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Ten things to remember 
Write a protocol before starting the study. 

Talk to a statistician BEFORE you mess up the study - not afterwards. 

BACK UP YOUR DATA - computers are cheap and replaceable, but research data are neither cheap 
nor replaceable. 

Plot your data. 

Use a computer stats package to do your statistics - don't do them by hand. 

The p value indicates the probability that there is no link between the test variables, and the 
observed pattern (or one even more extreme) arose by chance.  It will be improved by: a bigger 

effect; making more measurements; less random variability between measurements. 

Don't confuse statistical significance with clinical importance.  It's the effect you're interested in - 
not the p value.  A highly significant p is NOT evidence of a clinically important effect. 

You can never be ABSOLUTELY sure a link is real. 

The correlation coefficient shows there is a link between two variables - but is NOT a measure of 
agreement. 

KEEP IT SIMPLE! 
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Scientific research 
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What is scientific research? 
Everyone has a rough idea what science is about - it's the study of the way nature works.  Of course, many doctrines 
claim to explain how nature works, but you probably don't believe the world is supported by four giant elephants, all 
standing on the back of an even bigger turtle.  What singles out science as being special?  One way to think about 
science is as a rigorous and objective way of studying nature.  The scientific method goes something like this: 

1 You observe some interesting phenomenon in nature 
With few exceptions, children can always learn to speak. 

2 You form a hypothesis to explain how nature is working 
 Language is an innate ability, conferred at birth by God. (!) 

3 You conduct a study to test the hypothesis 
A group of children are separated from their parents at birth, and kept in isolation.  If the hypothesis is correct, 
then they should nevertheless learn to speak. This is known as ‘the forbidden experiment’; Holy Roman 
Emperor Frederick II (allegedly) performed it, with a predictable outcome. 

4a You reject your hypothesis based on the outcome of the study 
 The children don't learn to speak, so you must reject your hypothesis. 
 You must now go back to step 2 with a new hypothesis. 
 

OR (IF YOU'RE REALLY LUCKY) 

4b The study supports or at least, doesn't completely refute your hypothesis 
 Your hypothesis gains some credibility. 
 You (or other people) go back to step 3 and test the hypothesis further with a new study. 

5 After some time, your hypothesis becomes an accepted theory 
With each successful study, your hypothesis gains credibility. 
Eventually, it becomes a theory - people generally accept that your explanation is correct. 

But notice… 
• No matter how many successful studies, you can never be completely sure you have the right theory.  Newton's 

laws of motion were accepted for 300 years, until Einstein showed they don’t work at high speeds. 
 

• It might only take one study to discredit your theory, as happened with Newton's laws.  Michelson & Morley 
carried out the experiment in question, but they didn't follow the result to its conclusion.  One of Einstein's 
achievements was to suggest that Newton's laws of motion might be wrong, even though he didn’t have the 
means to test his new hypothesis. 

 
• Nevertheless, Newton's laws are so close to being correct in our everyday world that the difference doesn't 

matter.  It took high-speed aircraft and atomic clocks to show Einstein was right.  A simple theory that isn’t 
quite right might be more use than a complex but accurate theory. 

And so… 
The scientific method is fairly straightforward but to do successful science, you need to get a few things right: 

• There is a lot of nature out there - what are the interesting phenomena that are worth studying? 
• How do you form a hypothesis about the thing you've chosen to study that can be tested experimentally? 
• How do you design an experiment to test the hypothesis properly? 
• How do you interpret the results of the experiment to support or reject your hypothesis? 

 
This course is about understanding how these things work, so with any luck you'll be able to get them right. 
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Picking the right research question 
Janet is going to talk to you about this subject and as you'll appreciate, there's no substitute for experience in knowing 
what the interesting research questions are.  In many cases, you'll need to apply for soft money to fund your study - 
from the likes of the UK funding bodies (Medical Research Council, etc.) or from the medical charities. Generally, 
applications will be sent out to two or more reviewers, and the money is awarded to the projects with the best reviews.  
According to people who know this stuff, the funding bodies normally want to know two things from their reviewers: 

Is this study worth doing? 
This is where the experience of the experts comes in - there are always current sexy topics, and you need to be in the 
know. 

Can these people do it? 
Here, you need to demonstrate that: 

• You have the skills and resources to complete the study in the time set. 
• The proposed study will actually answer the research question you've raised. 

