
CSC8499 Individual Project:
Implementing a Contract Compliance Checker for

Monitoring Contracts

Ioannis Sfyrakis

MSc in Advanced Computer Science,
School of Computing Science, University of Newcastle, U. K.

i.sfyrakis@ncl.ac.uk

Abstract. Businesses use contracts to regulate interactions between
them. Contract monitoring is an active research topic where we observe
the interactions between the business parties. We use a Contract Com-
pliance Checker (CCC) for monitoring contracts that was developed in
Newcastle University. The CCC uses ECA rules written in a semi-formal
language called EROP in order to specify a business contract. A current
limitation of the CCC is that it uses an old version of Drools and that it
uses hardwired Business Events. The main aim of this dissertation was
to migrate to the latest version of Drools and enhance the architecture
of the CCC. The main enhancement added was to transform the CCC to
a web service that accepts Business Events from the outside world. The
web service follows the REST architectural style and was implemented
using Java related technologies. We consider the old CCC version as a
reference implementation. Testing of the CCC web service was performed
using the same contract as the old version. Results show that both the
old version and the enhanced version of the CCC have the same behavior
when a specific business contract is used.

Declaration: I declare that this dissertation represents my own work
except where otherwise explicitly stated.

1 Introduction

Contracts are used in business-to-business (B2B) interactions in order to regulate
them. A contract is a legally binding agreement that has two or more participants
and stipulates a number of rights, obligations and prohibitions. A right is what
the contracting party is allowed to do, an obligation is what the contracting
is expected to do or they risk being penalized and a prohibition is what the
contracting party is not expected to do unless they want to be penalized [1]. As an
example, a contract between two parties a Buyer and a Seller is presented below.
In the contract, C stands for “clause”, and rights, obligations and prohibitions
are shown for each clause:

• C1: The Buyer has the right to place a Buy Request with the Seller to buy
an item, as long as it is from Monday to Saturday and from 9am to 5pm
(Right).

2 Ioannis Sfyrakis

• C2: The Seller is obliged to respond with either Buy Confirmation or Buy
Rejection within 3 days of receiving the Buy Request (Obligation).

• C3: The Buyer can use its discretion to either Pay for or Cancel the Buy
Request within 7 days of receiving a confirmation (Obligation). Cancel-
ing the Buy Request is prohibited to the Buyer in any other condition
(Prohibition).

Contractual interactions are implemented as cross-organizational business pro-
cesses executed between the two parties in a loosely coupled manner. This implies
that each operation execution involves the two parties, which produce two inde-
pendent and possibly conflicting outcomes. Normally the parties are interested
in monitoring/enforcing the contractual interaction at runtime. Contract moni-
toring is all about observing the interaction between parties. Similarly, the focus
of contract enforcement is on preventing as much as possible, violations of the
contract.

conventional business contract

Contract Compliance

Checker (CCC)

Synchronizer

Buyer Seller

C1 The Buyer has the right to submit a Buy Request ...

C2 The Seller is obliged to respond with either Buy Confirmation or Buy Rejection ...

C3 The Buyer can use its discretion to either Pay for or Cancel the Buy Request …

... … … … … ...

public

business

processB

public

business

processS

contractual

interaction

Buyer's
 in

dividual

outcome

Seller's individual

outcome

Business Events

legend:

derived from

Fig. 1. contract monitor

Implementing a Contract Compliance Checker for Monitoring Contracts 3

Fig. 1 shows a sample scenario with the three clauses from the example
contract. This architecture for the contract monitor consists of a Buyer side and
a Seller side. Each side has a public business process that is derived from the
contract. A formal version of the contract is provided to the Contract Monitor.
While both parties interact with each other to fulfill the contract, there is a
synchronizer component that takes as input each party’s individual outcome.
This component exists because of potential conflicting outcomes. For example,
the Buyer can issue a Buy Request and the Seller can accept such a business
operation that is compliant with current contract. Buyer side sends a message
to the synchronizer component if the operation is successful or a failure. The
same happens from the Seller side, which sends a message to the synchronizer
if the outcome of the operation is a success or failure. The main goal of the
synchronizer component is to compose a single outcome of the pair of individually
produced outcomes and to notify the result to the Contract Monitor and to
the participants. Then the Contract Monitor receives the business event and
determines if this event is contract compliant or not. To determine if a given
business event is contract compliant or not the Contract Monitor needs to be
provided with a formal version of this business contract that it can interpret and
manipulate. Let us call it the e-contract model or specification.

E-contracts are specified in domain specific languages, designed to capture
key contractual concepts such as rights, obligations, prohibitions, normative
statements, role players and deadlines. We call these languages contract lan-
guages.

A number of contract languages have been discussed in literature. Some of
them are based on Deontic Logic[2, 3] and others are based on Law-Governed In-
teraction (LGI)[4]. The main problem with these contract languages is that they
are not easy to map into an existing technology such as RosettaNet[5]. However,
no consensus has been reached so far about the best alternative. The choice of
one in favor of another is a matter of debate and perhaps of personal preference.
This suggests that contract languages are still a research topic. Additionally,
the design and implementation of the contract monitor itself is also a research
problem. To help cover the research gap, in this dissertation we propose the use
of EROP, an ECA-based contract language for expressing e-contracts that are
manipulated by a Contract Compliance Checker (CCC). The EROP and CCC
are currently the subjects of research projects of the school of computer science
of Newcastle University. Preliminary implementations have been produced. For
instance, a working version of a CCC implemented in Drools 4 [6]version exists.
However, it suffers from several limitations including not being able to accept
business events from outside the context of the implementation but relies on
hardcoded events being fed to the CCC engine. The aim and contribution of
this dissertation is to redesign the CCC to enhance some of its limitations and
to migrate it to the latest Drools 5 version.

4 Ioannis Sfyrakis

1.1 Aim And Objectives

Precisely, this project aims at enhancing the CCC that has been already designed
and implemented. The Drools engine that is currently used will be updated to
the latest technology. Also, the CCC will be exposed as a web service that can
be utilized by other services and technologies rather than being a self contained
desktop application. For example, the new implementation will allow to input a
new business event to the CCC or add a new set of rules using a request send
by a client. All these new features will enhance the current functionality of the
CCC and make it more suitable for research experiments. The main objectives
of our research are:

• to evaluate critically related work on monitoring contracts and undertake an
analysis of the old CCC;

• to enhance the design of the CCC in terms of architecture and functionality;
• to design and develop a high quality prototype that exposes the CCC as a
RESTful web service;

• to evaluate critically the new implementation of CCC against the proposed
requirements and perform tests using an example contract;

• to outline possible ways of improving the CCC in the future.

1.2 Structure of Dissertation

This dissertation features 10 major sections. Section 2 will aim to discuss related
work on monitoring contracts. A review of the implementation of the old CCC
is discussed in Section 3. Section 4 discusses how the enhanced CCC is designed.
Section 5 outlines the specific technologies used during the implementation of
the CCC. Section 6 describes how the new CCC was implemented. Featured,
in Section 7 are the testing approaches that were followed in order to test the
CCC. Meanwhile, Section 8 evaluates the enhanced CCC built for this paper
and performs a critical analysis of each objective we aim to achieve. Section 9
presents the conclusions. Finally, Section 10 outlines possible future work on
CCC.

2 Related Work

In this section we present research work that is relevant to our work conducted
by various academic, and industry research groups in the area of monitoring
electronic contracts. The subsections that follow intend to critically evaluate (1)
contract languages that can be used to represent electronic versions of contracts;
(2) different ways of monitoring electronic contracts; and (3) contract monitor
systems that have already been developed by research or industry groups.

Implementing a Contract Compliance Checker for Monitoring Contracts 5

2.1 Contract Languages

In order to monitor the enactment of a contract, that contract needs to be con-
verted to an electronic version. This can be achieved by specifying a contract
using a contract representation language that can express the contract in a ma-
chine amenable notation. Each contractual clause is encoded according to the
notation of the contract language that has been chosen. According to Hvitved [7]
there are three main categories of contract formalisms: (deontic) logic based for-
malisms [8–10], ECA-based formalisms [11] and action/trace based formalisms
[12, 13]. Also, other contract formalisms worth mentioning use defeasible reason-
ing [10, 8] or finite state machines [14].

Table 1 shows the main advantages and disadvantages of the contract paradigms
mentioned. Our choice is to use a language that implementors find easy to write
and understand. On this basis we have chosen an ECA notation. We expect that
implementors will intuitively encode contractual clauses in ECA rules that are
compatible with current business technologies such as RosettaNet and can be
easily integrated.

In [15] the authors suggest a list of nine desirable features that in their opinion
contract languages should provide, including formality, expressiveness, usability,
declarativeness and consistency checks. Though we agree with the list, we feel
for implementors an equally important feature is implementability defined as a
language we can effectively and efficiently implement. This is in fact a salient
feature of our ECA-based contract language.

2.2 Contract Monitoring

Contract monitoring and/or enforcement is an active research topic. An early
work in this area is Law-Governed Interaction (LGI) [4, 16]. LGI is an architec-
ture for contract monitoring and enforcement that consists of three parts: (1)
Law-Governed Interaction Model; (2) Moses middleware which runs the LGI ar-
chitecture and (3) two law languages based in Prolog and Java respectively that
specify the interaction between two or more autonomous agents. Moses middle-
ware includes Controllers that are located between the interacting parties. The
main objective of Controllers is to receive events and take actions according to
a knowledge base that contains rules. These rules can be written in any one of
the two supported languages and are stored in Law Servers. This approach is
similar to our Contract Monitor’s way of inferring action based on a knowledge
base of rules. Moses components need to be installed in each interacting party.
In contrast, our Contract Monitor acts as a trusted third party, so we do not
have to install it in all participants. A limitation of LGI with respect to our work
is that they do not account for timing or message validity constraints.

6 Ioannis Sfyrakis

Table 1. Main Advantages and Disadvantages of Contract Formalisms

Contract
Languages

Advantages Disadvantages

(Deontic) Logic
based languages

• rigorous formal approach • not easily understandable
by technical and business
people

• not widely used in
business world and
industry

• static

ECA-based
languages

• widely used in business
world and industry

• not strictly rigorous
approach

• intuitive for technical and
business people to write
and understand

Defeasible
reasoning
languages

• rigorous formal approach • not easily understandable
by technical and business
people

Implementing a Contract Compliance Checker for Monitoring Contracts 7

Heimdhal [17] is a middleware platform that can monitor and enforce history-
based policies. All interactions between the participants are constantly moni-
tored and authorized by Heimdhal. The events that come out of the interactions
are asserted against a rule base of policies. If the policies are found to match
a rule then they either impose or fulfill obligations or impose compensations.
Heimdahl contains a policy monitor similar to our Contract Monitor that mon-
itors and enforces Service Level Agreements (SLA). Thus, the main focus of
Heimdhal is on enforcing resource usage policies (e.g “No job added for users
above their monthly CPU quota of 10 hours”). The policies are defined using
xSPL language that follows the ECA paradigm. It is declarative in nature. How-
ever, the language is difficult for non-technical users to write the policies. Also
its focus is on expressing non-functional requirements rather than functional
ones. Additionally, Heimdhal does not take into account rights or prohibitions
in its policies but only obligations. Finally, there is not any explicit support for
exception handling.

