

Modeling and Verification of Adaptive eLearning System

Chau, H , 2025

Abstract. The eLearning system has become a vital component of modern education.

To address variations in students' abilities, learning histories, and preferences, adaptive

eLearning has been introduced. While numerous models have been developed for

adaptive eLearning, their reliability is typically assessed only through student

evaluations post-implementation. This dissertation aims to propose a verification tool

to assist adaptive eLearning system developers in validating the logic of their designs.

Given the lack of standardised models, a higher-level approach to modelling is

recommended using Event-Condition-Action (ECA) rules. The dissertation explores

the use of the SPIN model checking tool to analyse eLearning models, benefiting both

developers and educators. To support this approach, the extension of PROMELA—

the programming language used in SPIN—is investigated. A graphical user interface

(GUI)-based integrated development environment (IDE) has been developed to

manage these extensions and handle Linear Temporal Logic (LTL) formulae for

verifying the correctness of eLearning models. Test cases are included to demonstrate

the functionality and effectiveness of the PROMELA extensions.

1 Introduction

E-learning, defined as the use of electronic technology in education and sometimes

referred to as computer-assisted learning, has become a prevalent teaching method.

Numerous Learning Management Systems (LMS) and Massive Open Online Courses

(MOOCs) have been launched, particularly in tertiary education. These approaches

have proven effective, particularly in subjects that emphasise problem-solving or

language learning [1]. With advancements in computer-assisted learning

technologies, researchers have increasingly explored personalised approaches to e-

learning, often supported by artificial intelligence, referred to as adaptive e-learning.

The lack of agreed-upon modelling standards [4] has led to diverse approaches in

developing adaptive e-learning systems. Researchers have focused on varying aspects

of learning events and adaptation processes. For instance, AMASE, developed by

Trinity College Dublin, emphasises the learning workflow [5], whereas ALEF,

implemented at the Slovak University of Technology in Bratislava, prioritises

collaboration among learners to enhance learning efficiency [6]. A 2011 survey

concluded that IMS-LD, a modelling language that frames e-learning events as plays

in drama for computerisation, is rarely used in proposed adaptive e-learning systems

[11]. This diversity in system development focus presents challenges in evaluating

system reliability without direct testing on students. Furthermore, the absence of

standardised evaluation methods [4] underscores the need for a cross-platform

verification tool for adaptive e-learning systems. The absence of model-checking

tools for adaptive e-learning systems during the design phase is a critical gap. This

project addresses this issue by proposing a verification tool to validate the logical

design of adaptive e-learning models before implementation. Although tools like

CAVIAr have been developed to validate courseware during the design phase [18],

they are limited to assessing teaching materials within a specific model setup. These

tools do not verify the underlying system model, leaving the design's potential failures

undetected until the evaluation phase, where teachers and students assess its

effectiveness. Early-stage verification, ensuring logical correctness of the design

prototype, is therefore essential. This work explores the use of the SPIN model

checker and the extension of PROMELA, the validation language for SPIN, to verify

e-learning systems. The implementation of this tool involves adapting concepts from

electronic and smart contracts, as defined in EPROMELA (an extended version of

PROMELA) [7,8,9], to educational components. Recent research has demonstrated

the applicability of blockchain-based smart contracts—whether centralised,

distributed, or hybrid [47,48,49]—across various domains, including education

[33,34,35,36], cloud computing, the Internet of Things, and service level agreements

(SLAs) [37-46,50,51]. Instead of modelling learning events as plays in drama, as

suggested by IMS-LD, this work adopts a contract metaphor using Event-Condition-

Action (ECA) rules. A hypothetical example of such a model is provided below:

The model involves student who will perform the following actions repeatedly:

a. Choose a subject

b. Take subject 1

c. Take subject 2

d. Take an assessment

Operation ‘a’ is performed, followed by ‘b’, ‘c’ or ‘d’ under certain constraints:

2. Student is obliged to choose ‘b’, ‘c’ or ‘d’ after ‘a’.

3. Student is prohibited to choose ‘d’ if neither ‘b’ or ‘c’ have been performed.

4. Student is prohibited to choose ‘b’ if ‘b’ has been performed.

5. Student is prohibited to choose ‘c’ if ‘c’ has been performed.

The execution of each learning activity is based on the right/obligation/prohibition given

to a Role player. Right means that student is allowed to execute that event. Obligation means

the student is expected to execute a certain event, i.e. compulsory to do it. Prohibition means

that student should not do the event unless otherwise notice. A more detailed model may

involve more role players such as the learning management system and teachers, with more

prohibition and right/obligation assignment. Logical errors are more likely to happen with

the increase in complexity. Therefore modelling learning activity is not only a single task

but required a continuous check throughout the design period is important.

Modelling learning events is the first step of verification. Transformation of these models

and rules into PROMELA is essential for SPIN. In this dissertation method of

transformation would be discussed and justified. Moreover, to verify a design is logically

correct, only having the model and SPIN verification is not enough. For constraints that are

not as obvious as the design or monitoring states of the design, Linear Temporal Logic

formulae are required. Discussion of such formulae will be at Section 3.

1.1 Proposed Aim and Objectives

The aim of the project is to develop a model-checking based verification tool for adaptive

e-learning system represented in Event Condition Action (ECA) rules. This tool is a high-

level tool to be used by teachers for checking their design on the courseware and the learning

flow of the course.

The objectives of the project are as follows:

1. To classify the similarity and differences among the adaptive e-learning system

We would like to have an understanding of the current situations about adaptive elearning

system. To verify a system, a model of the system is required to set up. To model a system,

understanding of the system is required. Therefore classifying similarity and differences of

different adaptive eLearning system should be done.

2. To identify usual practices in evaluating the system

It is worth understanding how system developers usually do justification on their product.

By knowing the usual methods in evaluating the system, we can identify if there exists any

missing part that required a verification to be done and develop the tools.

3. To modify EPROMELA to an education-oriented PROMELA extension

The aim of the project is to develop a model-checking tool. EPROMELA is a verification

tools for e-contract which works with SPIN, with extensions of PROMELA and ECA rules.

Understanding on how PROMELA can be extended for other purposes is important to

achieve the aim of the dissertation.

4. To develop a verification tool for adaptive eLearning system based on SPIN

Developing verification tool for adaptive eLearning system is the main objective of the

dissertation. In this project, a verification tools extending PROMELA for adaptive learning

systems is the target to develop. A Java based IDE with LTL formulae manager that can

execute the SPIN verification is to be built.

5. To evaluate the system using realistic e-learning scenarios

Testing the system with some scenarios to understand how the application can help verifying

adaptive learning systems.

1.2 Outline of the dissertation

This dissertation is divided into 6 sections. Section 2 would be the background which

introduced related works and concepts like ECA rules, adaptive learning systems, SPIN,

PROMELA, Linear Temporal Logics and previous attempts to extend PROMELA. Section

3 would be introducing LPromela, the extension of PROMELA to be developed for adaptive

learning systems. Architecture and detail conversion from design draft to ECA rules and

from ECA rules to executable PROMELA would be explained. Assertion and LTL formulae

usage would be briefly included in the section.

Section 4 introduces the LTL manager developed to manage LTL formulae for LPromela

model during verification. In Section 5, some scenarios would be included for discussion to

demonstrate how to verify adaptive learning systems through LPromela and LTL.

Discussion on Slicing Algorithm would also be mentioned. Then we evaluate the aim and

objectives of the dissertation.

Conclusion and future work would be mentioned in Section 6 which rounding up the

dissertation by giving a summary of the work done in the project and states the further topics

to be research on or implementation can be done about the project.

2 Background

2.1 Event – Condition – Action (ECA) rules

The idea of Event-Condition-Action rules is proposed in 1996 for active database

systems, describing the execution flow of the event by definition the event, conditions the

event holds and the consequence action [12]. As a popular model used to describe electronic

contracts, it has been used to model electronic contracts in EPROMELA, an extension of

PROMELA, by specifying the ECA rules in EROP (Event, Right, Obligation and

Prohibition) language [7,13,31,32], which used to specific the set of rights, obligations and

prohibitions (ROP) of the role player involved, and the conditionaction combinations for

each ROP elements.

Consider the example specified in Introduction, we can find the ROP sets specified there.

Conditions are set such as the "prohibition" of "taking assessment" would be changed upon

execution of any of the two "subjects". To complete the assignment, we also need to specify

the actions to take. For example, when the condition of the event "taking assessment" is still

prohibited, the action would be "returning to course selection".

Similar to the above example, we can model different learning activities and simulate

course adaption by setting up ECA rules. As similar tools on electronic contract has been

established [7,8,9], it is reasonable to modify the existing tools into an adaptive eLearning–

based tool.

2.2 Adaptive eLearning System

An adaptive e-learning system contains the following characteristics [2,3]:

• Tracking user activities;

• Manage the user activities records with the specified models;

• Manage and select appropriate contents with the analysis on user requirements and their

preferences;

• Manage and select specified contents which are based on what have been learnt by the

user and other important topics.