 
The rating of your study will be a product of the answers to the two questions.  If you can get a strong YES answer to 
both these questions, you've got a fighting chance of getting the support for your research. 
 

Forming your hypothesis 
No matter what study you're doing, you will probably be trying to show a link (formally, an association, or a 
relationship) between two variables.  For most studies, a study hypothesis can be formed along similar lines: 
 

We hypothesise that XXX is linked with YYY 
 

This is true whether you're doing epidemiology… 
We hypothesise that oral cancer is linked with cigarette smoking. 
 

… a drug trial … 
We hypothesise that the prognosis of patients with oral cancer is related to the treatment given. 
 

…or an inter-observer agreement study. 
We hypothesise that Jack's classification of these pressure traces will be related to Jill's. 

 
You'll struggle to think of an example that can't be phrased as a hypothesis in this way with a bit of thought.  The most 
obvious exception is an observational study where you’re just trying to quantify the incidence of a disease, for example. 
 

A good study will have a single and clear main hypothesis that could be written up as a single article. 
 

What happens next? 
• Perform your study.  For the time being, you assume the null hypothesis is true - there is no link between the 

variables you're studying. 
 
• Assuming the null hypothesis is true (there is no link), you use a statistical test to calculate how likely it would 

be that your results arose by chance alone. 
 

• If it is highly improbable that the results are due to chance alone, you reject the null hypothesis in favour of 
the alternative study hypothesis. 

 
• Notice you can never be absolutely sure the link is real - you can just show that it is highly improbable that it 

arose by chance. 
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The effect of random variability 
If you want to do medical research, you can't escape statistics.  In fact, some of the prestigious journals, the BMJ for 
example, insist on statistical tests in any paper you submit to them, and all papers are sent for statistical review.  Why? 

A physics experiment 
If you ever did physics at school, you probably did this experiment.  The idea is to study the 
link between the weight hung from the end of a spring, and the spring's length. 
 
So - you hang a few different weights 
from the end of the spring, and measure the 
length of the spring every time.  The results 
you got might have looked something 
like this (right): 
 
It's easy to see that there clearly is a link 
between weight and length, which is 
Hooke's law. 
 
You could even go on and come up with a 
law for this spring. The length increases by 
1 inch for each 1lb weight, for 

example. 
 

A medical experiment 
This time, you want to study the link between age and systolic blood 
pressure.  So you grab a few people of varying ages, and measure 
everyone's blood pressure.  Your results look like this (right): 
 

IS THERE A RELATIONSHIP BETWEEN AGE AND BP? 
 
Well, it looks like there might be.  Perhaps older people have a higher 
blood pressure.  But on the other hand, the relationship isn't clear.  Perhaps 
this was just a fluke, and there really isn't any link at all. 
 
This is very typical of medical research. It is VERY RARE to find a clear-
cut relationship between the two variables you're investigating.  Maybe 
there is a link, but it is largely masked by the random variability between 
people, so how can you be sure? 

The need for statistics 
A change of subject.  If you want to pick randomly between an Italian or Indian restaurant, you might toss a coin.  
Tossing a coin has entered folklore as a random process, and it pretty much is♦.  Suppose you eat out with your friend 
every week for a year.  On a given week, nobody can predict whether you'll eat pizza or curry, but there are still things 
you can predict.  For example: 
 

• Over a year, you'd probably expect about the same number of each - 26 Indian, 26 Italian. 
• You'd be VERY surprised to eat pizza every week for a year, and might suspect your friend's coin was bent. 
• But what if you had 40 Italian, 12 Indian. Is this just chance, or is the coin bent? 

 
Your gut feeling tells you it probably isn't random.  Looking at the 'blood pressure' graph, your gut feeling tells you it 
probably isn't random; there's a link between BP and age.  This is where the statistics comes in: 
 

Statistics: studying the behaviour of random or noisy variables 
 
If you can understand how random variables behave, you might be able to: 

• Sort out which effects are due simply to random variability, and which ones probably aren't. 
• Say how big the effect is - the coin lands heads 4 of every 5 tosses, BP rises 10 mm Hg every 10 years. 

                                                           
♦ By all accounts, a coin is biased - roughly 51% tails - because of the slightly higher weight of the head. 

Weight

Length

Weight

Length

Age
30

120 mm Hg

140 mm Hg

160 mm Hg

40 50 60

Blood
pressure
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Forming your hypothesis 
As we already said, you will normally be trying to show a link between two variables.  Let's take the following study 
hypothesis: 
 

We hypothesise that oral cancer is associated with cigarette smoking. 