In [18] the authors present a mediating entity defined as Synchronization
Point (SP) that monitors the events generated by the participants of a collabo-
rating business process. Each SP contains a knowledge base of contract clauses
that are written as ECA rules using Protégé 2000. Protégé Axiom Language
(PAL) is a query language that can be used to search a knowledge base accord-
ing to a number of criteria. In order to generate ECA rules for SP the contract
written in natural language, first has to be converted to SP relationships and
Satisfiability (Sat) functions. Relationships represent an obligation, permission
or prohibition and are related to a set of Sat functions. The goal of Sat functions
is to take as input, objects or events and examine if the SP relationships hold
between the input objects or events. The SP handles exceptions that can happen
in the future by warning the related parties. The problem with this approach is
that it does not take into account unexpected failures such as technical failures.
Even though, SP uses ECA rules similar to what our Contract Monitor use, we
cannot assess if the rule is an obligation, right or prohibition.

Ludwig et al. [19] propose a Simple Obligation and Right Model (SORM).
SORM can be used to specify electronic contracts for runtime monitoring. The
main idea in this paper is that rights and obligation have a dual nature, i.e., a
right for one party is and obligation for the other party. There are three types
of rights and obligations: state obligations/rights, maintain a particular state,
action obligations/rights, denote the promise to execute a certain action, and op-
tion obligations/rights to tolerate certain actions executed by another party. The
authors discuss that rights and obligations of a contract can be modified during
the enactment of the contract. Three actions are introduced that support the
modification of rights/obligations: add, remove or change the current right/obli-
gation. Some obligations remain constant and cannot be changed and are called
background obligations. These are grouped together. Additionally, obligations
are grouped together according to the state of the contract. This makes it easy
to identify the obligations that should be modified when there is a state change
in the contract. The model proposed in this paper is similar to the model in

8 Ioannis Sfyrakis

our Contract Monitor regarding two aspects. Firstly, the rights and obligations
are enforced dynamically during the enactment of the contract. Secondly, we use
add/remove operations in order to modify the state of rights and obligations.
One concept that is not present in SORM is prohibition in relation with rights
and obligations of a contractual party.

Research conducted by Linington [20] discusses the usage of Model Driven
Development (MDD) in order to generate software systems that can monitor the
enactment of electronic contracts. Following the model driven approach system,
designers produce an abstract model of the business in a domain specific lan-
guage or a metamodel. Next they define a transformation model derived from
a running solution that uses resources from the infrastructure. Both metamod-
els created can reuse the transformations, if the metamodels are reliable and
well written. In addition, the tools built to execute the transformations can be
long-lived. Contract monitoring in this regard contains two metamodels, (1) the
notification metamodel that produces the calls to the infrastructure by connect-
ing contractual parties with the monitor, and (2) the monitoring metamodel,
that provides a mapping to a form that influences the decision process of the
monitor during the business interaction. This paper discusses sub-contracting,
multiple contract instances monitoring, nested executions, among other topics.
However, it does not discuss the topic of deadlines and business or technical
failures during the execution of electronic contracts.

3 Analysis of the old Contract Compliance Checker

This section intends to describe the old architecture of the Contract Compli-
ance Checker. Additionally, it discusses the old implementation and provides a
rationale for migrating to new technology.

3.1 Old Architecture of Contract Compliance Checker

As shown in Fig. 1, the CCC is deployed as a neutral observer of the interaction
of the contracting parties, for instance a buyer and a seller. It observes business
events (bevent) that notify of the execution of operations. The objective of CCC
is to observe and log all the interactions between relevant parties to determine
if their actions are contract compliant. Each business partner includes a private
business process and a public process. Both types of business processes collabo-
rate in order to execute the contract. Also, there are two logical channels: One is
the monitoring channel that delivers business events (bevent) to the CCC. The
other is the conversation channel that is used for business conversations between
the contractual parties.
Fig. 2 presents the architecture of CCC. The ROP sets depicted in this figure
store the current set of rights, obligations and prohibitions of the contractual
parties.

The bevent logger is a storage facility for persisting records regarding all the
events processed by the CCC. The bevent queue is a queue that stores bevents
until they are retrieved for processing by the relevance engine.

Implementing a Contract Compliance Checker for Monitoring Contracts 9

The contract rules is the rule base repository and includes a number of ECA
rules that describe the contract under monitoring. Rules react to events that
correspond to bevents. Furthermore, rules include actions to add and delete
rights, obligations, prohibitions. Thus, these (add/del) operations are executed
in order to update the ROP sets.

The timer keeps track of deadlines related to the rights, obligations, and
prohibitions that are stored in the ROP sets. The relevance engine is responsible
to set or reset deadlines. If a deadline expires then a timeout event is sent to
filter for mismatched operations (filter mism. boi).

timer

bevent

queue

contract

rules

bevent

logger
filter mism.

boi

filter unkn.

boi

ROP sets

buyer's seller's

rights rights

obligations obligations

prohibitions prohibitions

relevance

engine

rule matching

timeout bevents

set/reset deadline TO

bevents from monitoring channel

add/del

cons. hist. records

Contract Compliance Checker

Fig. 2. Architecture of the CCC [1]

When bevents arrive at the CCC from the monitoring channel they need
to pass through two levels of filters. The first filter is the filter for unknown
operations (filter unkn. boi) and its objective is to filter out unknown business
operations.

The second filter is the filter for mismatched operations (filter mism. boi).
If a bevent is a mismatched business operation then the event gets filtered out
and sent to the bevent logger. Additionally, timeout bevents are also examined
by the second filter before they are added to the bevent queue. The main goal
of the two filters is to exclude non-compliant business operations from reaching
the relevance engine.

10 Ioannis Sfyrakis

The relevance engine removes a bevent from the head of the bevent queue,
tries to match the bevent to a rule from the rule repository and then trigger the
relevant rule.

3.2 Implementation of the Contract Compliance Checker

Business interactions between partners generally take place through a set of well
defined business operations. For instance, in our contract example buy request,
buy confirmation are considered as business operations. At implementation level,
we assume that each business operation is supported by a business conversa-
tion which can be implemented in RosettaNet Partner Interface Processes[5] or
ebXML[21] industry standards.

A business conversation is a message interaction protocol with message tim-
ing and validity constraints. The execution of a business operation generates an
initiation and an execution outcome event. The first outcome event returns an
InitSucc event if the initiation succeeds and InitFail if the initiation fails. The
second outcome event, following ebXML specification, returns a successful con-
clusion (Success) or a business failure (BizFail) or a technical failure (TechFail).
All the business conversations between the contractual parties are implemented
using a Message oriented Middleware (MoM) as in Fig. 4 below.

Event Logger Time Keeper

Event Queue Relevance Engine

Rights

Rights

Obligs

Obligs

Prohibs

Prohibs

Participant

Participant

buyer

seller

Current ROP sets
MoM (Business

Conversations)
Monitoring

Channel

(Events)

Historical queries

Timeout events

Timeouts

Fig. 3. The Contract Compliance Checker [22]

Main components as seen in Fig. 3 include Event Logger, Time Keeper,
Event Queue, and the Relevance Engine. Each component is defined in a class.
Event Queue is implemented as First In, First Out (FIFO) queue that adds an
incoming Event to the end of the queue and removing an Event from the head of
the queue. These Events are added by the participants through the monitoring
channel as seen in Fig. 4. Also, Events can be added by the Time Keeper as
timeout events. The only component that can remove events from the Event
Queue is the Relevance Engine.

The main objective of the Time Keeper is to manage deadlines expiry from
the current ROP sets and offers operations to add or remove a deadline. A
deadline is represented internally as Java timers. When a deadline expires, the
corresponding timer notifies the Time Keeper passing relevant parameters and

Implementing a Contract Compliance Checker for Monitoring Contracts 11

data. Then the Time Keeper makes a new instance of Event of the relevant type,
appending Timeout to the name.

The job of the Event Logger is to maintain the historical database. Logging
events in the database, submitting boolean and numerical queries are the opera-
tions supported by the Event Logger. The Relevance Engine uses Drools engine
[6] to decide which rule to trigger and offers four operations. The first operation
is to add an Event for processing, the second is to initialize a new contract for a
new business interaction, the third is to process the Event Queue and the fourth
is to verify that the queue is empty.

Translation Tools

Contract

(Erop Version)

Translation

Engine

Contract

(Augmented

Drools Version)

Event

Queue

Relevance

Engine

Drools

Engine

EROP

Component

for Drools

Time Keeper

Event

Logger

Java

JDBC

Java

Timers

Database

Server

Contract Compliance Checker

Legend:

Translate

Access

Fig. 4. Implementation Details for the Contract Compliance Checker[22]

3.3 The EROP Ontology

The EROP ontology models the execution of business operations between part-
ners, and checks if the actions are contract compliant. Each of the EROP ontol-
ogy class corresponds to a Java class. Consequently, the EROP ontology includes
the following classes:

• Role Player: an entity used by one of the interacting parties that plays a role
defined in the contract.

• Business Operation: a business activity that is defined in the contract.
• Right: A Business Operation that a Role Player has the right to execute.
• Obligation (Simple): A Business Operation that has to be executed by the
Role Player.

• Prohibition: A Business Operation that should not be executed by the Role
Player.

12 Ioannis Sfyrakis

• Composite Obligation: A collection of Obligations which include a single
deadline. In order for the Composite Obligation to be satisfied an Obligation
has to be executed by the Role Player.

• ROP Entity: A Right, Obligation or Prohibition.
• Deadline: A time constraint to exercise a right, prohibition, simple and com-
posite obligation.

• ROP Set: A set of rights, obligations and prohibitions that belong to the
Role Player. A Role Player is associated with only one ROP Set.

• Event: It is a message that includes a record about the occurrence of a
business activity.

Finally, Fig. 5 shows a UML diagram that outlines the class hierarchy for
ROPEntity. ROPEntity is the superclass of Right, Obligation and Prohibition
classes. Additionally, CompositeObligation class is the subclass of Obligation.

ROPEntity

Right Obligation Prohibition

CompositeObligation

Fig. 5. Descendants of the class ROPEntity[22]

3.4 EROP language

EROP language is a domain specific language designed for expressing electronic
contracts. It provides the designer with specific constructs for capturing contract
concepts like role players, business operations, obligations, prohibitions, rights
and operators for manipulating those concepts. For instance, one can add an
obligation for payment to the role player buyer. EROP can be mapped into
JBoss Drools and executed by its rule engine. Each concept of EROP like role
players is mapped into a java object that can be executed by the rule engine.

Implementing a Contract Compliance Checker for Monitoring Contracts 13

Rules in EROP consists of the following: an event part that matches a specific
type; condition that specifies a set of Boolean expressions; and the action that
specifies a list of statements, usually data modifications.

A business operation is contract compliant when it satisfies several con-
straints: (1) the event attribute where we assert the attribute of an event to
be correct, (2) historical constraint where we assert if a given event or number
of events exist or not, (3) ROP constraints where we assert if the business op-
eration matches a role player’s ROPSet and (4) rule action constraints that can
either modify ROP sets of role players or terminate the current operation.