A lot of models have been proposed and being used. A survey [11] has been done in

December 2009 that 105 articles on popular online bibliographic database has proposed or

implemented an adaptive and intelligent system for collaborative learning support (AICLS).

Most of the systems have different aims and objectives targeting on. For example Topolar,

which developed in University of Warwick [16], put their focus on Social Interaction and

based the adaptation mechanism on that; AMASE [5] developed in Trinity College Dublin,

on the other hand, does not consider social interactions among students as an important

features. Adaptation on the learning workflow is the aim of the project instead.

In [11] focus on modeling are categorized into User/group (modelling the learners),

Learning Domain (modelling the knowledge area targeted), and Activity (modelling the way

of learning). It also stated three basic targeting directions on the adapted component: Group

formation, domain-specific support and peer-interaction support. Upon the discussed

systems in [11] most of the systems are targeting the peer interaction technology with the

modelling of activity. Moreover, the survey suggested that IMS-LD, a framework used to

formally describe teaching-learning process [15] by using a drama play as metaphor, is not

popular among the learning systems investigated. Only one case among the investigated

models used a standard based modelling to develop the system. This also agreed by [4]

which suggested no standards have been concurred in current situation. A verification tools

should then be providing a more abstract modelling features that leads to a freedom for the

learning system designer to verify a system with a specific aim.

2.3 Validation methods for Adaptive eLearning System

To evaluate the usability of the adaptive learning model, the usual practice is by

collecting student-based feedbacks through running the model in a real classroom or a class-

like condition [11]. However, software failures always happen because of some very

unlikely reason that we usually overlook [14]. Moreover, research suggested that as a

control experiment setup is used, which included two models with adaptive and non-

adaptive setting respectively, the non-adaptive version would usually be not well designed

which at the end gives an unfair comparison between the models [19]. Therefore an

independent verification of the model itself before implementation is important by testing

the model on every possibility that logically would happen.

Work on validating constructed courseware has been suggested in [18] in order to avoid

human errors from involving in the result during evaluation as the system complexity

increases. CAVIAr [18] is developed under this motivation, providing a step back before

testing an immature model on students. By providing a validation step after implementation

of courseware model, logical errors and structure inconsistency are able to be identified.

This successfully reduced the chance of human mistakes on overlooking problems during

manual evaluation. However this does not apply to the case where the design of the

courseware itself has serious consistency problem. As development of courseware is a

"complex, time-consuming and expensive task"[18, 20], it is worthless if we find out the

critical design problem of a courseware after implementing it. A verification process for the

model prototype before implementation is then important to save time and reduce cost on

the adaptive learning system development.

2.4 PROMELA and SPIN

SPIN (Simple PROMELA Interpreter) model checker [14] is a popular distributed system

model verification tool developed by the Bell Labs in 1991 by Dr. Holzmann. SPIN verifies

system by first modelling the protocol written into PROMELA (Process Meta-Language),

a specified language for SPIN by abstracting the concurrent systems to a higher level design

such that the system designer can get rid of the details in implementation before verification.

Designed for such feature, PROMELA contains components like processes, channels,

synchronizing statements, messages, etc., On the other hand, some basic data types like

floating point numbers which is not required in design level does not exist.

Apart from verification, SPIN itself is able to simulate the message communication inside

the PROMELA model. In default mode the verification is done by Depth-First search, which

will go to the end of each possibility branch until the very end and do backtracking for other

possibilities. The aim for the verification search is to find out counterexample which

violated the assumptions set by the model. Once a counterexample is found, the verification

search is terminated and the trail to the counterexample is recorded for simulation to

demonstrate the error which serves for debugging purpose.

In this dissertation, as we mentioned in 2.3 that a verification tools allowing an

abstraction of model is required for adaptive learning systems, SPIN is then a reasonable

tools to use as abstraction is a requirement.

2.5 Linear Temporal Logic

The aim of verification is to identify the possibility of a system, i.e. the things a system

can do and the things it cannot do [14]. Assertion is therefore important to identify design

requirements that have a chance to be violated no matter it is likely to be happened or not.

On the other hand, as limitations assigned in the system, assertion is used to “indicate the

validity of these limitations” as quoted in [14].

However, basic assertion offered in SPIN has limitation. It only handles finite automata

but not infinite executions. Therefore, temporal logic is important in handling infinite runs.

It is used by shaping the logic statement into formula with specified syntax, and SPIN would

translate the formula into a never claim statements in PROMELA. As it is only used to

define correctness requirements in a PROMELA model, it is used to setup rules that the

model should meet. For example, there exists a learning courseware that required students

to complete course 1 before working on course 2. The LTL can then be set to express “course

1 is always executed before course 2 is executed”.

 Detailed syntax is out of scope of the discussion and can be found in [14]. The execution

would be discussed in Section 3 of the dissertation.

2.6 Extension of SPIN/PROMELA

As mentioned in section 2.3, SPIN is designed originally for distributed systems.

However, by extending it, business contracts or other systems can also be verified.

SPIN is based on C. Therefore syntax and library in C can be included in PROMELA for

function extension purpose. Researchers have suggested different extensions to get

advantage from the popular verification system. A suggested structure in [17] is as follows:

Figure. 1. Architecture of hybrid system verification model checker [17]

Figure 1 demonstrates a design to extend SPIN which can be plugged in and updated

easily. External structures including libraries and data structures are imported into original

PROMELA code by “#include”, “typedef” and “inline”. Therefore if any updated is required

the SPIN/PROMELA itself does not need to be changed accordingly. A translator is

suggested to parse the specified language to PROMELA such that any change of the code

does not affect SPIN itself.

Extensions on PROMELA are not a single case. PROBELA [23], a modelling language

based on PROMELA for probabilistic model checking with time variables, is an example.

There was also trial on extending PROMELA and Spin to real time verification [24].

However these are mostly extending PROMELA based on its original designed domain. To

handle other domain-specific concepts and allow PROMELA to serve for more general

purposes, an attempt is done to develop language extensions of PROMELA using AbleP

[25]. Gaining advantages on the feature of PROMELA which allows embedded C code to

be within specification, extension of PROMELA for different purposes outside concurrent

system checking is a reasonable task.

Figure. 2. EPROMELA contract model checking framework [7]

EPROMELA, as proposed in [7], is also one of these extensions. The purpose for

EPROMELA is to develop a verification tool for business contract. ECA rules are used in

EPROMELA to describe the contract. Figure 2 above shows the framework of the contract

checking, where similarities can be found when comparing to Figure 1. Both design work

out the modelling in the decided specification language before putting into SPIN for

checking. For EPROMELA, it is the EROP which describe the contract in ECA rules. LTL

formulae are also set up separately for correctness check. They also show that a “translation”

process to SPIN specification is required. In EPROMELA, it is the CB2B shown in Figure

3 which setup a structure on top of PROMELA to simulate a contract as distributed system

which SPIN best serves for and to reduce the complexity of writing contract rules in basic

PROMELA.

Figure. 3. CB2B model [7]

CB2B model in Figure 3 shows a communication between Business Event Generator and

Contract Rule Manager is setup as the base of the whole system. Business Event Generator

is in charge of the role players and the possible business operations to be taken, while the

Contract Rule Manager is responsible for defining the ECA rules of the business operations

and their corresponding actions under different situations like a business failure [7]. This

simplifies the PROMELA to be taken and specifies all the related code to be business

contract related.

Therefore a similar structure should be built to extend PROMELA for nondistributed

system circumstances. In this dissertation, a similar architecture would be set up for adaptive

learning systems.

3 LPromela

3.1 ECA rules for learning event

The focus of the verification on adaptive learning systems is to model the learning events

and verify the relations between those events. Modelling learning events is thus the first

step of developing verification tool. There are many modelling standards proposed of

learning events such as IMS-LD, SCORM and IEEE LOM standard [18]. As mentioned in

section 2.2, standards used among current adaptive learning systems are not unique.

Therefore a modelling method of learning events should be set up in order to map different

standards into the tool for verification.

As an example of extension usage of SPIN, EPROMELA [7,21] demonstrates how to

model contract in ECA rules and EROP language. ECA rule defines role players,

corresponding operations and the Right/Obligation/Prohibition assignment on each

condition of a contract, and joining all this into a list of rules. Adaptive learning systems

work in similar way. Performance of students and their preference are included such that for

a set of learning events defined in the system, right /obligation /prohibition are set on each

event.

Consider the following scenario about a small fraction of an adaptive learning system:

Students have applied for a course which consists of the following components:

a. Choose a learning event

b. Take event 1

c. Take event 2

d. Take an assessment

Student must choose a learning event before graduated from the course. The assessment

cannot be accessed until either event 1 or event 2 is completed. Student can choose to take

event 1 or event 2. Once an event is done, the student would not be able to have a retake. If

he fails, he would have a chance to retake. Once the assessment is passed, student would be

considered graduated from the course.

The above scenario demonstrates that an adaptive learning system is consists of Role

player (Student here), Learning Event (event 1, event 2, assessment) and a set of restrictions.

