1st Business Failure"
when

$e: Event(type=="BUYCANC", originator=="buyer",
responder=="store", status=="tecfail")

eval(ropBuyer.matchesRights(cancelation) &&
cancelation.getBusinessFailure()== false)

then

end
/*

// Buyer's Obligation is satisfied, remove it.
cancelation.setBusinessFailure(true);

rule "Cancelation 2nd Business Failure"
when

$e: Event(type=="BUYCANC", originator=="buyer",
responder=="store", status=="tecfail")

eval(ropBuyer.matchesRights(cancelation) &&
cancelation.getBusinessFailure()== true)

then
// Buyer's Obligation is satisfied, remove it.

end */

ropBuyer.reset();
ropSeller.reset();

76

6.5 Formal refined grammar of EROP

Based on the work presented in [3]

// Grammar for EROP language
grammar Eropcp;
// Package specification
@header { package com.translator.antlr; }
// Contract definition
contractDocument: WS? declarationSection WS? ruleSet WS?;
// Structure of the declaration section
declarationSection: declaration (WS declaration)*;
declaration: businessOpDeclaration | roleplayerDeclaration | compobligDeclaration;
//businessOpDeclaration: BUSINESSOP WS bopIdentifier (COMMA WS? bopIdentifier)* SEMICOLON;
//roleplayerDeclaration: ROLEPLAYER WS roleplayeridentifyer (COMMA WS? roleplayeridentifyer)*
SEMICOLON;
compobligDeclaration: COMPOBLIG WS upalphanum BRA upalphanum (COMMA WS? upalphanum)+
KET SEMICOLON;

businessOpDeclaration
: BUSINESSOP WS upalphanum (COMMA upalphanum)* SEMICOLON;
roleplayerDeclaration
: ROLEPLAYER WS alphanum (COMMA alphanum)* SEMICOLON;

// Rule set structure
ruleSet : singlerule (WS singlerule)*;

// Rule structure
singlerule: RULE WS rulename WS WHEN WS lhs WS THEN WS rhs WS END;
// : 'rule' WS rulename WS lhs WS rhs WS ’end’;

rulename: '\"' upalphanum '\"';

// Left hand side structure
lhs : eventmatch WS BRA (eventMcond COMMA?)* KET (WS constraint)*;

eventmatch: alphanum WS MATCHES;

eventMcond: field WS? oper WS? (alphanum|upalphanum);

rolePlayerConstraintIssuer: (ORIGINATOR|RESPONDER);
field: (BOTYPE|OUTCOME|ORIGINATOR|RESPONDER|TIMESTAMP);
oper: (EQUALS|NOTEQ);
timeOperators: (EQUALS|NOTEQ|BEFORE|AFTER);

rangeOperators: (IN|NOTIN);
andOR: (AND|OR);
bool: (BOOLEANTRUE|BOOLEANFALSE);

constraint: attributeConstraint | historicalQuery | ropConstraint;

attributeConstraint: roleplayerConstraint | outcomeConstraint | timeConstraint;
roleplayerConstraint: alphanum DOT rolePlayerConstraintIssuer WS? oper WS? alphanum;
outcomeConstraint: upalphanum DOT outcome WS? oper WS? bool;
timeConstraint: timeDirectComparison | timePartialComparison;

timeDirectComparison: alphanum DOT TIMESTAMP WS? timeOperators WS? absoluteTime;

timePartialComparison: alphanum DOT dayKey WS? oper WS? dayOfWeek
|alphanum DOT dayKey WS? rangeOperators WS? dayRange
|alphanum DOT dateKey WS? timeOperators WS? dateIdent
|alphanum DOT dateKey WS? rangeOperators WS? dateRange
|alphanum DOT monthKey WS? timeOperators WS? monthIdent
|alphanum DOT monthKey WS? rangeOperators WS? monthRange
|alphanum DOT yearKey WS? timeOperators WS? yearIdent
|alphanum DOT yearKey WS? rangeOperators WS? yearRange;

dayKey: DAY;
dayOfWeek: WEEKDAY;
dateKey: DATE;
dateIdent: DIGIT DIGIT;
monthKey: MONTH;
monthIdent: MONTHID;
yearKey: YEAR;
yearIdent: DIGIT DIGIT DIGIT DIGIT;
dayRange: SQUAREBRA WEEKDAY DOT DOT WEEKDAY SQUAREKET;
dateRange: SQUAREBRA DIGIT DIGIT DOT DOT DIGIT DIGIT SQUAREKET;
monthRange: SQUAREBRA MONTHID DOT DOT MONTHID SQUAREKET;
yearRange: SQUAREBRA DIGIT DIGIT DIGIT DIGIT DOT DOT DIGIT DIGIT DIGIT DIGIT SQUAREKET;

historicalQueryOp: (HAPPENED|CTHAPPENED);

historicalQuery: historicalQueryOp WS? BRA upalphanum COMMA WS? alphanum
COMMA WS? alphanum COMMA WS? genericString COMMA WS? outcome KET;

ropConstraint: upalphanum WS? rangeOperators WS? alphanum DOT ropset;

// Right hand side structure
rhs : rhsaction (WS? rhsActionNoIfs)*;

rhsActionNoIfs: (termaction|passaction|resetaction|addRemAction|outcomeConstraint);