EROP language uses the entities described in the previous subsection and
realizes the model mentioned above. A full example written in EROP language
is presented in appendix D. To help with our discussion the first part of the
contract introduced in Introduction section will be used as an example.

The syntax of each rule follows the following structure:

rule "ruleName"
when

triggerBlock
then

actionBlock
end

The trigger block of a rule decides when the rule is triggerable. When the rule
is triggered the action block is executed. It contains a set of boolean expressions
in conjunction that must contain an event match expression. This expression
compares the fields of an event object with a tuple of values that include the
botype (type of event), outcome (outcome of the event), originator (name of
the role player that initiated the business operation), responder (name of the
role player that the originator is trying to interact with) or timestamp (time
the event was received).

The action block contains a number of actions: += (add business operations
or composite obligations from ROP sets), -= (remove business operations or
composite obligations from ROP sets), pass (no effect) and terminate (concludes
the execution of the contract). For instance, the following line from the example
contract adds a new obligation to the seller to respond to the buyer within 72
hours.

s e l l e r . o b l i g s += RespondToBuyRequest ("72h") ;

Two other elements can appear in the trigger block, conditional statements
and status guards. Conditional statements have the following structure:

i f cond i t i on s then
act ionBlock

[else
act ionBlock]

endif

14 Ioannis Sfyrakis

Conditions used in the if statement are the same as the conditions in a trigger
block. Status guards (Success, InitFail, BizFail, TecFail, Otherwise) are used to
group actions for conditional execution according to the outcome of a business
operation.

The first part of a contract expressed in the EROP language is used for declar-
ing the role players, the business operations and composite obligations that are
used in the rule section. Role players include a list of parties involved in the
contract and are declared by using the keyword roleplayer. For instance, in our
contract example there are two role players, the buyer and seller. Business opera-
tions that are used in the contract can be declared using the businessoperation
keyword. The keyword compoblig is used to declare composite obligations. The
code snippet below shows the declaration and rule section derived from C1 of
our contract.

roleplayer buyer , s e l l e r
businessoperation buyRequest , buyConfirmation
businessoperation payment , buyReject ion
businessoperation c anc e l a t i on

rule "R1"
when

e matches (botype == BuyRequest)
then

Success :
i f e . o r i g i n a t o r == buyer

&& BuyRequest in buyer . r i g h t s
&& e . weekday in [Monday . . . Saturday]
&& e . time in [9 . . . 18]

then
s e l l e r . o b l i g s += RespondToBuyRequest ("72h") ;

endif
Otherwise :

pass ;

end

3.5 Implementation of the Relevance Engine

Fig. 6 shows the structure of the Relevance Engine. It consists of Drools Engine
and EROP components for Drools. Drools uses a set of rules to declaratively alter
the state of the system without having to rely on static, hardcoded knowledge.
The heart of Drools is its Inference Engine that can scale to a large number of
rules and facts. The main purpose of the Inference Engine is to match facts and
data against rules which in turn will result in actions. The matching of new or
existing facts against rules is performed by the Pattern Matcher component of
the Inference Engine. There are a number of different algorithms for performing

Implementing a Contract Compliance Checker for Monitoring Contracts 15

pattern matching such as Linear, Rete, Treat and Leaps algorithms. Currently,
Drools implements the Rete algorithm.

According to Fig. 6 Production Memory stores the rules and Working Mem-
ory stores the facts that the Inference Engine matches against. Facts are asserted
into the Working Memory where they can be altered or removed. The Agenda
component manages the order of execution and if there any conflicting rules it
uses a Conflict Resolution strategy that executes a rule according to its salience.
Rules with higher salience are given higher priority for the rule engine to execute
them.

Relevance Engine

Inference Engine

Working

Memory

(Facts)

Production

Memory

(Rules)

Pattern

Matcher

Agenda

Drools Engine

EROP Component for Drools

Augmented

Drools

rules

Fig. 6. High-level view of Rule Engine

There are two ways that rules can be executed: Forward Chaining and Back-
ward Chaining. A system that implements both is called Hybrid Chaining Sys-
tem. Currently, Drools provides hybrid chaining, it supports both forward and
backward executions. Forward chaining is data-driven and reactive, where facts
are asserted in working memory, and the outcome is one or more rules to be true.
Backward chaining starts with a conclusion that the rule engine tries to satisfies.
If the conclusion cannot be satisfied then it searches for another conclusion that
it can satisfy. Agenda then executes all the rules that are scheduled.

16 Ioannis Sfyrakis

3.6 Augmented Drools

To execute a contract written in EROP language like the one presented before
the designer needs to translate it (either manually or mechanically) into an
electronic version. We assume the first alternative in this dissertation, so we
translate the business contract into Augmented Drools (AD) with the addition
of the Java implementation of the EROP ontology. Augmented Drools retains
the same expressiveness of EROP and can be run in Drools engine but it is
more implementation oriented. Additionally, EROP language can be mapped
completely into AD. The snippet below shows the AD version of rule “R1” shown
in p. 13 and 14. The full version of the contract rules in AD are presented in
Appendix D.

The first part of a rule in EROP is the declaration section which also exists
and serves the same purpose in AD. All objects and entities are declared in this
AD section such as Role Players, Business Operations, Composite Obligations,
Role Players’ ROP sets and instances of Relevance Engine and Event Logger.
All global objects in the declaration section use the global Drools keyword and
then the object to declare, its name and a semicolon.

global RelevanceEngine eng ine ;
global EventLogger l o gg e r ;
global RolePlayer buyer ;
global RolePlayer s e l l e r ;
global ROPSet ropBuyer ;
global ROPSet r o pS e l l e r ;
global TimingMonitor timingMonitor ;

global BusinessOperat ion buyRequest ;

rule "Buy␣Request ␣Received "
when

$e : Event (type=="Buy␣Request " , o r i g i n a t o r=="buyer" ,
responder==" s e l l e r " , s t a tu s==" suc c e s s ")
eva l (ropBuyer . matchesRights (buyRequest))

then
ropBuyer . removeRight (buyRequest , s e l l e r) ;
Bus inessOperat ion [] bos = {buyConfirmation , buyReject ion } ;
r o pS e l l e r . addObl igat ion ("React␣To␣Buy␣Request " , bos , buyer , 3) ;

end

In the first two lines we declare the instances of Relevance Engine, Event-
Logger and TimingMonitor that we will use. A buyer and a seller are declared
as instances of RolePlayer and their ROP sets are also declared. Finally, the
business operations that will be used in subsequent rules are declared.

Rules in AD follow the same structure as EROP with a trigger and action
block. The event matching is translated in AD using the syntax

$e : Event (a t t r i bu t e==value , [a t t r i b u t e==value] ∗)

Implementing a Contract Compliance Checker for Monitoring Contracts 17

$e is the event. The Drools keyword eval is used to evaluate boolean expression
in the left hand side of each rule. Actions in AD use methods calls in order to
add or remove a right, obligation, prohibition. In our snippet above we use the
method addObligation to add a new composite obligation to the ROP set of the
seller with the name “React To Buy Request” for a particular buyer.

3.7 The Historical Database

There are four tables in the Historical Database. One for the Role Player, one
for possible status outcomes, one for Event types and one for the Event history.
Out of these four tables only the fourth is actively used for events history. Con-
sequently, the Event history table is created empty before the first run of the
system and is populated with data during the contract’s lifetime. All the data in
the database table are available to be queried so that we gain more information
and insight for activities performed in the past during a contract’s execution.

Two categories of queries exist: boolean queries and numerical queries. The
first category verifies if an event matching a certain number of constraints exists
in the historical database. The second category count the number of occurrences
of a certain event that exists in the Historical database.

3.8 Some Limitations of the old CCC implementation

1. If an event is contract compliant then CCC updates the ROP sets accord-
ingly. Otherwise, if an event is not contract compliant CCC does not update
the ROP sets.

2. The CCC can only accept additions or deletion of rights, prohibitions or
obligations. Thus, it supports only two states during the monitoring of the
contractual interactions. For example, an obligation can either be active or
inactive. When a deadline has passed the ROP sets should update automat-
ically rather than waiting for an event to update them.

3. The old CCC implementation is a self contained application where all events
and rules are hardcoded. They are specified in a static manner inside the
code. The file CCCExperiment.java represents a sample execution of a con-
tract using the CCC. The contract and the events that are fed to CCC are
hardcoded. Therefore, this prevents dynamism in the system in the sense that
it cannot monitor different contracts unless the file CCCExperiment.java is
edited by hand and the whole CCC recompiled. To solve this limitation
events should be added from outside the CCC, using for example a RESTful
interface.

4. Currently, all the events are stored in a mysql database, in the eventhistory
table. We can only use a mysql database otherwise we would have to migrate
the code that sends the SQL queries to the new database vendor. This can be
improved by using Java Persistence API (JPA) for managing relational data
and provide in this way an abstract data layer for the CCC. The advantage of
this approach is that we decouple the way we store data and which database

18 Ioannis Sfyrakis

type we use from the CCC implementation. Therefore, we can use any type
of database that supports JPA.

5. The old CCC implementation uses Drools 4. This version of Drools provides
a rule engine that does not perform very well in terms of raw speed and data
loading time as opposed to the latest Drools Expert version. Additionally,
Drools 4 does not provide backward chaining, which is ’goal-driven’, meaning
that we start with a conclusion which the engine tries to satisfy. The latter
can be achieved using the latest version of Drools which is now considered a
hybrid chaining system that satisfies both the forward and backward chaining
paradigm. Therefore both a data-driven and a goal-driven approach can be
used with Drools Expert 5.4.0.

From the above mentioned issues with the old CCC, we will address the last three
limitations in this dissertation and we will suggest some ideas about addressing
1. and 2. in Future Work section.

As we have discussed above a number of ways exist that we can improve
the architecture of the CCC, such as providing a RESTful interface that con-
sumes business events. The elements of this improved architecture and related
technologies are presented in the next sections.

4 Design

In this section we intend to describe the enhanced design and architecture of
CCC and how its components integrates with each other.

4.1 Architecture of CCC web service.

An abstract view of the new architecture that we suggest for the CCC is pre-
sented in Fig. 7. With respect to the old architecture of the CCC (see Fig. 2) the
new architecture incorporates an event composer, rule editor, an event queue, a
reply queue, a RESTful interface, the CCC engine, a Database Decoupler and a
Database Server.

The new architecture regards the CCC as a RESTful web service that can
receive input requests from the outside world. The architecture currently is made
of three main tiers: Client, Application, and Data Store Tier. The Application
Tier consists of three layers: the Presentation Layer, CCC Logic Layer and Data
Access Layer. All the tiers of the architecture are explained in the following
sections.

4.2 Client Tier

The Client Tier consists of two elements, the Event Composer and the Rule Ed-
itor. The first element is actually a client, in our case the synchronizer, that can
produce HTTP requests for the CCC service to consume. Therefore, a number
of event messages can be sent to the CCC web service. The second element is

Implementing a Contract Compliance Checker for Monitoring Contracts 19

Event

Composer

(REST client)

Rule Editor

(Browser

Client)

RESTful interface

URI: /file/upload

Method: POST

URI: /queues/jms.queue.events/create

Method: POST

Contract

Compliance

Checker

Database

Decoupler
Database

Server

Client

Tier

Presentation Layer CCC Logic Layer Data Access Layer

Data Store TierApplication Tier

business

eventi

rule

filej

Business Event Queue

Fig. 7. High-level CCC web service architecture

basically an HTML form that sends HTTP POST requests to the CCC service
in order to upload new rule files. This can also be achieved by any client that
can compose a HTTP POST request and attach the file to upload according to
the specification that the CCC uses.