Those restrictions can be rewritten in terms of right, obligation and prohibition as follows:

1. Student is obliged to choose a learning event.

2. Student is prohibited to take ‘d’ until ‘b’ or ‘c’ is executed

3. Student is prohibited to take ‘b’ if ‘b’ has been successfully executed (passed).

4. Student is prohibited to take ‘c’ if ‘c’ has been successfully executed (passed).

5. Student has the right to take ‘b’ if Student failed ‘b’

6. Student has the right to take ‘c’ if Student failed ‘c’

7. System terminated if ‘d’ is successfully completed.

Therefore ECA rules can be used also on adaptive learning systems by rewriting

details of the adaptive learning model in contract terms, i.e. including

right/obligation/prohibition in the constraints. Hence we can setup the verification tools

based on ECA rules following the implementation of EPROMELA.

ECA included Event, Condition and Action. Events and actions are different in

different course. However, conditions are similar among most situations. A student

would either be passing an examination or fail it, and so do other learning events. As

an eLearning platform, there also cases where the technical failure would be affecting

the learning progress. Finally there also exists a case where students completed work

after the deadline assigned. Four conditions are identified then: Success (Passing the

learning event), Learning Failure (Fail the course), Technical Failure and Timeout.

Role players included in adaptive learning systems are teaching materials authors,

teachers and students [22]. The learning management system (LMS) itself, which

controlled the whole learning experience, is the first interacting character with the

students during the learning process. Therefore it is reasonable to count LMS as one of

the role players. In this dissertation we will focus on the students activity in adaptive

learning system and thus in the discussion below role players will be referring to

students and the LMS only.

To write them into formal contract code which can be used in SPIN, a new type

LN_EVENT is defined to include the ROP status, execution status and the responsible

condition of a learning event.

typedef LN_EVENT{

byte name; byte

role_pl; bool

right; bool

oblig; bool

prohib; bool

executed; byte

id; byte status;

}

The status here represents the conditions as stated above, i.e. Successful, Technical

Failure, Learning Failure and Timeout.

To write the design in ECA rules, list of keywords and definition are required as

included below:

Table 1. ECA rules opeartions list

Name Description

EVENT(Lei, ROPi, Status) Check if msg1 returns1 and msg2 returns

1. The msg1 is responsible to check the

Right/Obligation/Prohibition status of the

learning event and the role player. The msg2

is responsible to the execution status

(SC/LF/TF/TO) of the event. Block the

execution of the specified code if fail.

E.g. EVENT(EXAM, IS_O(EXAM,

STUDENT) , SC(EXAM))

SC(Lei), LF(Lei), TF(Lei), TO(Lei),

P(Lei)

Return 1 if the learning event is flagged as

stated option, and return 0 if not.

SC: Success,

LF: Learning process failure,

TF: technical failure,

TO: timeout,

P: Action prohibited

RD(Lei , RolePlayer, CC, Action) Return Decision made as a result of the

rule execution. Parameter CC represents the

contract compliance status, i.e. CCR

(Contract compliant right) / CCO (Contract

compliant obligation) / CCP (Contract

compliant prohibition) / NCC (Non-contract

compliant).

Parameter Action represents the further

action after rule execution. It can be CON

(Continue) or CND (Contract ended)

SYN(Lei){

………………….

}

NYS(Lei)

Used in RULE to synchronize the current

part of execution with another learning event

(Lei). Statements included are executed if Lei

is executed successfully.

SET_R(Lei , check) Assign right to perform the learning event

Lei by inputting 1 as check, and re-

move the right by inputting 0

E.g. SET_R(CHOOSE, 1)

SET_O(Lei , check) Assign obligation to perform the learning

event Lei by inputting 1 as check, and

remove the obligation by inputting 0 E.g.

SET_O(LECURES, 1)

SET_P(Lei , check) Prohibit the learning event Lei by

inputting 1 as check, and remove the

prohibition by inputting 0

 E.g. SET_P(EXAM, 1)

SET_X(Lei , check) Control the execution status of the

learning event Lei. Initially set to 0. Sets to 1

if event is executed successfully. E.g.

SET_X (CW,STUDENT) means CW has

been executed by STUDENT.

IS_R(Lei , RolePlayer) Return 1 if the RolePlayer has the right to

execute learning event Lei , otherwise return

0

E.g. IS_R(CHOOSE, STUDENT)

IS_O(Lei , RolePlayer) Return 1 if the RolePlayer is obliged to

execute learning event Lei , otherwise return

0

E.g. IS_O(LECURES, STUDENT)

IS_P(Lei , RolePlayer) Return 1 if the RolePlayer is prohibited to

execute learning event Lei , otherwise return

0

E.g. IS_P(EXAM, STUDENT)

IS_X(Lei , RolePlayer) Return 1 if the RolePlayer has executed

learning event Lei , otherwise return 0

Using the above operations list, rules can be written in a specific structure and passed

to extended PROMELA model for verification. To make use of the operations, a

specific structure is used to include rules in blocks for execution. The structure of the

block is as follows:

RULE(LN_EVENT){

 WHEN::EVENT(Lei, ROPi, Status)

 ->{

 ActionBlock;

RuleDecision;

 }

 END(LN_EVENT);

}

The action block consists of the actions to take under this certain ROP-condition

combination. One of the main actions to be taken is the change of ROP status of learning

events such as prohibiting the current event to be taken place after this execution or to

assign obligation to the Role Player to complete other learning events.

Take the learning event ‘b’ in above scenario as an example, the eLearning contract rule

would be:

RULE(b){

 WHEN::EVENT(b, IS_O(b,STUDENT), SC(b))

 ->{

 SET_R(a,1);

 SET_O(b,0);

 SET_P(b,1);

 SET_X(b,STUDENT);

 RD(b, STUDENT, CCO, CO);

 }

 ::EVENT(b, IS_O(b,STUDENT), LF(b))

 ->{

printf(“Fail”);

SET_O(b,0);

 SET_R(a,1);

 SET_R(b,1);

 RD(b, STUDENT, NCC, CO);

 }

 ::EVENT(b,IS_P(b,STUDENT),SC(b))

 ->{

 SET_R(a,1);

 SET_O(b,0);

 SET_O(c,0);

 SET_O(d,0);

 RD(b, STUDENT, CCP, CO);

 }

 END(b); }

Keyword printf of C is also available to be used. Therefore XML can be inserted in

serving for systems wanting to collect all the information of the verification. Cases for

technical failure and other combinations are not included in the above example as the

handling is similar to the above codes.

3.2 Checking of rules

As the metaphor of contract is used on learning events, requirements for contract

compliance would be demonstrating the requirements for a valid model. Contract

compliance requirements for business operations are as follows [7,21]:

─ Business operation boi is a subset of the primitive business operations B;

─ ROP set of the corresponding role players are matched. Role player would have either

right, obligation to execute the task or being prohibited to perform it. ─ boi fulfils the

constraints specified on the contract.

The compliance rules above are designed in terms of business contract. To provide

similar rules for learning system verification, modification is required. Modifying these

contract requirements in terms of education would become:

• C1) learning event lei is a subset of the primitive learning events L;

• C2) The ECA rules set, i.e. the right/obligation/prohibition of an certain operation

by the role player is matched;

• C3) Constraints stipulated in the adaptation rules are satisfied.

For any learning event lei it is only valid if they are included in primitive learning

events. Otherwise, it is not well-defined and rules must be setup for the event to give a

definition. If C2 is met, the learning event would be considered matching the ROP. If it

is not fulfilled, the learning event would be considered as wrongly setup. C3 is referring

to the constraints vary from system to system. If C3 is no met, the learning events would

be considered as not matching the design of the model and required a review of the

events and the model, i.e. the event is invalid. If no obligated learning events that is

waiting for executing in the queue and the system is called to be terminated, we can

concluded that this trial is a successful one and the model is verified in this particular

case. If it terminated normally like this for all possible cases, the model is verified.

The reason why only obligated events in queue are considered as the terminated

condition is, only obligated events are some events that must be finished. Therefore, if

it is required to be done and is not being executed, this is a violation of the design. Vice

versa, if all obligated events have been executed, then there would not have any

violation of design found.

Take examination as an example. Examination is one of the primitive learning

events. So C1 is met. Student is always prohibited to look at the examination questions

until the examination time started, but is obliged to take it. If the student start reading

the examination questions after examination started, C2 is met. If the student is cheating

and viewing the questions before examination begins, C2 is not met. Assume that in the

adaptation rules, this student should finish the examination in 2 hours. If student

finished the examination at or before 2 hours passed, C3 is met. If the student is not

able to complete the work, C3 is violated. If C1, C2 and C3 are all met, the learning

event would be called "compliant".

3.3 Architecture of the verification model

The following discussion would be on how the rules are used for verification and

how the verification itself is to be done. The following is the architecture of the

verification tool:

Figure. 4. Architecture of the verification model

A prototype of an adaptive eLearning System can be divided into design and

constraints. Design represents the flow of the eLearning system on how the learning

events are held and their corresponding actions, i.e. how the adaptive rules are applied.