The null hypothesis 
For every study hypothesis you put forward, there will be a corresponding null hypothesis.  That is: 
 

Study hypothesis:  We hypothesise that XXX is associated with YYY. 
Null hypothesis:  XXX is NOT associated with YYY, and our results reflect random variability alone. 

 
For example: 

Study hypothesis:  We hypothesise that oral cancer is associated with cigarette smoking. 
Null hypothesis:  Oral cancer is NOT associated with cigarette smoking. 
 

A testable hypothesis 
When you form a hypothesis, remember that you will have to test the hypothesis in a study.  Therefore: 
 

Your study hypothesis must be testable. 
 
To make a testable hypothesis, (to show a link between XXX and YYY), you must be able to measure something about 
XXX and YYY.  In the oral cancer example: 
 

Things you could measure about smoking Things you could measure about oral cancer 
Does your subject smoke? (Y/N) Does your patient have oral cancer? (Y/N) 
How many cigarettes per day are smoked? 
How long has he/she smoked for? 

The grade of cancer 
The location of the cancer 

What is the lifetime consumption of tobacco? How long does the patient survive? 
 
You could look for a link between anything in the left column, and anything in the right column.  For example: 

• Lifetime consumption of tobacco, and the grade of cancer. 
• Number of years smoking, and survival. 

 
You would then probably decide which things: 

• You were most interested in, because they fit best with your hypothesis; 
• Ought to show the strongest link; 
• Were easiest to measure. 

 

An untestable hypothesis 
A poor hypothesis is one where you can't make any meaningful measurements to test the hypothesis: 

 
We hypothesise that the Daily Telegraph is a better newspaper then The Sun. 

 
How would you interpret better?  Cheaper?  More readers?  A readership higher up in the socio-economic scale?  Any 
of these might be used, depending who performed the study and what they were trying to prove.  Here's a testable 
hypothesis: 
 

We hypothesise that the average number of syllables per word in the Daily Telegraph is higher than in The Sun. 
 

The types of variable 
Any of the things that you measure would be termed a variable - something that can vary between patients, or with 
time. 

• The answer to the question do you smoke is a variable that can only be yes or no. 
• The number of cigarettes per day is another type of variable - a number. 

Clearly, there are different types of variable, and it's useful to consider them now. 
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The different types of variable 
The names and types of variables are a great cause of confusion.  Like in medicine, complicated names for simple 
everyday ideas. 

Numeric (AKA quantitative) variables 
You'll be familiar with numeric variables; a numeric variable is something you can naturally put a number to.   

Continuous numeric variables 
The term continuous simply means the variable can take any value.  Continuous variables can be recorded to any degree 
of accuracy, limited only by your measuring instrument. 

Height;      weight;      age;      body mass index;      temperature;      vocal cord frequency. 

Discrete numeric variables 
A discrete variable is one that can only take certain values - it will typically be a count of something.  For example: 

Number of patients in study;  number of teeth missing; Number of children. 
 

When you record a continuous variable, you will inevitably round it.  For example, you might record temperature to 
the nearest 0.1 ˚C, or weight to the nearest 1 kg.  In either case, you have converted a continuous variable to a discrete 
one.  As you might expect then, the same statistical methods can often be used for both. 
 

Categorical (AKA nominal, qualitative) variables 
A categorical variable is one where the measurement can be placed into one of several categories. 

Ordered nominal (AKA ranked, ordinal) variables 
An ordered nominal variable is one that takes a range of values with a natural order.   The response to questionnaires 
is very often an ordered nominal variable. 

• None     mild     moderate     severe 
• Strongly agree     agree     not sure     disagree     strongly disagree. 

 
In many cases, you will put numbers to the categories (none=0, mild=1, moderate=2, severe=3), and use the same 
statistical methods here as for numeric variables.  However, be careful how the numbers are interpreted.  The difference 
between 120 and 130 cm is the same as 170 to 180 cm.  The difference between none and mild might not be the same 
as from moderate to severe. 

Nominal variables 
A nominal variable describes something about your patients where no natural order can be applied.  For example: 

• Blood group (A/B/AB/O) 
• eye colour (blue/green/brown) 
• treatment (aspirin/paracetamol/ibuprofen/placebo). 