4.3 Application Tier

The Application Tier is the main building block for the CCC web service. It
consists of three layers: the Presentation, CCC Logic and Data Access Layer.

Presentation Layer The Presentation Layer is the web service endpoint for
the RESTful interface. This interface allows the CCC to receive events from the
outside world. This layer consists of the following Uniform Resource Identifier
(URI) address

/queues / jms . queue . events / c r e a t e

that is used by the client to create a new message for the Business Event
Queue. A URI is a string of characters that identify a resource. The main job of
the URI address is to accept XML messages that corresponds to event instances.
The structure of this message can be seen in the snippet below.

<?xml ve r s i on=" 1 .0 " encoding="UTF−8" standa lone="yes "?>
<event>
<or i g i na t o r >buyer</o r i g i na t o r >

20 Ioannis Sfyrakis

<responder>s e l l e r </responder>
<type>BuyRequest</type>
<status>succes s </status>
</event>

Thus, the RESTful interface accepts an HTTP POST request from an Event
Composer that includes the XML message as payload. The message is sent over
the network as a BytesMessage and then serialized to a Data Transfer Object
using Java Architecture for XML Binding (JAXB). Afterwards, the object that
results from the serialization is passed to the CCC logic layer.

The second URI address

/ f i l e /upload

accepts a HTTP POST request which includes a rule file sent from an HTML
form. The rule file is uploaded to the application server and is passed to the
CCC logic layer in order to update the rules currently in memory with the new
rules.

CCC Logic Layer The CCC Logic Layer contains the main functionality of
the CCC service. This layer accepts as input the serialized Event Data Transfer
Object which triggers the execution of the CCC engine to adjust the state of
the EROP ontology and pass the outcome as a Data Access Object to the Data
Access Layer. Furthermore, the CCC Logic Layer accepts a rule file as input
that is placed in a certain folder on the application server and triggers the
recompilation of all rule files that exist in that folder. The result of this is that
all the rules in the knowledge base are updated with the new information.

Data Access Layer The Data Access Layer (DAL) provides simplified access
to data stored in persistent storage of the Data Store Tier. The DAL hides
this complexity of the underlying data store from the external world and makes
transparent the manipulation of data.

4.4 Data Store Tier

The Data Store Tier is the last tier in the architecture and includes the persistent
storage of data. Because we are using a DAL we are not depending on a particular
database type but we can choose any that is supported by the DAL.

5 Specific Technologies Used in the Implementation

5.1 JBoss Application Server

JBoss Application Server (AS) [23] is an application server that supports the
Java Platform, Enterprise Edition (Java EE). The latest version (version 7) of
JBoss AS was used in this project. It is officially certified for Java EE 6 Web

Implementing a Contract Compliance Checker for Monitoring Contracts 21

Profile and includes smaller code size and a great reduction in startup time. Also,
a brand new kernel is employed which includes two main projects: JBoss Modules
and Modular Service Container (MSC). The main objective of JBoss Modules
is to handle the class loading of resources in the container. This improves the
modularity of the application server. The MSC provides a way to install, uninstall
and manage services that are used by the container. Also, it enables resources
injection into services and dependency management between services.

The application server file system is divided into two main parts: the stan-
dalone and domain server part. The standalone part of the file system is used
when the application server is configured as a standalone service, whereas the
domain server part manages and coordinates a number of instances of the appli-
cation server. In our project we configure the application server as a standalone
server.

JBoss Application Server 7

Datasource

JBoss Security

JMS

(HornetQ)
JTA Web server

Infinispan

JGroups

Resteasy

Hibernate/

JPA
EJB

JCA

Thread Pool

Kernel Modules

J
B

o
s
s
 L

o
g
g
in

g

Fig. 8. Core modules of JBoss AS 7

Figure 8 shows the main modules that are included in JBoss AS 7. Each
particular module that we use in our project will be discussed in the following
subsections.

5.2 HornetQ

HornetQ is an example of a Message Oriented Middleware (MOM). It supports
Java Message Service (JMS) 1.1 API and is used to provide an asynchronous
messaging system that has both a JMS and a RESTful interface. We can send
a RESTful message to HornetQ and then it can be consumed as a generic JMS
message. The same can happen in reverse where we can have a JMS producer
and a RESTful consumer for the messages.

22 Ioannis Sfyrakis

5.3 RESTEasy

RESTEasy provides various frameworks for building RESTful web services and
java applications. It is a fully certified and portable implementation of JAX-RS
specification and includes a JAX-RS Client framework for building RESTful
clients using annotations. Additionally, it is smoothly integrated with EJB.

5.4 Hibernate

Hibernate is an Object-Relational Mapping (ORM) solution for the Java lan-
guage. ORM refers to a technique of mapping data between an object model
representation to a relational data model representation. Hibernate provides a
framework that achieves the mapping of an object-oriented domain model to a
traditional relational database.

5.5 EJB

Enterprise JavaBeans (EJB) is a server side component based architecture that
is used to build modular enterprise applications. The EJB specification is one
of several Java APIs in the Java EE specification. It includes two main server
side component types: session beans that clients can invoke them and message
driven beans that act as event listeners. Additionally, EJB specification deals
with persistence by providing a Java Persistence API (JPA) for integrating an
EJB bean with a database. Entity beans are used to provide integration between
EJB and JPA. All persistence actions are managed by the entity manager.

5.6 JBoss Drools

Drools is a business rule management system (BRMS) with a forward and back-
ward chaining inference based rules engine. It is known as a production rule sys-
tem, using an enhanced implementation of the Rete algorithm. Drools supports
the JSR-94[24] standard for its business rule engine and enterprise framework
for the construction, maintenance, and enforcement of business policies in an
organization, application, or service.

Drools is a rules engine implementation based on Charles Forgy’s Rete al-
gorithm[25] tailored for the Java language. Adapting Rete to an object-oriented
interface allows for more natural expression of business rules with regard to
business objects. Drools is written in Java, but able to run on Java and .NET.

The original version of CCC uses the rule engine of Drools 4 for executing
the rules.

5.7 Drools 4

Drools 4 main components is the rule engine which uses the RETE and LEAPS
algorithm, rule flow and a basic Business Rule Management System (BRMS).
Rule flow allows designers to specify the order in which rule sets should be

Implementing a Contract Compliance Checker for Monitoring Contracts 23

evaluated by using a flow chart. This allows you to define which rule sets should
be evaluated in sequence or in parallel, to specify conditions under which rule
sets should be evaluated, etc. The main prerequisite for running Drools 4 rules
is java 1.4. There is also an optional Eclipse plugin that is helpful during editing
rules. Also, the main 4 libraries have to be added to the java class path. These
4 libraries are the following:

• drools-core.jar - includes the runtime component which contains both the
RETE engine and the LEAPS engine. This is the only library we need when
we are pre-compiling rules and deploying via Package or RuleBase objects.

• drools-compiler.jar - contains the compiler/builder components that build
executable rule bases from rule sources. This library depends on drools-core.

• drools-jsr94.jar - is the JSR-94 compliant implementation, that is in essence
a wrapper for drools-compiler component.

• drools-decisiontables.jar - this is the decision tables ’compiler’ component,
which uses the drools-compiler component. This library can use spreadsheets
such as Excel files to define decision tables.

5.8 Drools 5

Drools starting from version 5.0 is split into 4 main sub projects:

• Drools Guvnor is a web application that is used as a repository for Drools
Knowledge Bases. This web application contains rich web based GUIs, ed-
itors, and tools to help the business or technical user to manage a large
number of rules. Knowledge Bases include rules, workflows, processes that
can be stored in Guvnor.

• Drools Expert (rule engine), is a declarative rule based environment that
gives the ability to focus on "what can be achieved", and not "how this can
be achieved". The main advantage of this ability is that by using rules it is
easy to express solutions to difficult problems and consequently have those
solutions verified. Furthermore, rules have a high level of readability.

• jBPM is a Business Process Management (BPM) Suite. The responsibili-
ties of jBPM include the modeling, monitoring and executing of business
processes. The jBPM is considered a light-weight, extensible workflow en-
gine that is written in Java. Additionally, it allows you to execute business
processes using the latest Business Process Modeling Notation (BPMN 2.0)
specification.

• Drools Fusion is used to perform complex event processing as an independent
module and is well integrated with the other sub-projects of Drools. Drools
Fusion has the ability to understand and handle events, select a set of in-
teresting events that exist in a cloud or stream of events, find the relevant
relationships among these events, execute actions based on the relationships
detected and the temporal reasoning between events.

Table 2 summarizes the main features of Drools 4 and 5.

24 Ioannis Sfyrakis

Table 2. Main Features of Drools 4 and Drools 5

Drools 4 Drools 5
forward chaining rule

engine
forward chaining rule engine

rule flow backward chaining rule engine
RETEOO algorithm RETEOO algorithm
LEAPS algorithm event processing

temporal reasoning
business process/workflow management

improved speed
Drools Knowledge Base repository

5.9 Maven

Maven is a tool that can be used to automatically manage all the required
dependencies a software project needs for compilation, testing, reporting, and
deployment. The main file that maven uses is the POM (Project Object Model)
file. It is an xml file that contains all the information required by the maven
builder.

6 Implementation

In this section, we first describe the migration steps for upgrading Drools to the
latest version and specifically the code that we changed during this process. Then
we discuss how the implementation was undertaken for the project and how we
configured each component so that we can execute CCC in an application server
as a web service.

6.1 Migration from Drools 4 to Drools 5.4.0

The original version of CCC uses Drools 4 which was released in 2007. The latest
version of Drools 5 released in 2012 provides better speed and a less loading time
for data and rules. Also, Drools 5 provides support for complex event processing
and process workflow that can be leveraged to improve CCC. The above capabil-
ities and features are not provided by Drools 4. Therefore, migrating to Drools
5 is the obvious choice if we want to improve CCC and integrate complex event
processing and process workflow in the future. The oldest Java version required
by Drools 5.4.0 is 1.5.

A number of steps were taken in order to migrate the current codebase to
the latest Drools version (5.4.0). First phase includes the steps we took in order
to use Maven for building the CCC code. Second phase outlines the changes in
the code that are needed in order to use the latest Drools version.

Implementing a Contract Compliance Checker for Monitoring Contracts 25

Phase 1 - Use of Maven for building project

• Built initial version of pom.xml including Drools 4 and other libraries de-
pendencies

• Place all .drl files in source folders in resources folder.
• Edit file CCCExperiment.java and change the file path of SimpleContract.drl
so that it points to the resources folder.

• Edit file RelevanceEngine.java and change the file path of TestingContract.drl
so that it points to the resources folder.