On the other hand, constraints are some statements that the system should be obeying

apart from the design. For example, when a learning event is set to be prohibited by

student, it cannot be obliged to student at the same time. These limitations, which are

generated after fixing the design of the system, are not included in the design but they

are part of the system.

Here we will discuss in details how Extended PROMELA model would cooperate

with LTL formulae to test the system.

Extended PROMELA. Design of an adaptive eLearning system prototype would lead

to a set of ECA rules as presented in previous sections. To execute the verification for

all the “contract” requirements stated in section 3.2, there is a need to setup the rules

and translate into PROMELA for SPIN to handle.

Extended PROMELA model

Figure. 5. Extended PROMELA model design

To check the rules and learning events, two proctypes (process behavior in SPIN)

are set up for different tasks. Contract Rule Manager (CRM) includes all the ECA rules

in the proctype. Learning Event Generator (LEG) defines the queue of learning events

and initializes the conditions of these events.

To check the compliance conditions, event in the queue will be called by LEG and

the corresponding action under the current condition of the event would be checked in

CRM. The action would change the conditions of some events and return them back to

the learning event generator for reordering the queue. By repeatedly doing so, all

obligated events can be go through until no more events which must be executed are in

the queue. This is called a verified situation. However, if it ends in the middle, this can

proved that the design of the system is having problem and need modification.

A set of operations are responsible for handling the initialization and verification

process. They are defined as follows:

Table 2. Extended PROMELA Operations list

Name Description

LN_EVENT(Lei) Declares learning events of PROMELA type typedef

with the fields: name, role player, right, obligation,

prohibition, execution status, id and status. The field

Name is defined by the parameter Lei of the function

E.g. LN_EVENT(LECTURES)

Learning Event Generator Contract Rule Manager

LEG 2 R

R 2 LEG

ECA rules

Included in

Operations set

ROP interating

initialisation

defines

INIT(Lei , RolePlayer,

1, 0, 0)

Initialise the learning event Lei with the right, obligation,

prohibition status to execute the event by the speci-

 fied RolePlayer E.g. INIT(LECTURES, STUDENT,

0,1,0) means the student is obliged to execute lecture(s).

 CONTRACT(Lei) Include the specified Rule for a certain event Lei into

contract rule manager (CRM)

E.g. CONTRACT(EXAM);

 L_E(RolePlayer,

STATUS)

Lei, Send learning event Lei belongs to the RolePlayer with

specified status (S/LF/TF/TO). (S represents SC as in the

Rule Operations)

E.g. L_E(STUDENT, EXAM, S);

 DONE(RolePlayer) Reset the Execution Trace, i.e. queue

E.g. DONE(STUDENT)

These are the operations extending from original PROMELA. Some of them like

CONTRACT() and INIT() only require to be executed once in CRM and LEG

respectively. However, as discussed above, a recurring check of the obligated events is

the key of the verification algorithm. Therefore in LEG, looping would be used to

generate learning events as follows:

do

 ::L_E(STUDENT,LECTURES,S);

 ::L_E(STUDENT,LECTURES,TF);

 ::L_E(STUDENT,CW,S);

 ::L_E(STUDENT,CW,LF);

 ::L_E(STUDENT,EXAM,S);

::L_E(STUDENT,EXAM,LF); od

The loop will stop until an event called CND (Contract End) as action in CRM and

replied to BEG which demonstrates the termination of the checking in queue. If in the

queue (the defined event-status combinations inside the loop) there are still obligated

events, the contract is having problem. On the other hand, if no obligated events are on

the list, the design is said to be verified. Other ways to construct the loop as a method

to reduce memory size required, i.e. slicing, will be discussed in Section 5.2.

LTL formulae. Recalling that to ensure a learning event is valid, matching requirement

and compliant, there are three conditions to handle, denoted C1, C2 and C3. Moreover,

in the verification model architecture discussed above, to fully verify a design

correctness requirement check is required. Consider an example as follows: A student

would like to choose to take a module “Object-oriented Programming”. Here is the

course outline:

Lecture 1: “Basic Java Programming”

Lecture 2: “Inheritance & Polymorphism”

Lecture 3: “Object-oriented Programming”

Coursework

Exam

Student should take each event one by one, i.e. he cannot take coursework before

completing lecture 3, and he cannot take Exam before completing coursework. Consider

the teacher set up the verification events queue with a possibility that Learning

Failure would be happening in Coursework, and the corresponding action is set as CND.

Under ECA rules, coursework under learning failure is uncompleted. Therefore

Exam would still in prohibited condition. The only obligated event is coursework and

the obligation is removed as CND is called. Therefore under the checking rules, the

design is verified.

However, if the teacher is not intending to drop students out from the course under

failure of coursework, correctness check is important to ensure some constraints are

checked and proven. If the teacher wants Exam to be executed at all case, LTL formulae

can be used as follows:

ltl p1 { [] <> IS_X(EXAM, STUDENT)};

The keyword ltl is for inserting LTL formulae in PROMELA. The symbol “<>”

means “eventually” and “[]” means “always”. Therefore the formula here is means

EXAM would be executed at least once by STUDENT. Under the above scenario, error

message would be found as this formula is violated under the case of Learning Failure

on Coursework and system termination happened. Therefore it ensures some important

constraints of the design which are not obviously stated in the ECA rules are being

taken into account.

Common and Specified LTL Formulae. There are some LTL formulae that are used

quite frequently at all cases, especially considering the use of LPromela here. As ECA

rules are used to model LTL formulae, every learning events would have their own

“right, obligation, prohibition” condition specified. As a matter of fact, if an event is

set with “right”, it cannot be obligated or prohibited. If an event is obligated, there are

more constraints than be declared as “right” and cannot be set “prohibited”. If the event

is prohibited, there should not be right or obligation declared. Therefore this would be

one of the common constraints that every model using LPromela would have come

across. Writing this constraint on event EXAM in LTL formula syntax, we will have:

ltl ROPchecker { [](!((IS_R(EXAM, STUDENT) && IS_O(EXAM,

STUDENT)) || (IS_R(EXAM, STUDENT) && IS_P(EXAM, STUDENT))

|| (IS_O(EXAM, STUDENT) && IS_P(EXAM, STUDENT))))}

This would be a common LTL formula as this is a constraint for all LPromela model.

However for every model, there would be some constraints which is specified by their

own design, a number of specify LTL Formulae would have to be set. Some examples

of using specified LTL formulae would be discussed in Section 5.

Assertion. One problem of LTL formulae is that, as only one formula can be checked

in one trial, it takes time to handle if there are many constraints to be verified. For

example, to check all the events of the above formula ROPchecker in the scenario

discussed, we need to check the same model for 5 times, one for each event. Therefore

for some common and simple constraints, like the ROP constraint mentioned above,

can be built in the system using assertions. In LPromela, “right cannot be assigned with

prohibition” and “obligation cannot be assigned with prohibition” are worked as in-

built assertions and would be checked each time when changes of ROP of events

happened. The assertion is done as follows:

inline SET_R(lo,r){ lo.right=r;

assert(!(lo.right==1 && lo.oblig==1));

assert(!(lo.right==1 && lo.prohib==1));

} inline SET_O(lo,o){ lo.oblig=o;

assert(!(lo.oblig ==1 && lo.prohib ==1));

assert(!(lo.oblig ==1 && lo.right ==1));

} inline SET_P(lo,p){ lo.prohib=p;

assert(!(lo.prohib ==1 && lo.right ==1));

assert(!(lo.prohib ==1 && lo.oblig ==1)); }

The keyword assert is the original keyword in PROMELA. To prevent right assigned

with obligation or prohibition at the same time, it is included as part of the parser as

above. This method can ensure some simple and general constraints can be checked

every time as required without handling the limitation of using LTL formulae one for a

time, in exchange by increasing verification performance time. Way to turn these

assertion off would be discussed in Appendix E.

4 LPromela LTL manager

The aim of the project is to develop a verification tools on adaptive eLearning

system. In previous sections we have discussed a new extension of PROMELA which

would allow users of the language to model their design in adaptive learning system to

LPromela and verify it in SPIN using command line. However this would only allow

users who have the knowledge of setting up LTL formulae and writing PROMELA code

to be able to use the tool. As the targeting people of the aim are not only developers but

also teachers, a development environment for handling LTL formulae in Graphic User

Interface (GUI) should be built.

4.1 Design

Figure. 6. Architecture of LPromela LTL Manager

Above is the design of the LTL Manager. Viewing of LEG, CRM and ECA rules are

done on the manager. It is also responsible for managing a set of LTL formulae which

can be chosen to check when verification of design is called. SPIN would be running

in the background and would return the result to the LTL manager. If errors found, the

found counter example is shown as simulation in the manager.

An independent database is required to setup to store all the LTL formulae. Consider

a school with some number of teachers with no knowledge on LTL using LPromela to

verify their teaching materials, the LTL formula built by experts can be freely retrieved

by these teachers. Therefore, by setting up the database in the school server, teachers

can access to the set of formulae and find those best fit for the situation.