 
There is no natural ranked order to blood group or eye colour.  As you might expect, you generally need different 
statistical methods to handle nominal variables. 

Dichotomous (binary) variables 
A dichotomous variable is a simple nominal variable that can take only one of two values.  In very many studies you 
will classify your subjects according to dichotomous variables, as the list below hints: 

• survived  or  died 
• diseased   or  normal 
• treatment   or  placebo 
• pre-op  or  post-op 

Here, you can generally use similar statistical methods as for nominal variables, but often things are made easier when 
you have only the two categories. 
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Independent and dependent variables 

Cause and effect 
In very many cases, you'll be interested in cause and effect.  For example, if you found a link between oral cancer and 
cigarette smoking, you would suspect that smoking causes the cancer.  It would be far-fetched to imagine that the 
cancer would lead people to start smoking.  Likewise, you would anticipate in a drug trial that the drug affects the 
disease outcome, and not vice versa.  Therefore, in many studies there is naturally an independent variable and a 
dependent variable. 
 

Independent variable (AKA category, predictor, explanatory variable, cause, factor) 
The independent variable is the thing you think is causing the outcome. 

Dependent variable (AKA outcome, effect) 
The dependent variable is the thing you measure to assess the outcome.  It might be blood pressure or survival in a 
drug trial. 

For example… 
 We hypothesise that smoking is associated with oral cancer: 
  Number of cigarettes per day might be the independent variable. 

Presence or absence of cancer might be the dependent variable. 
   

Experimental studies… 
In most experiments, an independent variable is something you the experimenter have control over.  Very often, you 
are responsible for recruiting patients of particular types, or for assigning the subject into one of the categories: 

 
Treatment or placebo;     pre-op or post-op;     diseased or non-diseased;     male or female. 

 
You then perform an experiment on some or all of the subjects.  This would be termed an experimental or interventional 
study, because you actively experiment on the subjects.  For example, to study the link between oral cancer and 
smoking, you would like to do the following experiment: 
 

• Recruit a group of non-smoking subjects. 
• Assign half at random to a smoking and half to a non-smoking group. The smoking group are to immediately 

begin smoking 80 per day.  The group (smoking or non-smoking) is the independent variable. 
• Measure outcome, survival in years perhaps, in each group.  This is the dependent variable. 
• Look for a link between the group (smoking or non-smoking) and survival. 

 
You assigned the subjects completely at random, so there should have been no overall difference between the groups 
before the experiment.  Therefore, if you find a link later, you can argue convincingly that it is due to their being treated 
differently.  This would be a randomised controlled trial (RCT).  We’ll consider it later. 
 

…and observational studies 
You can't do such an experiment for obvious reasons, but what you can do is observe the smokers already in the 
community.  For example: 

• Recruit two groups of subjects, smoking and non-smoking, according to their existing habits. 
• Measure outcome (survival, perhaps) in each group.  This is again the dependent variable. 
• Look for a link between the group and survival. 

This would be termed a case-control study, a type of observational study.  You don't actively intervene in the subjects’ 
lives - you merely observe what happens to them.  Unfortunately, you the scientist can't assign people to smoking or 
non-smoking groups at random - it's already been decided by their smoking habits.  It's therefore difficult to know 
whether the outcome is really due to smoking, or perhaps to some other confounding factor.  For instance, perhaps the 
smokers also do less exercise, and it's the lack of exercise that is the real risk factor. 
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Hypotheses and p values 
As we said, you always start from a study hypothesis, normally based on an interesting observation about how nature 
seems to be working.  Let's take another example related to food: 
 
You and your colleague buy lunch from the local sandwich shop on alternate days.  You've noticed something 
interesting about your colleague's choice: 

• When you're buying, he normally has the smoked wild salmon in a squid-ink and avocado sauce. 
• When he's buying, he has cheese. 

The study hypothesis 
You think this isn't simply due to chance, and so you study the phenomenon further.  First, you raise your study 
hypothesis.  Remember, in a good hypothesis you must be able to measure the outcome, so: 

I hypothesise that the price of my colleague's lunch is linked to who is buying it. 

The null hypothesis 
But there's always another possibility - the null hypothesis: 

There is no link between the price of my colleague's lunch and the person buying it. 
My observations are due to chance alone. 

Perform the experiment 
Now you perform the experiment.  For 20 days you record: 

• Who bought lunch (the predictor, a binary variable); 
• The cost of your colleague's lunch (the outcome, a continuous variable). 