Phase 2 - Migrating codebase to Drools 5.4.0

• updated pom.xml with Drools 5.4.0 library dependencies for CCC.
• Edit file RelevanceEngine.java and change classes that are used in new
version of Drools. Replace RuleBase to KnowledgeBase, StatefulSession to
StatefulKnowledgeSession, PackageBuilder to KnowledgeBuilder, Package-
BuilderErrors to KnowledgeBuilderErrors, Package to KnowledgePackage.

6.2 XML messages Flow

Client
MDB CCC

Business Event

Queue

Reply Queue

Business Event

xml message
BusinessEvent

Business

Event

Contract

Compliant

or not

reply

message

reply xml
message

Persist

Business

Event

1

2 3

4 5

6

7

8
9

10

Fig. 9. XML Messages Flow

Fig. 9 shows the flow of messages when a client sends a Business Event to
the CCC which is regarded as a web service and the client wants to know if
the Business Event is contract compliant or not. The client in our context is
the synchronizer that sends the Business Event and receives a result message.
The result message contains the information if the Business Event previously
sent is contract-compliant or not. The CCC is assumed to be instrumented with
the rules that represent the contract. We describe the 10 steps involved in this
process below:

26 Ioannis Sfyrakis

1. Client sends a Business Event as an XML message to the Business Event
queue using an HTTP POST request.

2. The message is received and stored in the Business Event queue.
3. HornetQ instance removes the Business Event from the queue and forwards

it to the Message Driven Bean (MDB).
4. The EJB container instantiates the MDB that receives the Business Event,

serializes it to a BusinessEvent object and sends it to the EventQueue of the
CCC (see Fig. 3).

5. Eventually the Business Event message is processed by the rule engine.
6. BusinessEvent is sent to persist its state to the database server (see Fig. 7).
7. After CCC finishes processing the BusinessEvent it sends to the MDB its

decision about the BusinessEvent found is contract compliant or not.
8. MDB receives the reply from the CCC and adds it to the reply queue (see

Fig. 9).
9. Reply queue sends the reply to the client.
10. Client receives the reply XML message and displays its contents.

6.3 Application Tier Implementation

As we have presented in section 4 the CCC web service architecture consists
of a Client, Application and Data Store Tier. In the following sub sections we
intend to describe the three layers of the Application Tier, which is a central
element of our architecture. It is packaged as an Enterprise Archive (EAR) in
order to package the modules we need for this project. The modules packaged
can be seen in Fig. 10. The commons module includes all the internal code of
the CCC engine and the Entity class used for sending data to the database
through the persistence layer and can be used from the other modules. The ejb
module contains the Message Driven Bean (MDB) that consumes the messages
from the RESTful queue that HornetQ provides. The web module contains the
RESTful interface and html code needed for the user interface, as well as various
configuration files. Finally, the application.xml file is the deployment description
for this application modeled as an enterprise application and is located in the
META-INF subdirectory of the application archive.

<!−− deployment d e s c r i p t o r : app l i c a t i o n . xml −−>
<disp lay−name>CCCRest−ear−ear</di sp lay−name>

<module>
<web>

<web−ur i>CCCRest−web . war</web−ur i>
<context−root>/CCCRest−ear−web</context−root>

</web>
</module>
<module>

<ejb>CCCRest−e jb . jar </ejb>
</module>

<l i b r a ry−d i r e c to ry>l ib </l i b r a ry−d i r e c to ry>

Implementing a Contract Compliance Checker for Monitoring Contracts 27

<<application>>

CCCRest-ear.ear

<<commons module>>

CCCRest-commons.jar

<<ejb module>>

CCCRest-ejb.jar

<<web module>>

CCCRest-web.war

<<deployment spec>>

application.xml

Fig. 10. project structure

The snippet above shows the most relevant part of the deployment descrip-
tor that we use for our project. A deployment descriptor (DD) is an XML file
that contains elements describing how we assemble and deploy the application
in a particular environment. The display-name element is required to specify
the application display name. The module element is used to define a module
within an Enterprise application. In our case we use it twice, one to define an ejb
element and another to define a web element. The ejb element defines an Enter-
prise JavaBeans (EJB) module and includes the path to the jar archive in the
application. The web element defines a web application module. This element
contains a web-uri that defines the location of the path and the name of the
war file. Also, it contains a context-root element that includes the context for
the web application. Finally, the library-directory element specifies the directory
inside the EAR that contains the jar files that can be used by all the modules in
the EAR. For instance, the CCCRest-commons.jar is included in the lib folder
so that the other modules can use that jar archive.

Presentation Layer Implementation This layer includes the web service
that a client can interact and send XML messages or upload a new rule file
to the service. Fig. 11 presents the modules of the uk.ac.ncl.web package. The
modules in this package first provide an empty Class (RestApplication) that is
used to initialize the RESTful interface of Resteasy.

Second, the UploadFileService Class provides the RESTful endpoint service
that the client can interact with. In this class public method uploadFile is called
from an html form that sends the file to be uploaded to the application server.
Another two private methods are used to get the name of the file (getFileName)
and write the byte stream to a particular file path on the application server. Cur-
rently it saves the file in the /drools/upload directory in JBoss AS base directory.
The folder path to save the new rule file can be changed in the enumeration file
RuleFilesEnum in package uk.ac.ncl.model.

28 Ioannis Sfyrakis

uk.ac.ncl.web

RestApplication

+uploadFile(input : MultipartFormDataInput) : ResponseBuilderOperation

-getFileName(header : MultivaluedMap<String, String>) : String

-writeFile(content : byte [], filename : String) : void

~uriInfo : javax.ws.rs.core.UriInfo

UploadFileService

webapp

UploadForm.html
submits to

WEB-INF

web.xml

hornetq-

configuration.xml

hornetq-jms.xml

beans.xml

Fig. 11. Package uk.ncl.ac.web and folder webapp UML diagram

Maven requires all web application resources such as html or Java Server
Pages (JSP) file to be added in folder webapp. As we can see in Fig. 11 only one
html file (UploadForm.html) is added in folder webapp. This file is an html form
that lets a user select a new rule file and submit the form with the file using a
POST request to the UploadFileService. In addition to web application resources
we can use the WEB-INF folder to store all the required configuration files.
HornetQ provides the interface for the RESTful queue and it can be configured
using the hornetq-jms.xml file. For example, the snippet below shows how we
instruct HornetQ to create a new JMS queue with entry name /queue/events and
make it available for lookup via Java Naming and Directory Interface (JNDI).
Also, HornetQ exposes the JMS queue using a RESTful interface that we can
send messages to the queue by any client that can understand HTTP.

<!−− jms queues c on f i gu r a t i on : hornetq−jms . xml −−>
<hornetq−se rver>

<jms−de s t i na t i on s >
<jms−queue name=" events ">

<entry name="/queue/ events " />
</jms−queue>
<jms−queue name="replyQueue">

<entry name="/queue/ replyQueue" />
</jms−queue>

</jms−de s t i na t i on s >
</hornetq−se rver>

Another configuration file that is used for HornetQ is hornet-configuration.xml.
This is the main configuration file for HornetQ server. We use all the default set
properties, so a file with a single empty configuration element is sufficient for
our project.

The file called web.xml is the Web Application Deployment Descriptor of
the web application. This XML document defines everything the server needs

Implementing a Contract Compliance Checker for Monitoring Contracts 29

to know: servlets and other components like filters or listeners, initialization pa-
rameters, container-managed security constraints, resources, welcome pages, etc.
In our project we use it to configure Resteasy in order to expose the Upload-
FileService as a RESTful service and enable access to HornetQ’s queues using
REST.

Such configuration files include the two configuration files for HornetQ (hornetq-
configuration.xml, hornetq-jms.xml), configuration for RESTful service (web.xml)
and for configuring enterprise java beans (beans.xml).

uk.ac.ncl.mdb

Package

«Message Driven Bean»

EventsMDB

-payloadXML : String

-em : javax.persistence.EntityManager

-ccc : uk.ac.ncl.erop.CCCExperiment

+onMessage(rcvMessage : javax.jms.Message) : void

-getStringFromBytesMessage(rcvMessage : javax.jms.Message) : String

«Interface»

MessageListener

Fig. 12. Package uk.ncl.ac.mdb UML diagram

Fig. 11 shows the UML diagram for the EventsMDB Class. This class resides
in package mdb and is a part of CCCRest-ejb.jar module. A Message Driven
Bean has only two states: does not exist state and ready to receive messages
state. It can receive messages provided from a JMS queue. In our case we use
HornetQ to provides us with the queue. When there is a new message in the
queue it is sent to the MDB. We can configure the MDB to listen to a particular
JMS queue using annotations.

@MessageDriven (name = "EventsMDB" , a c t i va t i onCon f i g = {
@Activat ionConf igProperty (propertyName = "dest inat ionType " ,

propertyValue = " javax . jms . Queue") ,
@Activat ionConf igProperty (propertyName = " de s t i n a t i on " ,

propertyValue = "queue/ events ") ,
@Activat ionConf igProperty (propertyName = "acknowledgeMode" ,

propertyValue = "Auto−acknowledge") })

The snippet above shows how we configure the EventsMDB to listen to queue
with name events using annotations. The @MessageDriven annotation defines
the bean as MDB with the name EventsMDB. The activationConfig attribute
describes how the MDB is configured by using the @ActivationConfigProperty.
The destinationType property defines what is the type of the destination and
in our MDB it is a JMS queue. The JNDI name of the queue is added by

30 Ioannis Sfyrakis

using the destination property, with “queue/events” for our MDB. Finally, the
acknowledgeMode is used with the value Auto-acknowledge to define the type of
acknowledgement the MDB will use. Using Auto-acknowledge the messages will
be acknowledged automatically.

The EventsMDB Class consists of two methods (onMessage, getStringFrom-
BytesMessage) and three class variables. The onMessage method is executed
when a message arrives from the queue. The first thing we do when we receive a
new message is to set the EntityManager that we will be using in later stages for
persistence. Since the message is sent as a ByteMessage we first have to convert it
to an XML String using the getStringFromBytesMessage method. The next step
is to unmarshall the XML as a BusinessEvent object using Java Architecture
for XML Binding (JAXB). The CCC engine is started if it has not been started
before by a previous business event. A new CCC Event is instantiated from the
BusinessEvent representation and then is fed to the CCC engine for processing.
When CCC finishes with processing the BusinessEvent, returns a CCCResponse
object that contains the information if the BusinessEvent is contract compliant
or not. This object is serialized to an ObjectMessage and send to the replyQueue
as a JMS message.

CCC Logic Layer Implementation In this subsection we describe the im-
plementation of the CCC Logic Layer that contains the EROP ontology we
presented in a previous section. Fig. 12 shows the packages that exist in the
CCCRest-commons module. This subsection will focus on the EROP package
and the other three packages will be described in the next subsection.

All the classes for the EROP package are shown in Fig. 13 and a more detailed
view of each class is presented in Appendix F. The class that is instantiated when
we first receive a new business event from the queue is CCCExperiment. This
class is built as a Singleton object that we can reference throughout our code.
It makes a new instance of a CCCExperiment or it returns an instance that
was created before. This ensures that we always have access to an instance of
CCCExperiment. The only parameter that is passed to this class is the path
of the rule file for the contract we want to execute. Then we create a new of
the EventLogger class to log the business events to the database. The next step
includes the creation of a new RelevanceEngine using the EventLogger instance
and rule file path as parameters. If any error occurs an exception is thrown. After
we instantiate a new RelevanceEngine we create a new TimeKeeper instance
using the RelevanceEngine and EventLogger instances and throw any exceptions
that might occur. All the previous steps are part of the initialization process of
the CCC engine.