LTL formulae database

SPIN

Design

LTL formula to check

called

Return selected LTL formula for verification

Return a list of

LPromela translate

Lpromela IDE

Verification

Request for

Modified in

manage

Merged Lpromela & LTL formula

4.2 Implementation of LTL Manager

Similar function of managing LTL formulae has been achieved by Jim Sun on a

project for translating BPMN to PROMELA [26][30]. However, it is deeply connected

with the verification of BPMN graph so it cannot directly be used as the LPromela LTL

Manager. Therefore, related design was extracted out and re-implemented with

LPromela LTL Manager.

Language and Tools used. The LTL manager is implemented using Java language. The

Java editor used is Eclipse Luna. For the GUI implementation, WindowBuilder has

been used. WindowBuilder is an open source project from Eclipse to work as a plugin

in Eclipse which provide a drag-and-drop interface to deploy Java Swing components

and SWT components into the program to facilitate the setup out GUI.

The Database used is MySQL. To connect MySQL with Java, an external JAR file

mysql-connector-java is included in the library. The choice of MySQL is based on a

few factors. MySQL is a very popular open-source project on relational database system

[27]. Support of JAVA connection to MySQL is also well established [28]. Therefore

MySQL is chosen to be the database managing LTL formulae.

 Structure of the software. Classes are divided into groups: GUI, LTL Managing and

Database tools. The classes responsible for GUI are responsible for creating the

interface that the user can access. Frames for LPromela and ECA rules code, windows

for verification, simulations, control panel for LTL formulae management and viewing

LTL formulae are controlled under the GUI classes. Classes under LTL Managing group

are responsible for modelling LTL formulae into a specified Java object. Classes for

Database tools are responsible for the connection to the database and handle all the SQL

queries to retrieve those formulae from database or insert formulae into it.

Except for the GUI, most of the classes have been implemented in

BPMN2PROMELA and thus only modification is needed to use it as LTL manager.

Figure. 7. Classes in LPromela LTL Manager

LPromela

mainGUI ncl . b 1037041 . dao

ncl . b 1037041 . db . tool

ncl . b 1037041 . LTL . entites

HelpFrame LPromelaWindow LTL _ list

LTLSetting

SimulationFrame

VerifyFrame

ImplLTLDao DataBaseUtil

LPromelaModel

LTLDefinition

ModelMessageInfo

Figure 7 concluded the description above. All the classes required are listed in.

Descriptions of them would be introduced one by one below:

mainGUI. Under mainGUI package there are 6 classes: LPromelaWindow,

VerifyFrame, SimulationFrame, LTLSetting, LTL_list and HelpFrame.

Figure. 8. LPromelaWindow

LPromelaWindow is the main class, controlling the initialization of the software and

closing events. I/O of the PROMELA model files would be controlled within the class.

It contains a User Interface which linked to all the functions of the LTL manager.

VerifyFrame is the frame responsible for the verification event. When verification is

called in LPromelaWindow, this frame would be taken charge asking the LTL formula

to verify and returning the verification result to user. If deadlock or violation of

assertion/LTL formulae is found, SimulationFrame would be created demonstrating a

counterexample would be pop out.

SimulationFrame is responsible for showing the simulation trial of the PROMELA

model built. SPIN has a function to assign which trail to show and in this class the same

function is implemented to show different simulation tracks.

LTLSetting is the management frame for all the LTL formulae in the database. It is

responsible for adding new LTL formula, listing all the LTL formulae built and deleting

the unwanted LTL formulae. LTL_list shows all the details of the LTL formulae.

HelpFrame is just a pop message containing information about the software.

LTL entities. LTL entites define all the objects that modelling the LTL formulae and

objects to collect in MySQL database. LPromelaModel is responsible for storing the

login information of each PROMELA model loaded and ModelMessageInfo is

responsible for returning informations of the model.

LTLdefintion defines LTL object with formula, description and nickname. Nickname

is the name used to let users who do not have knowledge on LTL formula know the

meaning of the formula. Description converts directly the symbol of formula to

English, and formula stores the formula. ID is assigned for each entry as a primary key

in the table.

Database. Two classes are responsible for database connection. DataBaseUtil is

responsible for setting up the connection and close it. A function to switch among

database has been added for users to connect to a different database if they would like

to.

Figure. 9. Switching Database

ImplLTLDao serves as a bridge between LTLSetting, LTL entites classes and the

database. Retrieving the connection set in DataBaseUtil, SQL queries are sent from

ImplLTLDao for all the actions required a database connection and return the

corresponding result. For example, when a user added a new LTL formula to the

software in LTLSetting, it is passed to ImplLTLDao to translate as an SQL query to

pass the insertion to the database. ImplLTLDao will pass the query to the database and

receive feedback from it.

Detailed operations using LTL Manager would be described in Appendix.

5 Testing and Evaluation

In this section, some cases would be discussed to evaluate the usability of the

language, followed by a performance test for LPromela and a unit test for the LTL

manager.

5.1 Case Studies

Scenario 1 – Learning Progress Adaptation. The first example is an adaptive

eLearning system that focuses on adjusting the learning pace of the student during the

course. There are three components in the course: LECTURES (Denoted as L1, L2,

L3), CW (Coursework) and EXAM.

1. There are 3 lectures, 1 coursework and 1 exam

2. After 3 lectures, a coursework will be given. Student must finish the coursework

before progressing.

3. After all lectures and coursework are finished, an exam will be given. Student must

finish the exam.

4. If the student does not finish the coursework/exam within the specified time, then

the course will be marked as fail

Step 1 – Declaration Part.

/*Declaration of some variables for checking*/

bool fail=FALSE; int lectures=3; int LCount=0;

int cw=1; int CwCount=0; int exam=1; int

ExamCount=0;

/*Declaration of Role Player*/

RolePlayer(STUDENT, LMS);

/*Declaration of Learning Event*/

LN_EVENT(START);

LN_EVENT(L1); /*A list of lectures */

LN_EVENT(L2);

LN_EVENT(L3);

LN_EVENT(CW); /* All Coursework */ LN_EVENT(EXAM);

/* All Exam */

Step 2 – Contract initialisation.

DONE(STUDENT);

DONE(LMS);

INIT(START, LMS, 1,0,0);

 INIT(L1, STUDENT, 0,0,1);

 INIT(L2, STUDENT, 0,0,1);

 INIT(L3, STUDENT, 0,0,1);

 INIT(CW1, STUDENT, 0,0,1);

INIT(EXAM, STUDENT, 0,0,1);

Step 3 – Deriving contract rules. The natural language of the learning workflow is

manually converted into the following ECA rules:

1. Rule(START) – LMS starts offering course materials.

2. Rule(L1), Rule(L2), Rule(L3) – Student takes lectures

3. Rule(CW) – Student works on coursework

4. Rule(EXAM) – Student takes examination.

Implementations of the rules are as below. Timeout of Rule(CW) and Rule(EXAM)

are handled as well as technical failure of lectures events.

Figure 10 demonstrates how the designed learning rules are setup in terms of ECA.

RULE(L1), RULE(L2), RULE(L3) allows it to handle two status: successfully

executed (SC) and technical failure (TF). From the rules we can find that when a

technical error take place, i.e. failures happening to the learning management system

preventing students from accessing the lecture contents, recovery of the system

would take place and let the student return to their original progress. Once a lecture

is finished successfully, the next stage is obligated to be executed. For L1 the next

stage would be L2, and L2 would be followed by L3, while L3 is followed by CW.

Successfully executed has an counterpart to control the condition where the event is

prohibited to be executed. It is classified as successfully executed because the

students does successfully access the event. The only difference is that the student

does not have the right to finish the event. Therefore it is controlled under the status

SC.

Similar implementations are found in CW and EXAM rules. However, technical

failure does not take into account on both events in this case as the events are timed

event in reality and when technical failure takes place it does not do immediate

effects on the student learning progress and would be recovered later by extension

of deadline or other measures. Therefore there are learning failure LF and timeout

TO taken into account when considering the time where student has finished the

event. Learning Failure (LF) is responsible for handling the case of a student failed

the coursework or examination which means that some further actions out of the

scope of the course should be taken place. Timeout is set in corresponding to the rule

4 of the scenarios stated above. If a student is unable to finish the coursework by

deadline or fail to complete the exam within the stated duration, it is also treated as

failing the course, and a termination (CND) of the learning progress is executed. As

a termination of learning is found, it is considered as a non-compliant case (NCC).

Figure. 10. Learning Progress Adaptation rule set

Step 4 – Prepare LTL formulae. As an example, three LTL formulae are listed below

P1, P2 and P3 to verify different adaptation properties.

ltl p1 {[]((IS_O(L1, STUDENT))->!(IS_O(CW, STUDENT) &&

IS_O(EXAM, STUDENT)))} ltl p2 {[]((IS_O(L3, STUDENT))-

>(IS_P(EXAM, STUDENT)))} ltl p3 {[] (<>

(IS_O(EXAM,STUDENT)))}

The formula p1 is to verify that if only one learning event would be taken place at one

time. The formula p2 is to verify that if there are still lectures going on, no exam would

be taken place. The formula p3 is to check if EXAM is always eventually performed at

all time, no matter the students fail it or not.