Plot the data 
This should always be the first step in analyzing your results - plot the data.  Here 
(right), we've plotted a cross for every day, separated according to the person who 
bought the lunch on that day.  Your gut feeling tells you immediately that you were 
right, but your colleague flatly denies the evidence.  You spent over £100 in total, he 
spent under £50, but he claims these results are due to chance alone. 
 
 

Perform a statistical test to show the link 
Maybe it is due to chance.  But what is the probability?  One way to figure it 
out would be like this: 
• Write down the price of each lunch on a piece of paper. 
• Put all the pieces of paper in a hat. 
• At random, pull out 10 into one pile, marked ME. 
• Put the other 10 in the other pile, marked COLLEAGUE. 
• Write down the total cost of each pile. 
 
If you repeated this enough times, you might find that only about once every 
1,000 times would the total in your pile be £100 or more.  What you've just 
done is simulate what happens by chance alone. 
 

The probability of your results being due to chance alone is 1 in 1000. 
p = 0.001 

 
On this basis you would probably reject the null hypothesis and accept the study hypothesis.  Your conclusion would 
be written as follows: 

The price of my colleague's lunch is associated with the person buying it (p=0.001). 
 

But it MIGHT be chance. 
You can never be ABSOLUTELY sure the link is real. 

 
In this case, the statistical test just confirms what you already knew from the graph.  It is RARE for a statistical test to 
contradict flatly the gut feeling you get from looking at the data in graphical form.  PLOT YOUR DATA!!! 

Person buying lunch

Colleague
£0

£5

£10

You

Cost of
lunch

£0

£5

£10

Take these
20 lunches and 

split them at 
random into two 

groups...

They might come 
out like this...

…but how likely is 
it they will  come 

out like this?
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The p value and the effect - statistical and clinical significance 

Statistical significance and the number of measurements 
In the last example, you demonstrated to everyone's satisfaction that there is a 
link between the independent (the person buying lunch) and dependent (the cost 
of the lunch) variables.  But is the link worth worrying about? 
 
Well in this case, it seems you are paying twice as much as your colleague, and 
so you might well be a bit upset. But what if things had come out differently?  
You wait for twenty days, and get these results (right). 
 
In this case, your colleague has paid an average of £7, whereas you paid £8.  Is 
there still a link, or not? 
 
Well, it turns out the probability of this happening by chance is about 1 in 10 
(p=0.1).  Not likely but it could just be luck, so you stay quiet and keep your 
records for a further few months. 

 
 
 
 
Now the results look something like this (left).  Your colleague still paid an average 
of £7, and you still paid an average of £8.  Nevertheless, the chance of this 
arrangement arising by chance alone is now just 1 in 1000 (p=0.001). 
 
The effect is exactly the same, but the statistical significance has increased. The only 
thing that changed is the number of measurements you made!!! 
 
Once again, you've clearly demonstrated that you are paying more than your 
colleague.  This time, maybe you aren't too worried, because the effect only amounts 
to £1 per day. 
 

 
A highly significant p value doesn't tell you that the effect is important!!! 

Statistical significance and the spread of data 
This time, consider a drug trial of two drugs, A and B, for (say) headache.  Each 
drug is tested in 5 patients.  Drug A has a small but consistent curative effect, 
but drug B shows a considerable spread of effect (right).  Which would you 
rather have? 
 
Most people would probably pick drug B, because it seems the effect of B is 
bigger.  However, if you perform the statistical tests, the observed effect of 
drug A is less likely to be due to chance alone.  That's not because it has a 
bigger effect, but because the effect is more consistent between patients. 
 

To summarise… 
The thing you are interested in is probably the effect.  However, the statistical significance (the p value, the probability 
that your observations are due to chance alone) is improved by any of the following: 
 

A bigger effect 
Making more measurements 

More consistency (ie. less random variability) between the measurements 
 

Statistical significance means ONLY that the link you found is unlikely to be due to chance alone. 
It is up to you to decide whether the effect is large enough to be of any clinical importance. 

Person buying lunch

Colleague
£0

£5

£10

You

Cost of
lunch

Person buying lunch

Colleague
£0

£5

£10

You

Cost of
lunch

Drug A Drug B

Effect

No effect

Partial 
cure

Complete
cure
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2 
Choosing and refining your research 

question 
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Choosing and refining your research question 
Often those new to research complain they don’t have any ideas 
After a very short time, however it is clear – the problem is too many questions, not too few. 
 