As soon as the initialization process executes successfully CCC is ready to
accept events for processing. At this point we can start the simulation process
by executing the startSimulation method with the list of events as a parameter.
Then we initialize the contract in the RelevanceEngine with the TimeKeeper.
We create an new event to signal that the simulation has started and we log this
event to the database using the EventLogger’s method logEvent with event as

Implementing a Contract Compliance Checker for Monitoring Contracts 31

uk.ac.ncl.util

Package

Resources

-em : EntityManager

+setEntityManager(em : EntityManager) : void

+getEntityManager() : EntityManager

uk.ac.ncl.model

Package

<<Entity Bean>>

<<ORM Persitable>>

BusinessEvent

-serialVersionUID : long = 1L

- id : Long

- originator : String

- responder : String

- timestamp : String

- type : String

- status : String

+BusinessEvent()

+BusinessEvent(originator : String, responder : String, type : String, status : String)

+toString() : String

<<enumeration>>

RuleFilesEnum

 TEST_RULE

 TESTING_CONTRACT

 SIMPLE_CONTRACT

 EXTREMELY_SIMPLE_CONTRACT

-ruleFilePath : String

-RULES_FOLDER_PATH : String = "/drools/upload"

~RuleFilesEnum(ruleFilePath : String)

+getRulesFolderPath() : String

uk.ac.ncl.erop

Package

Fig. 13. CCCRest-commons package diagram

parameter. The event is added to the RelevanceEngine instance. Afterwards, we
can continue the simulation with the rest of events in our list. The procedure is
the same as we have outlined above: for each event we first pause for four seconds,
we then log the event to the database and add it to the RelevanceEngine.

The RelevanceEngine class acts as a wrapper for Drools rule engine and its
responsibilities include the initialization of the contract, the addition and process
of an event. When we create a new RelevanceEngine instance we check if there
is an EventLogger present and if the rule file of the contract exists. Also, new
KnowledgeBase and StatefulKnowledgeSession instances are created as well as
a new event queue as linked list. KnowledgeBase is considered the repository of
all the knowledge definitions of the CCC. Similarly, a StatefulKnowledgeSession
allow us to make several invocations to the rule engine and provides multiple
reasonings for the same set of data while keeping the same state. If there are
no exceptions we build a new KnowledgePackage instance from the rule file of
the contract and then we add it to the current KnowledgeBase of the Rele-
vanceEngine. During initialization of the contract we require that a TimeKeeper
instance is send as a parameter. In this stage, we add all the global objects that
we want to have access from inside the rules. These include the BusinessOpera-
tion instances that the rule file requires (BuyRequest), the RolePlayer instances
(Buyer, Seller) and the ROPSet instances for each RolePlayer.

When an event is added to the RelevanceEngine it is also added to the tail
of the event queue. Processing events requires a valid instance of EventLogger

32 Ioannis Sfyrakis

Fig. 14. Package uk.ac.ncl.erop UML class diagram

otherwise we throw an exception that an EventLogger does not exist so we
cannot process events. If an EventLogger instance exists then we can poll the
queue for an event and insert it to the working session of the rule engine for
pattern matching when the rules fire. This is how RelevanceEngine works in the
context of the CCC.

Data Access Layer Implementation The Data Access Layer Implementation
includes the Object Relation Mapper that we use. We have chosen to use Hiber-
nate as an ORM solution to drive the persistence of the event object. Hibernate
uses persistence.xml file to configure the persistence and is also used by JPA.
This file is placed in META-INF directory inside the ejb module. The snippet
below shows the configuration for the persistence. The persistence-unit attribute
is required to have a unique name (RopePU) in the current scoped class loader
and also the transaction type that we are using. The provider attribute specifies
that we are using HibernatePersistence as the implementation of the JPA Entity

Implementing a Contract Compliance Checker for Monitoring Contracts 33

Manager. The jta-data-source includes the jndi name of the database (RopeDS)
the persistence unit RopePU maps to. The properties element is used to further
configure Hibernate.

<!−− Hibernate c on f i gu r a t i on : p e r s i s t e n c e . xml −−>
<pe r s i s t en c e−uni t name="RopePU" transac t i on−type="JTA">

<provider>org . h ibe rnate . e jb . H ibe rnatePer s i s t ence </provider>
<jta−data−source>java : j bo s s / datasource s /RopeDS</jta−data−source>
<jar− f i l e >l i b /CCCRest−commons . jar </jar− f i l e >
<prope r t i e s >

<property name=" h ibernate . hbm2ddl . auto" value="update" />
<property name=" h ibernate . show_sql" va lue=" true " />

</prope r t i e s >
</pe r s i s t en c e−unit>

The first property is used to update the schema in the database if there are
any changes when the application starts again and the second property displays
the sql code for each query that is executed.

6.4 Data Store Tier Implementation

This tier includes the type of database we use. Any database that is supported
by Hibernate can be used. We have chosen MySQL database to persist the event
objects.

6.5 Client Tier Implementation

We have implemented a command-line application that reads a number of XML
files for testing purposes. Each xml message represents a Business Event that we
send to our web service for consuming. The goal of the command-line application
is to take the position of the synchronizer that would send the event to the CCC
web service. As soon as the command-line application reads the folder with the
XML messages we then initialize the connection to our queue and send the xml
messages in the correct order for the web service to consume. The command-line
application was also build to assist us with testing the CCC web service we have
build. Testing is described in the following section.

7 Testing

The CCC web service was tested using the example contract we presented in
the Section 1. The example contract was installed in both the old CCC imple-
mentation and the enhanced CCC. We consider the old version to be a reference
implementation that works correctly with the example contract and we use it
to evaluate the enhanced CCC. Therefore, if the enhanced CCC outputs the
same result as the old CCC then we consider the enhanced CCC as a correct
implementation.

34 Ioannis Sfyrakis

Our method of testing includes evaluating the messages for the example to
be contract compliant or non contract compliant using both the old and new
version of CCC. We first follow the correct sequence of messages and assert the
outcome of each message in both versions and the we deliberately send a non
contract compliant message to evaluate if the enhanced CCC returns the correct
outcome.

Table 3 shows the results from testing the CCC. Currently, we incorporate
six test cases. The first five test cases follow the sequence of messages send
in the right order and follow a correct execution of the example contract. The
results of executing the first test cases show that both the reference CCC version
and the enhanced CCC version output the same result. In other words, both
versions correctly show that the messages for the first five test cases are contract
compliant which is the correct behaviour. The last test case presents the scenario
that we first send a Buy Request message to the Buyer and then we send a Pay
message to the Seller. The results of this test case show that both CCC version
have correctly determined that Pay message is non contract compliant. This is
the correct behavior as a Pay message is not allowed to be sent right after a Buy
Request to the Seller following the rules of the example contract we are using to
test the CCC.

Apart from scenario testing, we have used unit testing for each class of the
CCC web service. The reason we have used unit testing is to make sure that each
class implements its requirements correctly. The unit tests were written using
JUnit.

8 Evaluation

This section of the dissertation intends to evaluate the enhanced CCC that was
developed. First, we summarize what we tried to accomplish. Second, we discuss
our findings from the Related Work Section. Third, we evaluate the design and
architecture of the CCC. Finally, we evaluate the implementation of the enhanced
CCC. In particular, we evaluate each of the features we added to the new CCC.

Contract monitoring is an active research topic. Businesses want to monitor
contractual interactions during the execution of the contract. In this dissertation,
our goal was to first migrate to the latest version of Drools that the CCC uses
and then enhance the CCC.

During our research of related work in contract monitoring we have examined
different categories of contract languages and a range of software systems that are
similar to the CCC. Our findings show that formal contract languages based on
Deontic logic or Defeasible reasoning [8–10] employ a rigorous formal approach
but are not easily understandable by technical and business people or widely used
in business world and industry. In contrast, ECA-based languages [11] are widely
used in industry and are intuitive for business people to write and understand.
This is the main reason that an ECA-based language called EROP is used for
specifying the rules of a contract for the CCC.

Implementing a Contract Compliance Checker for Monitoring Contracts 35

Table 3. Scenario Testing of CCC

Test
Case
No

Test Case Purpose of Test Old CCC
outcome

Enhanced
CCC
outcome

1 Send Buy Request
business event

Find out if the outcome of Buy
Request event is consistent and
correct in both implementations.

contract
compliant

contract
compliant

2 Send Buy
Confirmation
business event

Examine if the outcome of Buy
Confirmation business event is
consistent and correct in both
implementations.

contract
compliant

contract
compliant

3 Send Buy Reject
business event

Examine if the outcome of Buy Reject
business event is consistent and
correct in both implementations.

contract
compliant

contract
compliant

4 Send Pay business
event

Examine if the outcome of Buy Reject
business event is consistent and
correct in both implementations.

contract
compliant

contract
compliant

5 Send Cancel business
event

Examine if the outcome of Buy Reject
business event is consistent and
correct in both implementations.

contract
compliant

contract
compliant

6 Send Pay business
event

Find out if the Pay business event
after a Buy Request is allowed or not.

non contract
compliant

non contract
compliant

We have analyzed a number of contract monitors that are similar our CCC.
First of all, the Moses middleware [4, 16] that runs the Law Governed Interaction
architecture uses a similar approach. It uses Controllers that receive events and
take actions according to a knowledge base that contains rules. This behavior
is the same that we use in the CCC, we send events to the CCC and we take
actions according to a specified set of rules. The main difference is that our CCC
is used as a third party entity rather than located in the middle of the interacting
parties.

Another contract monitor that is similar to our CCC is Heimdhal [17], which
is a middleware platform that can monitor and enforce history based policies.
It contains a policy monitor similar to our CCC that monitors and enforces
Service Level Agreements (SLAs). Therefore, the focus of Heimdhal is to monitor
resource usage policies rather than monitoring business contract interactions.

An outcome from our research of related work is that we were exposed to
different architectures that are used to monitor contracts at runtime. This en-
abled us to design a better architecture after critically evaluating other similar
architectures. Our CCC web service as seen in Fig. 7 has a modularized archi-
tecture and is divided to three tiers and three layers of functionality. The Client
Tier includes the Event Composer that sends the Business Event and the Rule
Editor that sends the new rule file to the CCC web service. The Application Tier
is divided in three layers of distinct functionality and responsibilities. The main

36 Ioannis Sfyrakis

goal of the Presentation Layer is to accept the new messages and eventually send
them to the CCC Logic Layer for processing. The Business Event message sent
is persisted to a database using the Data Access Layer to abstract away from the
specific implementation of the Data Store Tier that hosts the database server.

One of the advantages of such multi-tier architecture is that we can adjust
and improve a certain module without having to rewrite the whole application
again. Therefore, we have managed to build a loosely coupled architecture that
does not have a strong dependency to other modules. A disadvantage of this is
that we have a multi faceted architecture that is more difficult to manage than
if we had for example a monolithic architecture where all functionality is placed
in one big complex module.

