

*Prof. Peter Clarke, Dr Stuart Edwards, Prof. Zhenhong Li, Prof. Phil Moore, Dr Nigel Penna;
Dr Paola Crippa, Dr Ian Martin, Dr Kirill Palamartchouk, Ciprian Spatar; Prof. Matt King (Visiting Professor)*

Global Navigation Satellite Systems (GNSS) positioning

Palamartchouk *et al.* (2015) examined the use of dual-polarisation GNSS observations for the detection and resulting mitigation of multipath in carrier phase GNSS positioning. Morales Maqueda *et al.* (2016) have applied Precise Point Positioning techniques to GPS data from a wave glider, and shown that it is able to detect short-wavelength variations in water surface topography and the geoid. Webb (2015) used a unique kinematic GPS+GLONASS dataset gathered on a repeated trajectory through nearly 1 km altitude range to test the positioning accuracy of kinematic multi-GNSS; this dataset is available online (Webb *et al.*, 2015).

Penna *et al.* (2015) used continuous GPS data from across western Europe to demonstrate the ability to recover harmonic displacements at semi-diurnal tidal periods with ~ 0.2 mm accuracy, and in doing so showed the need to estimate residual tropospheric zenith delays simultaneously with these sub-daily position variations, contrary to previous studies elsewhere.

Synthetic Aperture Radar (SAR) data processing

Du *et al.* (2015) reviewed two advanced machine learning methods for polarimetric SAR image classification, and showed distinct advantages of the Random Forest approach.

Satellite Laser Ranging (SLR) analysis

Spatar *et al.* (2015) examined the sensitivity of SLR solutions to the geocentre coordinates, and showed that the inclusion of Stella, Starlette, Ajisai and LARES (but not Etalon) data in addition to LAGEOS could improve the ability of SLR to sense geocentre motion.

National and international geodetic networks

Newcastle University has continued to contribute to the International GNSS Service as an Associate Analysis Centre, providing daily and weekly global coordinate combinations in parallel with the official IGS product. We continue to operate IGS sites ‘MORP’ (Morpeth, England) and ‘ROTH’ (Rothera, Antarctica) and TIGA site ‘NSLG’ (North Shields Tide Gauge, England). MORP and NSLG both contribute to the NERC ‘BIG F’ data repository www.bigf.ac.uk; the former is also part of the EUREF Permanent Network.

Glaciological and cryospheric geodetic applications

Andrews *et al.* (2015) developed and validated a mascon approach for the recovery of basin-scale Antarctic ice mass trends from GRACE range-rate data. Martín-Español *et al.* (2016) reprocessed continuous and campaign GPS data from across Antarctica and assimilated this along with ice sheet altimetry and GRACE gravity products to obtain an empirical model of glacial isostatic adjustment and present-day ice mass change for the continent.

In Greenland, Murray, Selmes *et al.* (2015) and Murray, Nettles *et al.* (2015) used data from a semi-autonomous network of low-cost GPS receivers temporarily installed on the Helheim Glacier to infer the dynamics of iceberg calving episodes.

Geodetic measurement of tectonic strain

Feng *et al.* (2016), Li, Shen *et al.* (2016), Lin *et al.* (2015) and Li, Feng *et al.* (2015) used InSAR to observe co-seismic and inter-seismic strain associated with fault movements at locations in Nepal, Pakistan and USA.

Other geodetic deformation monitoring

Dai *et al.* (2015), Li, Zhang *et al.* (2016) and Liu *et al.* (2016) used InSAR imagery to observe vertical land motion associated with hydrocarbon extraction in China. Featherstone *et al.* (2015) used GPS to investigate local subsidence associated with groundwater extraction near to the tide gauge at Fremantle, Australia. Tomás *et al.* (2015) used InSAR observations to identify the triggering factors of landslides with the assistance of wavelet tools.