Some drivers to research question development 
 I wonder why’s: this is the best kind of question. If you ask this 

Q – others will too (just need to make sure they haven’t already 
answered it….) 

 £££££ available. Research priorities, like much else, have 
fashions. NHS research priorities have fashions. If stroke is 
fashionable and you are into dysphagia – stroke dysphagia is an 
area to scrutinize. 

 Experience available. In research, credibility is all. If your three 
most interested with research experience pals are physios, then 
a study using them is more likely to succeed than one requiring 
radiographers. 

 Conspicuous controversy. To feed or not to feed. To rest or to exercise. To irradiate or to operate. 
 

 

3 broad categories of research question 
 Clinical: most MSc students on this course will select this 
category, which in many ways is the hardest to do really well. Human 
variables. Human frailty (yours and your subjects). Human error. Not 
for the flaky or the squeamish. 
 Science: test tubes don’t talk back: nice work if you can get it. 
 Epidemiology: the world is full of amateur epidemiologists 
who think they are pros. Easiest by far to make a real pig’s ear of 
without noticing. 
 

 

Brass tacks 
 Common conditions: MSc = time limited. No time to await 

people happening by. Also, less interesting to the masses. 
Harder to get dissemination outlet. 

 Small bits of common condition: common things are 
commonly researched. Find the gap (in knowledge). 

 Common conditions you are familiar with: you are the 
expert. Never forget that. New to research maybe, but you 
know these people. 

 Safety net: always predict the outcome of your study. If you 
predict a positive result – fine. Positive results are much more 
likely to be published. (Fact.) But always run the ‘what if’ 
scenario too. What if it’s negative? What if it’s impossible? – What is salvageable? Never EVER go into 
a research project without a second publication parachute. Even if it’s just the review of the subject. 
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Whose choice is it anyway? 
 Personal: helps to be aflame. But, realistically not an absolute 
requisite. 
 Friends: if the group is well experienced and are en route, 
there are many worse ways to start than just jumping aboard. 
 Funders: as above: there may be calls to submit proposals. 
Such ‘commissioned’ research is increasingly common – and why 
should not the experts influence the course of things, at least where very 
large sums are involved. 
 
 

 

 

First Draft 
 On paper: don’t waste too much time drawing project in the 

air. If it can’t be written down, it can’t be done. Or, if you 
can’t write it – YOU can’t do it. 

 Crib a protocol: never overlook the obvious. Borrow a 
protocol of a study. From a friend. From the local R+D 
department. From a tutor. Close to your area is good, but not 
essential. At least it puts the heading down: 

 Background 
 Subjects 
 Methods 
 Analysis 
 Dissemination 

 

 

Checklist 
 Feasibility: nothing fails to succeed like the unfeasible. 
 Timescale: things take longer then you expect. Getting started 
takes longer. Recruitment takes longer. Analysis takes longer. Writing 
up takes longer. Your patients, your coworkers, your librarian, your 
statistician are also just like you – they have holidays too…. 
 Resources: make sure all is included if you are applying for 
funding. But don’t err on being generous to yourself. Committees 
respond rather well to good housekeeping. 
 Ethics: for the purposes of this section the key thing to 
remember is that good science is good ethics. However unintrusive, if 
your study is rubbish, it’s unethical.  
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Go Public 
 SiG: pinching research ideas does happen. If you really feel 

you have a hot potato, you might decide to keep it secret until 
a meeting presentation with a published abstract that will 
identify your claim. But –let’s face it, in view of the fact that 
you will be addressing a very small part of a common 
question, and perhaps even doing a piece of work 
commission by someone else in the first place….Plus the fact 
that ideas are NOT the rate limiting step in research and you 
colleagues will have more than enough to do without your 
thoughts…THUS get as many opportunities as possible to 
present your work. It may emerge a battered shadow of its 
former – but better that experience for your design than your 
results…. 

 RIP group: mutual support by a Res In Progress group is invaluable. 
 Distant peers: if you are a bit lonely, pick up that modem! Even senior peers you have never met may be 

surprisingly willing to offer advice. Not a detailed critique, necessarily – but this type of activity many 
regard as part of their general academic responsibility. 

