

An open source relational database schema and system for the analysis of large scale spatially-interdependent infrastructure networks

Mr David Alderson

Dr Stuart Barr, Mr Tomas Holderness, Mr Craig Robson, Mr Alistair Ford


4th Annual Open Source GIS Conference, Nottingham 5th September 2012

Overview

- Introduction
- Technology
- Database schema
- Python wrapper
- Applications
- Summary

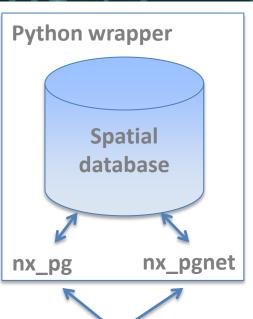
EPSRC

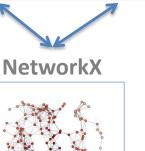
Contacts and Links

National Grid Gas
National Grid Electricity

Introduction

- Store, model, represent and analyse various regional and national scale spatial networks
 - Robust solution for storage of large scale data and networks
 - Creation of attributed networks
 - Representation of dependencies and interdependencies between networks
 - Access to complex graph-theory based analyses and tools
- Combination of stable open source packages to provide solution for multiple network modelling tasks
 - Open source generalised cost transport model
 - Modelling UK infrastructure networks, and failure

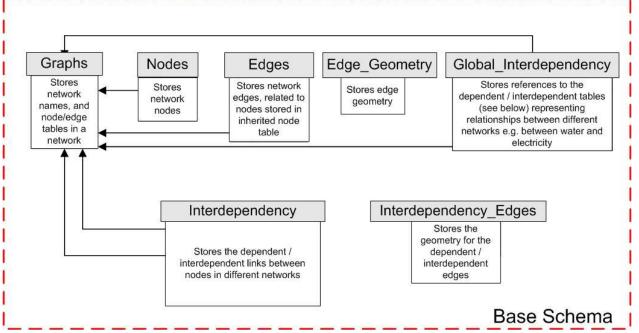

Technology


Database

- PostgreSQL (9.0.3) + PostGIS (1.5)
- pgAgent (3.0.0) + pgAdmin (1.12.2)
- PL/pgSQL
- OGR + Pscycopg2 drivers

Wrapper

- Python (2.6.5+)
- GDAL + OGR
- NetworkX (1.6)



Database schema - introduction

- Parent Tables
 - Graphs
 - Nodes
 - Edges / Edge_Geometry
 - Global Interdependency
 - Interdependency / Interdependency_Edges

Civil Engineering &Geosciences



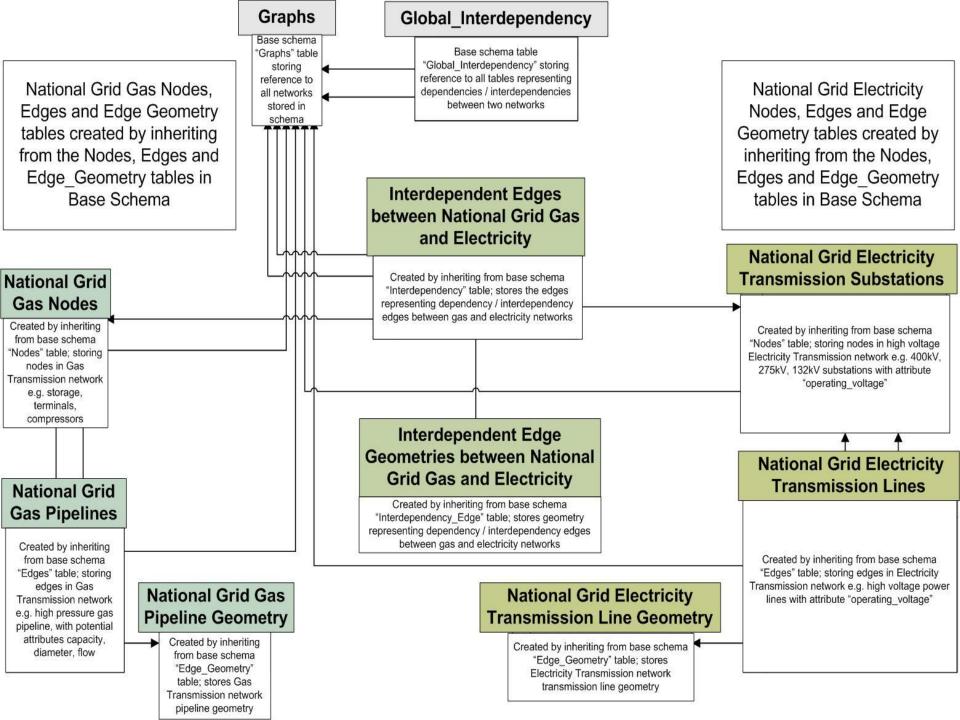
Database schema – an example

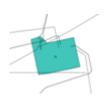
National Grid Gas

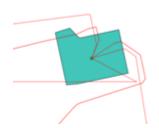
Initial interdependencies to consider¹:

- Physical
- Geographic

National Grid Electricity


1) Rinaldi, S.M., et al (2001) - Identifying, Understand and Analyzing Critical Infrastructure Interdependencies

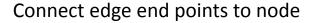

Database schema – functions


Administrative functions:

 Used for the creation of instance tables and constraints between them

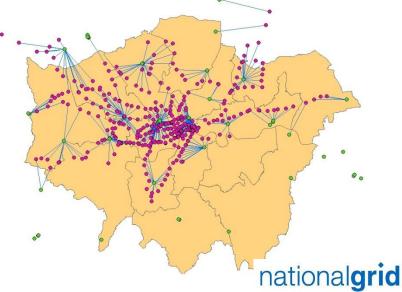
Simple pre-processing functions:

- Connect a node to the nearest point on an edge based on an attribute matching
- Find the nearest neighbour node of network B from a node in network A
- Link node A and node B by an attribute
- Find the nearest point on each line segment to every node


Connect closest point along line segment

The Python wrapper - overview

- An interface between PostGIS and NetworkX
- Modules nx_pg/nx_pgnet provide read/write functions
- Database connections handled by OGR (GDAL)
 - db_conn = ogr.Open("PG: host='localhost'
 dbname='a_spatial_database'
 user='postgres' password='password'")
- Build a topological network from PostGIS tables
 - network = nx_pg.read_pg(lines, points)
- Store the network in PostGIS
 - nx_pgnet.write(db_conn).pg_net(network)

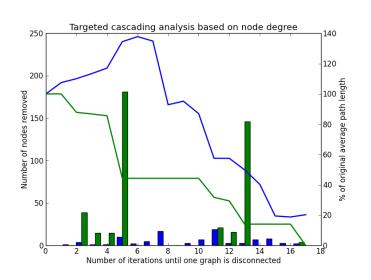


Application (1) - Modelling failure

- Understanding dependencies between transport (rail) and power supply
 - Tube network: 466 edges, 437 nodes
 - Power network: 119 edges, 99 nodes
- Compares two methods of simulating a targeted attack on substations
- Node betweenness and degree recalculated on each

iteration

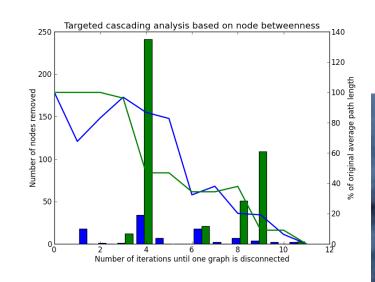
- TFL tube stations
- National Grid substations
- _____ Dependency link



Application (1) - Modelling failure

Degree: attacks on substations based upon degree:

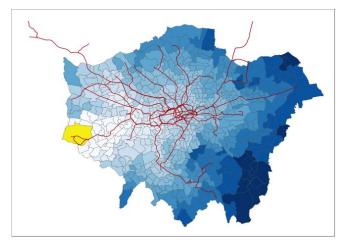
larger impact on tube network


Civil Engineering &Geosciences

Betweenness: attacks on substations based upon betweenness:

 targetted attack using betweenness is more "effective" than using degree

Application (2) – Generalised cost


- Modelling of accessibility across urban areas
- Network models allow calculation of cost of travel
- Generalised cost computed
 - Travel time components
 - Monetary components

Pseudo-code example

import networkx as nx

roads = nx_pgnet.read(conn).pgnet('GLA_Roads')

costs = nx.all_pairs_dijkstra_path_length(roads, weight='link_cost')

Generalised cost of travel in London via light rail network

Summary

- Multiple challenges across many projects to represent, analyse and model spatial networks
- Creation of a network data model and modelling framework using open source tools and technologies
- The models, networks and network representations form part of a wider, open-source modelling framework being developed at Newcastle.
 - Open source generalised transport cost model
 - Regional and national-scale infrastructure network creation and storage
 - Representing infrastructure interdependencies and how failures propagate

Contact and Links

Projects:

- Infrastructure Transitions Research Consortium (www.itrc.org.uk)
- EPSRC Platform Grant in Earth Systems Engineering (http://www.ncl.ac.uk/ceser/researchprogramme/)
- EPSRC Platform Grants
 (http://www.epsrc.ac.uk/funding/grants/capacity/platform/Pages/default.aspx)

School / Research Group:

- School of Civil Engineering and Geosciences, Newcastle University (<u>www.ceg.ncl.ac.uk</u>)
- Geospatial Engineering Group@ Newcastle
 (http://www.ncl.ac.uk/ceg/research/geomatics/geospatialengineering/)
- Centre for Earth Systems Engineering @ Newcastle (http://www.ncl.ac.uk/ceser/)

Thank you.

David.Alderson@ncl.ac.uk

Tomas.Holderness@ncl.ac.uk

Stuart.Barr@ncl.ac.uk

C.A.Robson1 @ncl.ac.uk

Alistair.Ford@ncl.ac.uk

Civil Engineering &Geosciences