Bos *et al.* (2015) used the GPS tidal harmonic displacement estimation method developed by Penna *et al.* (2015) and applied it to a 259-site network of continuous GNSS receivers spanning western Europe (many of them being EUREF Permanent Network sites). They showed that modelling of ocean tide loading (OTL) using a standard elastic Earth model derived from seismology, such as PREM, leads to residual vertical errors at the dominant M2 period of up to several millimetres around the British Isles and near the Atlantic coasts of continental Europe. These errors, which cannot be explained by plausible ocean tide model uncertainties, can be reduced to below the noise floor if anelastic dispersion in the asthenosphere is incorporated into the Earth response model.

Atmospheric studies in geodesy

Lu *et al.* (2016) developed a procedure to employ static multi-GNSS to precisely retrieve high-resolution tropospheric gradients. Webb (2015) and Webb *et al.* (2016) used a unique kinematic GPS+GLONASS dataset gathered on a repeated trajectory through nearly 1 km altitude range to demonstrate the ability of kinematic multi-GNSS to accurately recover tropospheric zenith wet delay parameters. The dataset is available online (Webb *et al.*, 2015).

References

Andrews SB, Moore P, King MA (2015). Mass change from GRACE: a simulated comparison of Level-1B analysis techniques. *Geophysical Journal International*, 200(1), 503-518. doi:10.1093/gji/ggu402

Bos MS, Penna NT, Baker TF, Clarke PJ (2015). Ocean tide loading displacements in western Europe: 2. GPS-observed anelastic dispersion in the asthenosphere. *Journal of Geophysical Research: Solid Earth*, 120(9), 6540-6557. doi:10.1002/2015JB011884

Dai K, Liu G, Li Z, Li T, Yu B, Wang X, Singleton A (2015). Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. *Remote Sensing*, 7(8), 9542-9562. doi:10.3390/rs70809542

Du P, Samat A, Waske B, Liu S, Li Z (2015). Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. *ISPRS Journal of Photogrammetry and Remote Sensing*, 105, 38-53. doi:10.1016/j.isprsjprs.2015.03.002

Featherstone WE, Penna NT, Filmer MS, Williams SDP (2015). Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. *Journal of Geophysical Research: Oceans*, 120(10), 7004-7014. doi:10.1002/2015JC011295

Feng W, Lindsey E, Barbot S, Samsonov S, Dai K, Li P, Li Z, Almeida R, Chen J, Xu X (2016, online). Source characteristics of the 2015 MW 7.8 Gorkha (Nepal) earthquake and its MW 7.2 aftershock from space geodesy. *Tectonophysics*, in press. doi:10.1016/j.tecto.2016.02.029

Li Y, Feng W, Zhang J, Li Z, Tian Y, Jiang W, Luo Y (2015). Coseismic slip of the 2014 Mw 6.1 Napa, California earthquake revealed by Sentinel-1A InSAR. *Chinese Journal of Geophysics - Chinese Edition*, 58(7), 2339-2349. doi: 10.6038/cjg20150712

Li Y, Shen W, Wen Y, Zhang J, Li Z, Jiang W, Luo Y (2016). Source parameters for the 2015 Nepal earthquake revealed by InSAR observations and strong ground motion simulation. *Chinese Journal of Geophysics - Chinese Edition*, 59(4), 1359-1370. doi:10.6038/cjg20160417

Li Y, Zhang J, Li Z, Luo Y, Jiang W, Tian Y (2015, online). Measurement of subsidence in the Yangbajing geothermal fields, Tibet, from TerraSAR-X InSAR time series analysis. *International Journal of Digital Earth*, in press. doi:10.1080/17538947.2015.1116624

Lin NY, Jolivet R, Simons M, Agram PS, Martens HR, Li Z, Lodi SH (2015). High interseismic coupling in the Eastern Makran (Pakistan) subduction zone. *Earth and Planetary Science Letters*, 420, 116–126. doi:10.1016/j.epsl.2015.03.037