Table 4 summarizes the main features that were implemented for the en-
hanced CCC to address the limitations of the old CCC. We have managed to
build the CCC as a RESTful web service that we can send business events using
the HTTP protocol. This a big improvement from the old implementation that
used only hardcoded events. This also makes the enhanced CCC more dynamic
in nature as we do not depend on hardwired events. Another main characteristic
of the enhanced CCC is that follows the REST paradigm to build the web service
instead of being a self-contained application. The advantage of this is that any
client that can send an HTTP request can interact with the enhanced CCC and
this was not possible with the old version.

Hardcoded rules is one of the limitations that we managed to address and
provide a way for a user to upload a new set of rules to the enhanced CCC. This
greatly improves the enhanced CCC and there is possibility in the future that we
can execute different contracts that we have uploaded using this feature. The old
CCC uses a specific database vendor and its persistence logic is tightly coupled
with the database. We wanted to abstract away from the specific persistence
implementation of a database vendor. This was achieved by using an Object
Relationship Mapper (ORM) that manages the database implementation for us.
Another limitation that was addressed is migrating from Drools 4 to the latest
version of Drools. This improves the performance of our rule engine and opens
the possibility of using other components of Drools that deal with complex event
processing and business workflows. Finally, we have added two external queues
to our web service that are used to place the incoming messages to a business
event queue and a reply queue where we place the messages that client will
receive. This improves our reliability of the CCC web service because we are
using HornetQ managed queues. HornetQ can be configured to have durable
messages. For example if the application server crashes then the messages in the
queue are not lost because they are saved in the file system of the application
server.

The first objective of our dissertation was to evaluate critically, related work
in monitoring contracts and analyze the old CCC. In section 2 we evaluated
related work in contract monitoring and contract languages. For the second part
of this objective, we analyzed the old CCC and discovered a number of limitations

Implementing a Contract Compliance Checker for Monitoring Contracts 37

for the old CCC. The limitations that we have addressed in this project from
our analysis are shown in the first column of Table 4.

The second and third objective to enhance the design of the CCC and expose
it as a RESTful web service have been met. The features we have added to the
enhanced CCC can be seen in the second column of Table 4. In particular we
map each limitation we found from our analysis to an enhancement we have
managed to include to the new CCC.

Table 4. Summary of features added in CCC to address limitations

Old CCC Enhanced CCC

Hardcoded business events Send business events to the web service
using HTTP.

Self-contained java application Web service that follows REST paradigm.
Hardcoded rules. Upload a new rule file to CCC to update

the rule repository.
Persistence coupled to a specific database
vendor.

Uses an Object Relationship Mapper
(Hibernate)

Uses Drools 4. Migrated to Drools 5.4.0
Uses only one internal queue Uses an external and internal event queue

in CCC and a reply queue.
Monolithic architecture Modularized loosely coupled architecture

In the previous section, we described our testing process we have used to
ensure the high quality of the CCC. We have used unit testing and scenario
testing. We have managed to cover most of the code base using unit tests but
more specific testing would be required when we use different contracts. Ad-
ditionally, during our scenario testing we could have used more messages that
are not contract compliant to further test the correct behavior of the enhanced
CCC in relation with the old one. The results of testing both versions of CCC
show that they return the same outcome when they are fed the same sequence
of events. Thus, our fourth objective related to testing the CCC is met.

9 Conclusion

The main aim of this dissertation was to migrate an implementation of a contract
compliance checker implemented in Drools 4 to the latest version of Drools 5.
In pursuit of this aim, we evaluated in related work contract languages and
research conducted in contract monitoring. We learnt that a number of similar
systems exist that take similar approaches on building a contract monitor and
as a web service. Also, we learnt that a number of contract formalisms exist that
are formally defined. In our project we took a less formal approach but more

38 Ioannis Sfyrakis

pragmatic approach that can be understood by a wider audience, as opposite to
people with expertise in formal notations.

We performed an analysis of the old CCC and identified some of its limita-
tions. We selected some of them for improvement and discuss others in Future
Work. In sections 5, 6, 7 we described our enhanced architecture for the CCC
and focused on each layer separately. The implementation section shows how we
implemented the system and what technologies were used to accomplish this.
Finally, we presented how we tested the CCC and what are our testing results
and evaluated if we met our objectives.

The enhanced CCC can accept events from outside world, as opposed to the
internal files, but we have not managed to perform and test this exhaustively
for example by using a large number of different contracts. We have only tested
with the help of the example contract we presented in the introduction. A real-
istic business contract can have many more clauses and, in extension, rules for
the CCC. Another limitation of the enhanced CCC, not addressed due to time
constraints, is that we have not integrated the historical queries that exist in
the old version and we have not build a more generic loader to load dynamically
all the objects needed such as required role players, business operations etc. Fi-
nally, only a command-line client was developed for testing purposes rather than
a client with a graphical user interface.

Even though, the enhanced CCC is far from being a complete implementation
that can be used for realistic applications, we claim that we have greatly trans-
formed the old version to a RESTful web service that employs a loosely coupled
architecture and can accept events from the outside world. Now, we have at our
disposal a ready system that we can integrate with other web services such as
the synchronizer we presented in this paper.

10 Future Work

There are number of issues we would want to fix in the future for the CCC.
Currently, if we have a deadline that a Buy Request has to be submitted by
Friday, the CCC does not update automatically the state of the business opera-
tion in the ROP set when the current day is Saturday as it was supposed to do.
Therefore we need to employ a scheduling mechanism or Timing Monitor that
would fire an event to automatically update the business operation in the ROP
sets to a correct state.

Another issue we would want to address is that now we have only two states
for the business operations inside the ROP sets. They are either active or inac-
tive. Adding more states such as expired or satisfied would better describe the life
cycle of the contract during runtime. This would also make formal verification
easier.

Building a resolution strategy when we have conflicting rules specifically tar-
geted towards business contracts would greatly improve the CCC. Currently,
we rely on Drools internal conflict resolution strategy that can execute a rule
before another that has higher priority but we would want to provide a better

Implementing a Contract Compliance Checker for Monitoring Contracts 39

resolution strategy that is build specifically for business contracts. For example,
we would want to know if we have two rules: (1) buyer gets a discount of 10
percent after buying two products and (2) buyer gets a 20 percent discount after
buying two products, then which of the two rules should we execute.

In the future, we would also like to improve the security of the CCC web
service and include authentication and non repudiation mechanisms that ensure
that communications are secure and that we interact we the correct synchronizer.
Finally, we would be keen on improving the reliability of the CCC by introduc-
ing fault-tolerance techniques when we consume many messages. This could be
achieved by using remote message queues that can be used if the current queues
cannot be reached.

Acknowledgments. I would like to thank Ellis Solaiman, Carlos Molina-Jimenez
for supporting me and providing very valuable guidance during the course of the
project and Massimo Strano for providing valuable insight to the internals of
the CCC.

References

1. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual
compliance of business interactions. IEEE Transactions on Service Computing 5
(2012) 276–289

2. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: 10th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC’06), Ieee (2006) 221–232

3. Marjanovic, O., Milosevic, Z.: Towards formal modeling of e-Contracts. In: En-
terprise Distributed Object Computing Conference, 2001. EDOC ’01. Proceedings.
Fifth IEEE International, IEEE Comput. Soc (2001) 59–68

4. Minsky, N., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology 9 (2000) 273–305

5. RosettaNet: Rosettanet implementation framework: Core specification, version
v02.00.01. http://www.rosettanet.org (2002) Accessed 30/08/2012.

6. JBoss: Drools. http://www.jboss.org/drools/ (2012) Accessed 30/08/2012.
7. Hvitved, T.: A Survey of Formal Languages for Contracts. In: Fourth Workshop

on Formal Languages and Analysis of Contract-Oriented Software (FLACOS’10).
(2010) 29–32

8. Governatori, G., Pham, D.H.: DR-CONTRACT: an architecture for e-contracts in
defeasible logic. International Journal of Business Process Integration and Man-
agement 4 (2009) 187

9. Lee, R.M.: A logic model for electronic contracting. Decision Support Systems 4
(1988) 27–44

10. Governatori, G.: Representing business contracts in RuleML. International Journal
of Cooperative Information Systems 14 (2005) 181–216

11. Linington, P., Milosevic, Z., Cole, J., Gibson, S., Kulkarni, S., Neal, S.: A uni-
fied behavioural model and a contract language for extended enterprise. Data &
Knowledge Engineering 51 (2004) 5–29

40 Ioannis Sfyrakis

12. Andersen, J., Elsborg, E., Henglein, F., Simonsen, J.G., Stefansen, C.: Compo-
sitional specification of commercial contracts. International Journal on Software
Tools for Technology Transfer 8 (2006) 485–516

13. Prisacariu, C.: A formal language for electronic contracts. In: Formal Methods for
Open Object-Based Distributed Systems. (2007) 174–189

14. Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., Gevros, P.: On the monitoring
of contractual service level agreements. Proceedings. First IEEE International
Workshop on Electronic Contracting, 2004. (2) 1–8

15. Elgammal, A., Turetken, O., Heuvel, W.j.V.D., Papazoglou, M.: On the formal
specification of business contracts and regulatory compliance. In: Fourth Workshop
on Formal Languages and Analysis of Contract-Oriented Software (FLACOS’10).
(2010) 29–32

16. Minsky, N., Ungureanu, V.: Scalable regulation of inter-enterprise electronic com-
merce. In: Electronic Commerce. Number November. (2001) 219–232

17. Gama, P., Ribeiro, C., Ferreira, P.: Heimdhal: A history-based policy engine for
grids. In: Sixth IEEE International Symposium on Computing and the Grid. (2006)
480–488

18. Perrin, O., Godart, C.: An approach to implement contracts as trusted interme-
diaries. In: Proceedings. First IEEE International Workshop on Electronic Con-
tracting, 2004., Ieee (2004) 71–78

19. Ludwig, H., Stolze, M.: Simple obligation and right model (sorm) - for the runtime
management of electronic service contracts. In Bussler, C., Fensel, D., Orlowska,
M.E., Yang, J., eds.: WES. Volume 3095 of Lecture Notes in Computer Science.,
Springer (2003) 62–76

20. Linington, P.: Automating support for e-business contracts. International Journal
of Cooperative Information 14 (2005) 77–98

21. OASIS: ebxml: Business process spec. schema tech. spec. v2.0.4. http://-
docs.oasisopen.org/ebxml-bp/2.0.4/OS/specebxmlbp-v2.0.4-Spec-os-en.pdf (2006)
Accessed 30/08/2012.

22. Strano, M., Molina-Jimenez, C., Shrivastava, S.: Implementing a rule-based con-
tract compliance checker. In: Software Services for e-Business and e-Society. Vol-
ume 305. (2009) 96–111

23. JBoss: Jboss application server 7. http://www.jboss.org/jbossas/ (2012) Accessed
30/08/2012.

24. JCP: Jsr-94 java rule engine api. http://jcp.org/aboutJava/communityprocess/fi-
nal/jsr094/index.html (2004) Accessed 30/08/2012.

25. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial intelligence 19 (1982) 17–37

11 Appendix A: Running old CCC with Drools 4

In order to run CCC using Drools 4, all the libraries mentioned in Section 6.1 are
required to be specified in the class path of the operating system in use. There-
fore, the whole distribution for Drools version 4.0.2 would need to be downloaded
from JBoss Drools website. The distribution not only contains the main Drools
libraries but also the dependencies for these libraries. Also, a drools plugin (JBoss
Tools) for eclipse should be installed so that rules can be edited and debugged.
The oldest java version to run CCC successfully is 1.5. Another prerequisite for

Implementing a Contract Compliance Checker for Monitoring Contracts 41

running CCC is a new MySQL installation. Additionally, the CCC is provided
with a contract hardwired into the code. The steps required to run the old CCC
are outlined below:

1. Import CCC project to Eclipse IDE.

2. Add a new runtime Drools version in “Installed Drools Runtime” preference.
Choose a runtime Drools version according to our requirements. In this case
Drools version 4 should be chosen.

3. Add a new User library and select drools-core.jar, drools-compiler.jar, drools-
jsr94.jar, drools-decisiontables.jar. Then, add the Drools user library to the
build path in Eclipse IDE.

4. Add all the libraries present in Drools 4.0.2 /lib folder as external jar li-
braries.

5. MySQL is used for backend and all the required information such as user-
name, password can be changed in file /uk/ac/ncl/erop/EropDbConstVal-
ues.java. Furthermore, a mysql connector library should be added to the
build path as an external jar library (mysql-connector-java-5.0.8.jar).

6. The correct rule file name and path have to be entered in file CCCExperi-
ment.java. In more details the correct information has to be entered in line
14: relevanceEngine = new RelevanceEngine("src/SimpleContract.drl",
logger);

7. Several changes in RelevanceEngine.java need to be done. The first change is
to disable time monitoring which is used for testing performance. Therefore,
in line 22: boolean performanceTestingOn = true; instead of true, false
has to be added. Other changes include enabling (removing comments) lines
114 to 119 so that all the global objects required by the contract are added
to the working memory. Also, lines 126 and 128 have to be commented out
because they are not needed by the contract.

8. CCC can be run using the Eclipse IDE and choosing CCCExperiment.java
for the Run As option. Fig. 9 below shows a sample running of the CCC
using Drools 4.

42 Ioannis Sfyrakis

Fig. 15. Running old CCC with Drools 4

12 Appendix B: Running CCC with Drools 5.4.0

After migrating from Drools 4 to Drools 5.4.0 we can use maven to run CCC as
a self-contained command-line application. In order to build the project into a
jar library file, we execute the following command:

mvn clean compile assembly:single

After executing the above command we can run the CCC from the command-
line using the following line:

java -jar target/CCCMigration-1.0-SNAPSHOT-jar-with-dependencies.jar

As we can see in the Fig. below, the output from the execution is the same
as in Fig. 10.

Implementing a Contract Compliance Checker for Monitoring Contracts 43

Fig. 16. Running CCC using Drools 5.4.0

13 Appendix C: Running CCC Web service with Drools
5.4.0

In order to run CCC as a web service a number of requirements have to be met.
The first requirement is an installation and configuration of JBoss Application
Server version 7.1.0. Then the second requirement is to update the pom.xml to
include all the dependencies needed for the RESTful web service.

After the requirements have been met JBoss can be started using the run.sh
script that can be found in the root folder of the project. The next step includes
the execution of a maven process to compile the code for CCC, package code
and libraries as a war file and deploy it to the running JBoss AS. All these goals
can be met by executing the following command:

mvn clean package jboss-as:deploy -Dmaven.test.failure.ignore=true
When maven has deployed the new version of the CCC we can start sending

HTTP POST requests which contain the events involved in the contract example
shown in page 1 namely Buy Request, Pay, Cancel following the XML structure
for an event as discussed in Section 4. Following this way we can test if CCC
reacts appropriately to the event entered. A running output of a BuyRequest
event sent to the web service is shown in Fig. 17 below. Fig. 18 shows the

44 Ioannis Sfyrakis

BuyRequest event from the perspective of the client and the XML message it
pulls from the queue.

Fig. 17. Running CCC as a web service

Implementing a Contract Compliance Checker for Monitoring Contracts 45

Fig. 18. CCC web service client

14 Appendix D: Example Contract Code Listing in
Augmented Drools

package ExampleContract

Import Java classes for EROP support
import uk.ac.ncl.erop.∗;

Global variables (persistent objects passed from outside)
global RelevanceEngine engine;
global EventLogger logger;

global RolePlayer buyer;
global RolePlayer seller ;
global ROPSet ropBuyer;
global ROPSet ropSeller;
global TimingMonitor timingMonitor;

global BusinessOperation buyRequest;
global BusinessOperation payment;
global BusinessOperation buyConfirmation;
global BusinessOperation buyRejection;
global BusinessOperation cancelation;

46 Ioannis Sfyrakis

Rule 0: initialize the ROP sets for buyer and seller.
This rule is launched only when the contract is set up.
In this limited scenario the seller has no ROP, but the buyer
starts with the right to submit a buy request .

rule " Initialization "
when

$e: Event (type == "init")
then

System.out.println("∗ Initialization when");
Add buyer’s right to submit an order
ropBuyer.addRight(buyRequest, seller, (String)null) ;
System.out.println("∗ Initialization rule triggered");

end

Rule 1: having received a Buy Request event from the buyer, his right to
submit another

is temporarily revoked until the current one is completed. The seller gains
an obligation to either accept or reject the Buy Request.
rule "Buy Request Received"

when
Verify type of event, originator , and responder
$e: Event(type=="Buy Request", originator=="buyer", responder

=="seller", status=="success")
eval(ropBuyer.matchesRights(buyRequest))

then
Remove buyer’s right to place other Buy Requests
ropBuyer.removeRight(buyRequest, seller);
Add seller’s obligation to either accept or reject order
BusinessOperation[] bos = {buyConfirmation, buyRejection};
ropSeller .addObligation("React To Buy Request", bos, buyer, 3);
System.out.println("∗ Buy Request Received rule triggered");

end

Rule 2: having received a reject Buy Request event from the seller , the
pending obligation

is satisfied . Restore buyer’s right to submit Buy Requests.#
rule "Buy Request Rejected"

when
$e: Event(type=="Buy Request Rejection", originator=="seller",

responder=="buyer", status=="success")
eval(ropSeller .matchesObligations("React To Buy Request"));

then
Buyer’s Obligation is satisfied , remove it
ropSeller .removeObligation("React To Buy Request", buyer);

Implementing a Contract Compliance Checker for Monitoring Contracts 47

Restore buyer’s right to submit other Buy Requests
ropBuyer.addRight(buyRequest, seller, (String)null) ;
System.out.println("∗ Buy Request Rejected rule triggered");

end

Rule 3: having received an accept Buy Request event from the seller , the
pending obligation

is satisfied . New obligation on buyer to pay seller .
rule "Buy Request Accepted"

when
$e: Event(type=="Buy Request Acceptance", originator=="seller",

responder=="buyer", status=="success")
eval(ropSeller .matchesObligations("React To Buy Request"));

then
Buyer’s Obligation is satisfied , remove it
ropSeller .removeObligation("React To Buy Request", buyer);
Add new obligation for buyer to pay a bill to the seller within 7

days!
ropBuyer.addObligation(payment, seller, 7);
System.out.println("∗ Buy Request Accepted rule triggered");

end

Rule 4: the obligation to react to the buyer’s PO times out. The
obligation

is now irrelevant − timeout is treated as a refusal .
rule "React To Buy Request Timeout"

when
$e: Event(type=="React To Buy Request Timeout", originator=="

seller", responder=="buyer")
eval(ropSeller .matchesObligations("React To Buy Request"));

then
Seller’s Obligation is irrelevant , remove it
ropSeller .removeObligation("React To Buy Request", buyer);
Restore buyer’s right to submit other Buy Requests
ropBuyer.addRight(buyRequest, seller, (String)null) ;
System.out.println("∗ React To Buy Request Timeout rule triggered")

;
end

Rule 5: buyer pays. Obligation satisfied , The buyer regains the right to
submit Buy Requests.

rule "Payment Received"
when

$e: Event(type=="Payment", originator=="buyer", responder=="
seller", status=="success")

48 Ioannis Sfyrakis

eval(ropBuyer.matchesObligations(payment))
then

Buyer’s Obligation is satiasfied , remove it.
ropBuyer.removeObligation(payment, seller);
Restore buyer’s right to submit other Buy Requests
ropBuyer.addRight(buyRequest, seller, (String)null) ;
System.out.println("∗ Payment rule triggered");

end

15 Appendix E: Example Contract Code Listing in
EROP language

roleplayer buyer , s e l l e r ;
businessoperation buyRequest , payment , buyConfirmation ;
businessoperation buyReject ion , c a n c e l l a t i o n ;
compoblig RespondToBuyRequest (buyConfirmation , buyReject ion) ;

rule "R1"
when

e matches (botype == "buyRequest")
then

Success :
i f e . o r i g i n a t o r == buyer

&& buyRequest in buyer . r i g h t s
&& e . weekday in [Monday . . . Saturday]
&& e . time in [9 . . . 18]

then
s e l l e r . o b l i g s += RespondToBuyRequest ("72h") ;

endif
Otherwise :

pass ;
end

rule "R2Confirmation"
when

e matches (botype == "buyConfirmation")
then

Success :
i f e . o r i g i n a t o r == s e l l e r

&& RespondToBuyRequest in s e l l e r . o b l i g s
then

s e l l e r . o b l i g s −= RespondToBuyRequest ;
buyer . o b l i g s += Payment ("7d") ;
buyer . r i g h t s += Cance l l a t i on ("7d") ;

endif
Otherwise :

Implementing a Contract Compliance Checker for Monitoring Contracts 49

pass ;
end

rule "R2Reject ion "
when

e matches (botype == "buyReject ion " ,
outcome == Success , o r i g i n a t o r == s e l l e r)

RespondToBuyRequest in s e l l e r . o b l i g s
then

s e l l e r . o b l i g s −= RespondToBuyRequest ;
terminate (" Success ") ;

end

rule "R2Timeout"
when

e matches (botype = buyRejectionTimeout , o r i g i n a t o r == s e l l e r)
RespondToBuyRequest in s e l l e r . o b l i g s

then
s e l l e r . o b l i g s −= RespondToBuyRequest ;
terminate (" B i zFa i l ") ;

end

rule "R3Payment"
when

e matches (botype = payment , o r i g i n a t o r== buyer)
payment in buyer . o b l i g s ;

then
buyer . o b l i g s −= Payment ("7d") ;
terminate (" Success ") ;

endif
end

rule "R3Cance l lat ion "
when

e matches (botype = canc e l l a t i on , o r i g i n a t o r== buyer)
c a n c e l l a t i o n in buyer . r i g h t s ;

then
buyer . r i g h t s −= Cance l l a t i on ("7d") ;
terminate (" Success ") ;

endif
end

50 Ioannis Sfyrakis

16 Appendix F: UML class diagram for uk.ac.ncl.erop
package

Fig. 19. Detailed UML class diagram for uk.ac.ncl.erop package