77

rhsaction: (ifstatement|termaction|passaction|resetaction|addRemAction|outcomeConstraint);
ifThen: THEN WS rhsActionNoIfs (WS (addRemAction|outcomeConstraint|resetaction))*;
ifElse: (WS ELSE WS rhsActionNoIfs (WS (addRemAction|outcomeConstraint|resetaction))*)?;

// : addaction|remaction|termaction|passaction SEMICOLON;

// Support for if-then-else-endif statement
ifstatement: IF WS condition WS ifThen ifElse WS ENDIF;
condition: BRA WS? NOT? constraint (WS? andOR WS? constraint)* WS? KET;

resetaction: RESET WS alphanum;
termaction: TERMINATE WS? BRA outcome KET;
passaction: PASS;
addRemRopOperator: (ADDROP|REMROP);

addRemAction: alphanum DOT ropset WS? addRemRopOperator WS? upalphanum BRA alphanum
(COMMA timeSpec)? KET;

//addaction: alphanum DOT ropset WS? ADDROP WS? upalphanum BRA timeSpec? KET;
//remaction: alphanum DOT ropset WS? REMROP WS? upalphanum BRA timeSpec? KET;

// Rules for both lhs and rhs
outcome: SUCCESS | TECFAIL | INITFAIL | BIZFAIL;
ropset: RIGHTS|OBLIGS|PROHIBS;
timeSpec: absoluteTime; //| relativeTime; UNCOMMENT IF FIXED LATER
absoluteTime: DQUOTE DIGIT DIGIT DASH DIGIT DIGIT DASH DIGIT DIGIT DIGIT DIGIT
WS DIGIT DIGIT COLON DIGIT DIGIT COLON DIGIT DIGIT DQUOTE;
//relativeTime: relTimeElement+;

//relTimeElement: DIGIT+ ('s'|'m'|'h'|'d'|'M'|'Y');

// Token for declaration section
ROLEPLAYER: 'roleplayer';
BUSINESSOP: 'businessoperation';
COMPOBLIG: 'compoblig';

// Tokens for Basic rule structure
RULE: 'rule';
END: 'end';
WHEN: 'when';
THEN: 'then';

// Tokens for left hand side
MATCHES: 'matches';
HAPPENED: 'happened';
CTHAPPENED: 'counthappened';

78

79

BEFORE: 'before';
AFTER: 'after';
BOTYPE: 'botype';
ORIGINATOR: 'originator';
RESPONDER: 'responder';
OUTCOME: 'outcome';
TIMESTAMP: 'timestamp';
DAY : 'day';
DATE: 'date';
SECOND: 'second';
MINUTE: 'minute';
HOUR: 'hour';
MONTH: 'month';
YEAR: 'year';
IN: 'in';
NOTIN: '!in';
EQUALS: '==';
NOTEQ: '!=';
AND: '&&';
OR: '||';
NOT: '!';
WEEKDAY: 'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' | 'Sun';
MONTHID: 'Jan' | 'Feb' | 'Mar' | 'Apr' | 'May' | 'Jun'
|'Jul' | 'Aug' | 'Sep' | 'Oct' | 'Nov' | 'Dec';

// Tokens occurring in both lhs and rhs
SUCCESS: 'Success';
TECFAIL: 'TecFail';
BIZFAIL: 'BizFail';
INITFAIL: 'InitFail';
BOOLEANTRUE: 'true';
BOOLEANFALSE: 'false';

// Right hand side tokens
ADDROP: '+=';
REMROP: '-=';
TERMINATE: 'terminate';
PASS: 'pass';
RESET: 'reset';
OBLIGS: 'obligs';
RIGHTS: 'rights';
PROHIBS: 'prohibs';

// Tokens for Right hand side: structured statements
IF: 'if';
//THEN: 'then';
ELSE: 'else';

89

ENDIF: 'endif';

// Tokens for Right hand side: status guards
OTHERWISE: 'Otherwise';

// Identifiers, with uppercase and lowercase initials
upalphanum: UPPER (LOWER | UPPER | DIGIT)*;
alphanum: LOWER (LOWER | UPPER | DIGIT)*;
roleplayeridentifyer: alphanum; // change so that only alphanum is used.
bopIdentifier: upalphanum;
genericString: DQUOTE (LOWER | UPPER | DIGIT | WS | SEMICOLON
| COLON | COMMA | QUOTE | DOT | DASH | BACKSLASH)* DQUOTE;
// Alphabet, numbers
//LOWER: [a-z];
//UPPER: [A-Z];
//DIGIT: [0-9];
LOWER: 'a'..'z';
UPPER: 'A'..'Z';
DIGIT: '0'..'9';

// Various characters
SEMICOLON
: ';';
COLON
: ':';
HASH: '#';
BRA: '(';
KET: ')';
COMMA: ',';
QUOTE: '\'';
DQUOTE: '\"'; // "
SQUAREBRA: '['; // may have to escape this
SQUAREKET: ']'; // may have to escape this
DOT : '.'; // may have to escape this
DASH: '-';
BACKSLASH: '\\';

WS : [\t\r\n]+; // Define whitespace rule, toss it out