Liu P, Li Q, Li Z, Hoey T, Liu G, Wang C, Hu Z, Zhou Z, Singleton A (2016). Anatomy of Subsidence in Tianjin from Time Series InSAR. *Remote Sensing*, 8(3), 266-288. doi:10.3390/rs8030266

Lu C, Li X, Li Z, Heinkelmann R, Nilsson T, Dick G, Ge M, Schuh H (2016). GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. *Journal of Geophysical Research: Atmospheres*, 121(2), 912-930. doi:10.1002/2015JD024255

Martín-Español A, Zammit-Mangion A, Clarke PJ, Flament T, Helm V, King MA, Luthcke SB, Petrie E, Remy F, Schön N, Wouters B, Bamber JL (2016). Spatial and temporal Antarctic ice sheet mass trends, glacio-isostatic adjustment and surface processes from a joint inversion of satellite altimeter, gravity and GPS data. *Journal of Geophysical Research: Earth Surface*, 121(2), 182-200. doi:10.1002/2015JF003550

Morales Maqueda MA, Penna NT, Williams SDP, Foden PR, Martin I, Pugh J (2016, online). Water surface height determination with a GPS Wave Glider: a demonstration in Loch Ness, Scotland. *Journal of Atmospheric and Oceanic Technology*, in press. doi:10.1175/JTECH-D-15-0162.1

Murray T, Nettles M, Selmes N, Cathles LM, Burton JC, James TD, Edwards S, Martin I, O'Farrell T, Aspey R, Rutt I, Bauge T (2015). Reverse glacier motion during iceberg calving and the cause of glacial earthquakes. *Science*, 349(6245), 305-308. doi:10.1126/science.aab0460

Murray T, Selmes N, James TD, Edwards S, Martin I, O'Farrell T, Aspey R, Rutt I, Nettles M, Bauge T (2015). Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland. *Journal of Geophysical Research: Earth Surface*, 120(6), 964-982. doi:0.1002/2015JF003531

Palamartchouk K, Edwards SJ, Clarke PJ (2015). Dual-polarization GNSS observations for multipath mitigation and better high precision positioning. *Proceedings of the 28th International Technical Meeting of the ION Satellite Division, ION GNSS+ 2015, Tampa, Florida*, 2772-2779.

Penna NT, Clarke PJ, Bos MS, Baker TF (2015). Ocean tide loading displacements in western Europe: 1. Validation of kinematic GPS estimates. *Journal of Geophysical Research: Solid Earth*, 120(9), 6523-6539. doi:10.1002/2015JB011882

Spatar CB, Moore P, Clarke PJ (2015). Collinearity assessment of geocentre coordinates derived from multi-satellite SLR data. *Journal of Geodesy*, 89(12), 1197-1216. doi:10.1007/s00190-015-0845-x

Tomás R, Li Z, Lopez-Sánchez JM, Liu P, Singleton A (2015, online). Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. *Landslides*, in press. doi:10.1007/s10346-015-0589-y

Webb SR (2015). *Kinematic GNSS tropospheric estimation and mitigation over a range of altitudes*. PhD thesis, Newcastle University. Available online at <http://hdl.handle.net/10443/2823>

Webb SR, Penna NT, Clarke PJ (2015). Snowdon Mountain Railway Global Navigation Satellite Systems (GNSS): repeatable kinematic dataset collection from Snowdonia. *Centre for Environmental Data Archival*, 06 September 2015. doi:10.5285/AEE6A3D7-A5F7-41D5-85D8-BEB5640E5AFB

Webb SR, Penna NT, Clarke PJ, Webster S, Martin I, Bennett GV (2016). Kinematic GNSS estimation of zenith wet delay over a range of altitudes. *Journal of Atmospheric and Oceanic Technology*, 33(1), 3-15. doi:10.1175/JTECH-D-14-00111.1