Step 5 - Verification. After step 1 to step 4, the contract-like model is verifiable by using

Spin model checker, with p1, p2 and p3. The verification without any LTL formulas

shows that things run as planned. Formula p1 and p2 are demonstrating that the

designed rules are following these constraints as expected. However, formula p3 shows

clauses that give violation to the model.

In checking of p3, SPIN returned the following result:

State-vector 104 byte, depth reached 260, errors: 1

Error is found and a counterexample is given, showing the case that when CW is in

status TO, student is declared as failed the course and would not be able to continue the

study. Therefore EXAM is never reached. If the teacher wants all students to take place

in the examination, rule of CW for TO and LF can be modified as follow:
::EVENT(CW,IS_O(CW,STUDENT),TO(CW)) ->{

printf("No submission at within required time");

 SET_O(CW,0); fail=TRUE;

 SET_P(EXAM,0);

 SET_O(EXAM,1);

 RD(CW,STUDENT,NCC,CO);

 }

 ::EVENT(CW,IS_O(CW,STUDENT),LF(CW)) ->{

printf("Student Failed the coursework");

 SET_O(CW,0); fail=TRUE;

 SET_P(EXAM,0);

 SET_O(EXAM,1);

 RD(CW,STUDENT,NCC,CO);

 }

Under this modification, learning progress continues no matter the student fail the

coursework or not. By checking it again, SPIN returned the following result:

State-vector 104 byte, depth reached 264, errors: 1

The counterexample is reviewed and demonstrates a case that after L3, student keep

trying access EXAM but not CW until the end of the search as SPIN viewed it as cycle.

It therefore demonstrates a design problem of the rules that if a student would never

follow the standard procedures of learning the current system does not support a

measure to handle it.

Evaluation. This test case provides a scenario which there is an in-depth design problem

of the situation as discussed above. It also demonstrates that counterexample of LTL

formula offered by SPIN only provide situation for one of the reasons that lead to the

violation of the constraints. Therefore a repeated LTL formulae check is essential.

Scenario 2 – Course registration adaptation. The second case to consider is the

adaptation process of course registration. The learning management system (LMS) is

responsible for suggesting a number of courses that are suitable for students according

to their individual preferences and previous knowledge, as well as preventing

inappropriate courses being taken by the students.

1. The Student has the right to request for suggested course.

2. The LMS is obliged to provide a suitable course

3. The Student is obliged to choose in the list

4. The LMS is obliged to respond accept or decline to the choice

5. The Student is obliged to choose again if the choice is declined, until all the choices

are rejected.

Step 1 – Declaration Part.

/*Declaration of some variables*/

bool choose1=FALSE; bool

choose2=FALSE; bool

choose3=FALSE; bool all=FALSE;

/*Declaration of Role Player*/

RolePlayer(STUDENT, LMS);

/*Declaration of Learning Event*/

LN_EVENT(RegReq); /*Registration request*/

LN_EVENT(RegReply); /*Return the list of course*/

LN_EVENT(C1); /*Choosing Course 1*/

LN_EVENT(C2); /*Choosing Course 2*/

LN_EVENT(C3); /*Choosing Course 3*/

LN_EVENT(ChooseAccept); /*Accept the choice*/

LN_EVENT(ChooseReject); /*Reject the choice*/

Step 2 – Contract initialisation.

 DONE(STUDENT);

 DONE(LMS);

 INIT(RegReq, STUDENT, 1,0,0);

 INIT(RegReply, LMS, 0,0,0);

 INIT(C1, STUDENT, 0,0,0);

 INIT(C2, STUDENT, 0,0,0);

 INIT(C3, STUDENT, 0,0,0);

 INIT(ChooseAccept, LMS, 0,0,0);

INIT(ChooseReject, LMS, 0,0,0);

Step 3 – Deriving contract rules. The model of the registration system is manually

converted into the following ECA rules:

1. Rule(RegReq) – Student requesting registration of course

2. Rule(RegReply) – LMS replies with a set of courses

3. Rule(C1) – Student choose Course 1

4. Rule(C2) - Student choose Course 2

5. Rule(C3) - Student choose Course 3

6. Rule(ChooseAccept) - LMS accepts the student to be in the chosen course

7. Rule(ChooseReject) – LMS rejects the student to be in the chose course

Figure 11 and 12 included the implementation of the ECA rules for the adaptation

events. As the scenario focuses on the course selection adaptation, learning failure and

timeout are not major considerations. Only successful (SC) and technical failure (TF)

are considered. Taking Rule(ChooseReject) as an example, a set of if-condition clauses

are considered for meeting different situations. For number of courses have been chosen

and being rejected, different course would be suggested to students to see if they would

like to take it, until there are no course to be chosen from.

One thing to notice in the design is that, for every technical failure taken place, the

recovery point would be taken place at the point before the LMS choice is made. For

example in RULE(C3), the technical failure would allow the LMS to be choosing

between ChooseAccept and ChooseReject, while technical failure happned in

ChooseAccept and ChooseReject also recovered to the point where the choice between

accept and reject has not been taken place yet.

Figure. 11. Registration rules

Figure. 12. Registration rules (cont.)

Step 4 – Prepare LTL formulae. There are some properties of interest are specified as

LTL formulae as follows:

ltl p1 {! <> (IS_X(ChooseAccept,STUDENT))} ltl p2 { <>

((IS_X(C1,STUDENT)) ||(IS_X(C2,STUDENT)) ||

(IS_X(C3,STUDENT)))};

Formula p1 is responsible to check if there exists a case that ChooseAccept would

not eventually be executed. Formula p2 is to check if there exist other possibilities that

the student would choose something out of C1, C2 or C3.

Step5 - Verification. As in scenario 1, step 1 to step 4 gives a general model of the

design. By testing it through SPIN, no errors have been found. Formula p1 was verified

successfully. In p1 cases for a trail not accessing the ChooseAccept route is verified.

By tracing the routes manually a similar conclusion can be made. It is because by

tracing the rules at course selection part there exists a chance that all three courses are

being rejected and it is terminated as no course can be selected. So p1 is true. However,

error is reported for p2. By simulating the counterexample, similar to scenario 1 there

exists a case that an infinite loop of technical failure situation would stop the student

from going forward to the next stage, and modification of rules are needed

correspondingly.

Evaluation. It is found that in cases where course selection is the focus of the system,

LPromela is still able to provide verification and design mistakes can be found through

testing different constraints using LTL formulae.

5.2 Software Design Methodology

Generally speaking, the LPromela and LPromela LTL Manager are developed upon

an agile development model with Test-driven development (TDD). TDD is a framework

suggesting that before any code implemented, a test case should be given first, and use

the code to remove fail test cases and reduce complexity of the code [29]. For the

development of LPromela and the LTL Manager, a scenario (as discussed in previous

sections) is set first and codes are written to fit it. Testing the codes with the scenario

will come up with a pass/fail result and the processes repeat until all requirements are

implemented.

5.3 Testing Strategy

Testing is the key element in TDD and tests are done. Unit Testing is the main method

used to see if a requirement is successfully implemented. Therefore System test is done

on each requirement on LTL manager.

LPromela itself is a language based on EPROMELA. Therefore tests are done

regarding on specific samples and performance. Testing for specific scenarios is

discussed above and in Appendix B. Other tests would be discussed below.

5.4 Performance Test and Slicing.

Figure. 13. Verification time versus number of events to verify

Under testing by adjusting the size of model as shown in figure 13, it is shown that

the performance drops rapidly for a small increase of learning event-status combination.

Spin uses Depth-first search to deal with a PROMELA models. It means that when

the model is very complex, i.e. having a lot of states, the size of the state space would

be very large and the searching time would be very long, with a large amount of memory

is occupied for the search.

The following is an example when a PROMELA model with some basic learning

events.

 :: L_E(LMS, START, S);

 :: L_E(STUDENT, L1, S);

 :: L_E(STUDENT, L1, TF);

 :: L_E(STUDENT, L2, S);

 :: L_E(STUDENT, L2, TF);

 :: L_E(STUDENT, L3, S);

 :: L_E(STUDENT, L3, TF);

When no restriction is added, Spin will go through all the possible states combination

to run through, especially when recurring features are introduced. For example in this

case, all the technical failure (TF) of Lectures (L_) would cause a recursion to the event

itself, as shown in the Figure 13 below. Therefore for Spin there exists a situation that

a lecture event keeps having TF for a number of times before it reach the other events,

and repeatedly happened until the end, and a large memory is occupied to handle the

case.

y = 0.0555e x 0.99
R² = 0.9735

0

5

10

15

20

25

30

13 16 18 20 22 24

Number of Learning events - execution combination

Elapsed time

Non-restricted run

Expon. (Non-
restricted run)

Figure. 14. Random run of non-restricted PROMELA model

To reduce the size of state space and the complexity, a restriction technique called

slicing is used [10]. Through implementing guards and removing unnecessary states, a

smaller model would be obtained. The strength of the guard would be depends on the

objective of the verification being made to give a reasonably smaller model. Recall that

there are three conditions to check as mentioned in previous section:

• C1) learning event lei is a subset of the primitive learning events L;

• C2) The ECA rules set, i.e. the right/obligation/prohibition of an certain operation

by the role player is matched;

• C3) Constraints stipulated in the adaptation rules are satisfied.

Guards are added on purpose. It will be used to verify specify restriction, or be used

simply to reduce search base. For example if we only want to verify C3, i.e. to ensure

that constraints are added logically, we could have a very strict guard which provide a

search base focusing on the constraints itself. If we would like to check C1 and C2, we

would rather make it non-deterministic, i.e. with no guards or fewer guards to loosen

the restrictions. Take the learning events mentioned above as an example, if we only

want to verify the expected workflow, we can modify the part as follows:

::L_E(LMS, START, S) -> L_E(STUDENT, L1, S) ->

L_E(STUDENT, L2, S) -> L_E(STUDENT, L3, S) -> ...;

This modification would strictly limit the flow of the events to check learning

operations which would have checked the possibility of logical error for the constraints

inside. If we would like to test it with C1 and C2 but reduce the size of the state space,

a less tightened guard would be used like:

 :: L_E(STUDENT, L1, S);

 :: L_E(STUDENT, L1, TF) -> L_E(STUDENT, L1, S);

 :: L_E(STUDENT, L2, S);

 :: L_E(STUDENT, L2, TF) -> L_E(STUDENT, L2, S);

 :: L_E(STUDENT, L3, S);

 :: L_E(STUDENT, L3, TF) -> L_E(STUDENT, L3, S);

........

This modification would then be give more freedom to the verifier by reducing all the

repeated non-compliant events to be executed only once compared to the case shown

in Figure 13. In such case all the conditions would have been checked by removing

unnecessary reduplication.

The setting of the guard varies as the purpose varies so as the effect of the slicing.

Moreover, the number of learning events – execution combination would also affect the

effectiveness of slicing. Here we take the second modification descried above as an

example to compare the results of both restricted and non-restricted.

Figure. 15. Comparison of elapsed time in restricted and non-restricted run

From Figure 15 we can find that both elapsed time and memory usage increased with

number of events exponentially when no restriction is added. For more learning events

are included, the difference of time and memory usage between non-restricted run and

restricted run enlarged. Further result of the performance test could be find in Appendix

C.

5.5 Testing of LPromela LTL Manager

There are two forms of test performed: Integrated Testing and System Testing. For

Integration testing, it is to ensure different components are integrated correctly. In this

0

5

10

15

20

25

30

13 16 18 20 22 24 26

Number of Learning events - execution combination

Elapsed time

Non-restricted run

Restricted run

project, integrated testing is to check if SPIN successfully called from LTL Manager

and return the same result as in command line, and MySQL server connection is correct.

System testing is to check if all requirements are met. In this project, the aim of the test

is to check if LPromela model is successfully checked in SPIN, LTL formulae are added

correctly.

Test chosen and results are shown in Appendix D.

6 Conclusion and Future Work

6.1 Evaluation against Aim and Objectives

The aim of the project is to develop a model-checking based verification tool for

adaptive e-learning system represented in Event Condition Action (ECA) rules. The aim

is completed by constructing an extension of PROMELA for eLearning purpose,

LPromela, and an LTL manager facilitate the verification is implemented.

The objectives of the project are as follows and evaluation would be done

correspondingly.

To classify the similarity and differences among the adaptive e-learning system. In

Section 2.2, we have found there is a large spectrum of adaptive eLearning system. As

from [11] and other models discussed, many of them are greatly diverse in terms of

design domain and concepts. Similarities are all concluded in the definition stated in

[2,3]. Therefore this objective is fulfilled.

To identify usual practices in evaluating the system. In Section 2.3, a discussion on

current methods to validate and evaluate adaptive learning systems is included.

CAVIAr is discussed as a tool proposed for system validation and student evaluation is

the main method used in most system for evaluation. This provides evidence on the

need of verification tools on the design before implementation.

To modify EPROMELA to an education-oriented PROMELA extension. In Section

3, a discussion starting from ECA rules to implement LPromela model is discussed. A

number of features are added in:

• Specified ECA rules for modeling eLearning events

• An operation parser to translate operations to PROMELA

Current investigated cases are mostly abstract and are part of a realistic case. Therefore

the development of LPromela can be more completed by considering real case like

verification of MOOC design.

To develop a verification tool for adaptive eLearning system based on SPIN. In

Section 4, a verification tool in GUI mainly for managing LTL formulae is built.

Features implemented are as follows:

• A GUI for LTL formulae management

• Automated verification with LTL formulae

• Automated guided simulation when errors are found in verification All

functions required to check the model and model with LTL formulae are

implemented. However, as the target of the project is not only for professional

SPIN users but also teachers with no knowledge about SPIN and LTL

formulae, some functions should be implemented in the future:

• A setup wizard for LPromela model in GUI for teachers

• Graphical representation of eLearning model for user without knowledge of

PROMELA

To evaluate the system using realistic e-learning scenarios. Some test cases are

provided above to explain how the tool can be used to help verifying the design of an

adaptive eLearning System. Test case with a real course structure is modelled as test in

Appendix B. However, cases of larger scale system like MOOC should also be

investigated in the future.

6.2 Conclusions and Future Works

Adaptive eLearning is still an on-going research field. The missing of standards,

large spectrum of adaptive eLearning systems and lack of testing method before

implementation as mentioned before are things that can be researched on. In this

dissertation we have discussed the need and implementation of a verification tool for

the design stage of an adaptive eLearning system. Design and implementation of

LPromela, the extension of PROMELA on the issue, and a GUI for managing LTL

formulae and handling LPromela code is introduced. Finally some cases are

investigated with the testing results included. We have also evaluated the works that

have been done.

The dissertation is a first attempt of such tools and there are some potential further

works to be completed. Scenarios on course learning workflow and course selection

have been discussed. However at [11] we also identified that except activities and

domain models, peer-interaction is one of the most popular features to be included in

adaptive eLearning system and verification is needed. Test case on that can be more

complex. Another extension direction would be investigating the use of the tools on

verifying design of Massive Open Online Course (MOOC), which has a largest variety

of students and adaptation is probably required.

The tool itself is also not totally mature. As the main target group of the project is

teachers, who may not have the knowledge about PROMELA or even programming, a

graphical representation and a GUI for modeling the eLearning activities would be a

future work that should be taken. Moreover, the current verification result and

simulation tracks are both textual. Using of SPIN self-generated graphical

representation of simulation tracks and standard XML tags to be generated during

simulation, extension of using graphical representation to demonstrate the simulation

would be giving the teacher a help and a more user-friendly verification experience.

Therefore, a set of standardized XML tags should be setup, and an extension of current

LTL manager can be implemented to collect these XML and translate them into

graphical representation.

Current LTL formulae management system used MySQL database, and everyone who

has the access right to a particular server would be able to see every formula recorded

in that database. Correlating LTL formulae with the specific model would be a better

implementation as LTL formulae are usually model-specific instead of generally used.

This would be one of the extension works that can be done.

7 References

1. Griff, E. R., & Matter, S. F. (2013). Evaluation of an adaptive online learning

system. British Journal of Educational Technology, 44(1), 170-176.

2. Paramythis, A., & Loidl-Reisinger, S. (2003). Adaptive learning environments and

elearning standards. In Second European Conference on e-Learning (Vol. 1, pp.

369-379).

3. Laroussi, M. (2012, January). Ontology in adaptive Learning environment. In

Workshop on Learning Technology for Education in Cloud (LTEC'12) (pp. 167-

177). Springer Berlin Heidelberg.

4. Zafar, A. and Albidewi, I. (2015) "Evaluation Study of eLGuide: A Framework for

Adaptive e-Learning" Computer Applied Engineering Education 23 (4). 542-555.

5. Staikopoulos, A., O’Keeffe, I., Rafter, R., Walsh, E., Yousuf, B., Conlan, O., &

Wade, V. (2012). AMASE: A framework for composing adaptive and Personalised

Learning Activities on the Web. In Advances in Web-Based Learning-ICWL 2012

(pp. 190-199). Springer Berlin Heidelberg.

6. Bieliková, M., Šimko, M., Barla, M., Tvarožek, J., Labaj, M., Móro, R., ... &

Ševcech, J. (2014). ALEF: from application to platform for adaptive collaborative

learning. In Recommender Systems for Technology Enhanced Learning (pp. 195-

225). Springer New York.

7. Solaiman, E. Sfyrakis, I. Molina-Jimenez, C., (2016). A state aware model and

architecture for the monitoring and enforcement of electronic contracts. 18th

Conference on Business Informatics (CBI), IEEE.

8. Solaiman, E. Sfyrakis, I. Molina-Jimenez, C., (2016). High Level Model Checker

Based Testing of Electronic Contracts. In Cloud Computing and Services Science,

Springer.

9. Solaiman, E., Sfyrakis, I., & Molina-Jimenez, C. (2015). Dynamic Testing and

Deployment of a Contract Monitoring Service., 5th International Conference on

Cloud Computing and Services Science (CLOSER 2015).

10. Millett, L. I., & Teitelbaum, T. (2000). Issues in slicing PROMELA and its

applications to model checking, protocol understanding, and simulation.

International Journal on Software Tools for Technology Transfer, 2(4), 343-349.

11. Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and intelligent

systems for collaborative learning support: a review of the field. Learning

Technologies, IEEE Transactions on, 4(1), 5-20.

12. Dittrich, K. R., Gatziu, S., & Geppert, A. (1995). The active database management

system manifesto: A rulebase of ADBMS features. In Rules in Database Systems

(pp. 1-17). Springer Berlin Heidelberg.

13. Molina-Jimenez, C. Shrivastava, S. Solaiman, E. Warne, J. (2004). Run-time

monitoring and enforcement of electronic contracts. Journal of Electronic

Commerce Research and Applications, Elsevier.

14. Holzmann, G. J. (2004). The SPIN model checker: Primer and reference manual

(Vol. 1003). Reading: Addison-Wesley.

15. Caeiro, M., Anido, L., & Llamas, M. (2003). A critical analysis of IMS Learning

Design. In Designing for Change in Networked Learning Environments (pp. 363-

367). Springer Netherlands.

16. Shi, L., Al Qudah, D., & Cristea, A. I. (2013, July). Designing social personalized

adaptive e-learning. In Proceedings of the 18th ACM conference on Innovation and

technology in computer science education (pp. 341-341). ACM.

17. Gallardo, M. D. M., & Panizo, L. (2014). Extending model checkers for hybrid

system verification: the case study of SPIN. Software Testing, Verification and

Reliability, 24(6), 438-471.

18. Melia, M., & Pahl, C. (2009). Constraint-based validation of adaptive e-learning

courseware. Learning Technologies, IEEE Transactions on, 2(1), 37-49.

19. Mustafa, Y. E. A., & Sharif, S. M. (2011). An approach to adaptive e-learning

hypermedia system based on learning styles (AEHS-LS): Implementation and

evaluation. International Journal of Library and Information Science, 3(1), 15-28.

20. Dagger D.(2006) Personalised eLearning Development Environments. PhD

dissertation, Univ. of Dublin, 2006

21. Abdelsadiq, A. (2013). A toolkit for model checking of electronic contracts. PhD

dissertation, Newcastle University, 2013.

22. Kostolányová, K., Šarmanová, J., Takács, O. (2012) Adaptive e-learning and Its

Evaluation. Journal on Efficiency and Responsibility in Education and Science,

5(4), 212-225

23. Baier, C., Ciesinski, F., & Größer, M. (2004, June). PROBMELA: a modeling

language for communicating probabilistic processes. In Formal Methods and

Models for Co-Design, 2004. MEMOCODE'04. Proceedings. Second ACM and

IEEE International Conference on (pp. 57-66). IEEE.

24. Tripakis, S., & Courcoubetis, C. (1996). Extending promela and spin for real time.

In Tools and Algorithms for the Construction and Analysis of Systems (pp. 329-

348). Springer Berlin Heidelberg.

25. Mali, Y., & Van Wyk, E. (201s). Building extensible specifications and

implementations of Promela with AbleP. In Model Checking Software (pp. 108-

125). Springer Berlin Heidelberg.

26. Jim, W. S. (2012). Design and Implementation of a BPMN to PROMELA

Translator. MSc Dissertation Project. Newcastle University, 2012.

27. DB-Engines Ranking of Relational DBMS. (2015). Retrieved August 24, 2015,

from http://db-engines.com/en/ranking/relational+dbms

28. Oracle (2015) MySQL Connector/J Developer Guide. Retrieved August 24, 2015,

from http://dev.mysql.com/doc/connector-j/en/index.html

29. Beck, K. (2003). Test-driven development: by example. Addison-Wesley

Professional.

30. Solaiman, E. Sun, W. Molina-Jimenez, C. (2015). A Tool for the Automatic

Verification of BPMN Choreographies. 12th IEEE International Conference on

Services Computing (SCC).

31. Solaiman, E. Molina-Jimenez, C. Shrivastava, S. (2003). Model checking

correctness properties of electronic contracts. 2003: First International Conference

Service-Oriented Computing-ICSOC, Springer.

32. C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne, "Contract

representation for run-time monitoring and enforcement," in IEEE International

Conference on E-Commerce (CEC 2003), 2003.

33. B. Awaji, E. Solaiman, and A. Albshri, "Blockchain-based applications in

higher education: A systematic mapping study," in 5th ACM International

Conference on Information and Education Innovations, 2020.

34. B. Awaji, E. Solaiman, and L. Marshall, "Blockchain-based trusted

achievement record system design," in 5th ACM International Conference

on Information and Education Innovations, 2020.

35. B. Awaji, E. Solaiman, and L. Marshall, "Investigating the requirements for

building a blockchain-based achievement record system," in ACM 5th

International Conference on Information and Education Innovations, 2020.

36. B. Awaji and E. Solaiman, "Design implementation and evaluation of

blockchain-based trusted achievement record system for students in higher

education," in 14th International Conference on Computer Supported

Education (CSEDU), 2022.

37. A. Noor, K. Mitra, E. Solaiman, A. Souza, D. Jha, U. Demirbaga, P.

Jayaraman, N. Cacho, and R. Ranjan, "Cyber-physical application

monitoring across multiple clouds," Computers and Electrical Engineering,

2019.

38. E. Solaiman, R. Ranjan, P. P. Jayaraman, and K. Mitra, "Monitoring internet

of things application ecosystems for failure," IT Professional IEEE, 2016.

39. A. Alqahtani, Y. Li, P. Patel, E. Solaiman, and R. Ranjan, "End-to-end

service level agreement specification for iot applications," in 2018 IEEE

http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html
http://dev.mysql.com/doc/connector-j/en/index.html

International Conference on High Performance Computing & Simulation

(HPCS), 2018.

40. A. Alqahtani, E. Solaiman, P. Patel, S. Dustdar, and R. Ranjan, "Service

level agreement specification for end-to-end iot application ecosystems,"

Software: Practice and Experience, 2019.

41. A. Alqahtani, D. N. Jha, P. Patel, E. Solaiman, and R. Ranjan, "SLA-aware

approach for iot workflow activities placement based on collaboration

between cloud and edge," in 1st Workshop on Cyber-Physical Social

Systems (CPSS), 2019.

42. A. Alzubaidi, E. Solaiman, P. Patel, and K. Mitra, "Blockchain-based sla

management in the context of iot," IT Professional IEEE, 2019.

43. A. Alzubaidi, K. Mitra, P. Patel, and E. Solaiman, “A blockchain-based

approach for assessing compliance with sla-guaranteed iot services”2020

ieee international conference on smart internet of things (smartiot), IEEE,

2020.

44. A. Aldweesh, M. Alharby, E. Solaiman, and A. van Moorsel, "Performance

benchmarking of smart contracts to assess miner incentives in ethereum,"

in IEEE 14th European Dependable Computing Conference (EDCC), 2018.

45. A. Albshri, B. Awaji, and E. Solaiman, "Investigating the requirement of

building blockchain simulator for iot applications," in 2022 IEEE

International Conference on Smart Internet of Things (SmartIoT), 2022.

46. A. Albshri, A. Alzubaidi, B. Awaji, and E. Solaiman, "Blockchain

simulators: a systematic mapping study," in 2022 IEEE International

Conference on Services Computing (SCC), 2022.

47. C. Molina-Jimenez, I. Sfyrakis, E. Solaiman, I. Ng, M. W. Wong, A. Chun,

and J. Crowcroft, "Implementation of smart contracts using hybrid

architectures with on-and off-blockchain components,". 8th International

Symposium on Cloud and Service Computing (SC2), IEEE, 2018.

48. C. Molina-Jimenez, E. Solaiman, I. Sfyrakis, I. Ng, and J. Crowcroft, "On

and off-blockchain enforcement of smart contracts," Euro-Par 2018:

European Conference on Parallel Processing, Springer, 2018.

49. E. Solaiman, T. Wike, and I. Sfyrakis, "Implementation and evaluation of

smart contracts using a hybrid on-and off-blockchain architecture,"

Concurrency and Computation: Practice and Experience, 2021.

50. A. Alzubaidi, K. Mitra, and E. Solaiman, “A blockchain-based SLA

monitoring and compliance assessment for IoT ecosystems”, Journal of

Cloud Computing: Advances, Systems and Applications, Springer, 2023.

51. A. Albshri, A. Alzubaidi, M. Alharby, B. Awaji, K. Mitra, E. Solaiman, “A

conceptual architecture for simulating blockchain-based IoT ecosystems”, Journal

of Cloud Computing: Advances, Systems and Applications, Springer, 2023.