 

 

Pilot 
 Assessments: the easiest way to refine a new tool, or to assess 
how well your subjects will cope with an established one is to pilot it. 
 Interventions: how long will something take? How easily is 
it documented? What do patients or volunteers think of it? All can be 
addressed most efficiently by just trying them out. 
 Background - Review piece may be the only publishable part 
of a study at the end of the day, so don’t neglect the pedestrian. Many 
have regretted postponement of the definitive review until their study 
is complete – only to turn up a couple of nuggets that would have made 
life tremendously much easier!! 
 

 

Things best avoided by the inexperienced 
 Children: they are surrounded by parents and ethical issues. 

BUT for the same reason, there is much less research on them. 
Thus if you do get results, gold dust!! 

 Animals: licensing etc is only for the specialist group. Maybe 
a problem for vegetarians, too. 

 Randomised trials - unless in the company of others: but if 
so, what is your share? 

 Prolonged follow-up 
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Curtail the Novelty 
 High risk  =  least popular - why? We shall discuss this as 
a group. Some of the reasons are very obvious 
 

 One unknown  = one study 
 
 
 One message  =  one paper 
 
 
 
 
 

 
 
 

 

Memos 

KISS 

Pilot pilot pilot 

Nothing succeeds like success 

There is no substitute for doing 

Cultivate the 80% rule 
 

 
 

 

And never forget... 
 Only worry if someone dies. Research must be ethical, but 

ethics should not be paralyzing. 
 
 Timescale - who needs a bottom drawer paper? Even if you 

are not on an MSc, set yourself a deadline. If you haven’t worn 
that jacket in 3 years……. 
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3 
 The basics of study design 

3 
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Introduction to study design 
Medical research studies are generally long and difficult affairs.  Most last at least a year, and many last considerably 
longer.  You would be a bit upset to come to the end of a year's study and find you couldn't answer the question you 
had posed because of some fundamental flaw in your study design. 
 

Grant applications and protocols 
When you write a grant application for a piece of research, you will inevitably be asked to prepare a research protocol.  
The protocol is effectively the study design, and will include: 

• The research question to be answered; 
• The population from which the subjects are to be recruited; 
• The number of subjects to be studied; 
• The assignment of subjects to sub-groups within the study; 
• The experiments or interventions to be made on the subjects; 
• The measurements to be made in each subject at each stage; 
• The proposed statistical analysis for the data. 

 
Sometimes, some of these things won't be relevant.  For example: 

• In some studies, all subjects undergo the same treatment; there will be no sub-groups. 
• In an observational study, there will be no interventions; you merely watch what happens to the subjects. 

However, these points should be made clear from the protocol. 
 
The grant application procedure serves to some extent as a screening process: 

• First, it makes you think about your study design; 
• Second, if the reviewers are doing their job then they will point out shortcomings in your protocol, and perhaps 

suggest modifications and improvements; 
• Third, if the protocol is truly awful, the application ought to be rejected. 

 

Write a protocol! 
You might someday find you have a research project to conduct, but don't have to write a grant application, perhaps 
because: 

• You're in full-time employment, and you're doing the research as a sideline your clinical job; 
• You've found a consultant with a pot of gold and a research interest. 

 
If so, you're in a lucky position.  But nevertheless: 
 

WRITE A PROTOCOL 
and 

INVOLVE YOUR LOCAL STATISTICIAN! 
 

Statisticians reserve a special place in hell for scientists who run a poor study, 
and who then ask for help in analysing the data. 

 
In the rest of this section, we'll consider some of the things to think about when you're designing a research study. 
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Bias 
One of the key criticisms of research studies is their susceptibility to bias.  Unfortunately, 
it is often too late to sort out the problem once you've collected the data, so this is something 
you have to think about right from the outset.  Below are some of the main sources of bias 
in clinical studies.  You may not be able to avoid them all, but at least think about them.  
We're not saying your study has to be perfect, but if you could easily have avoided a 
situation that later turns out to be a big problem you'll kick yourself. 
 
If you're dubious about bias, the figure (right, copied from Bandolier) shows trials of 
acupuncture with and without blinding (see later).  The journal concludes that non-blinded 
studies over-estimate the true effect by 17%. 

Sampling bias 
Sometime early on in the study, you decide the population you wish to study.  Thereafter, every person in the population 
should have the same chance of being selected.  For example, you may wish to study all subjects with a particular 
condition. Your clinical head (Professor …add your own name here…) has agreed to recruit your subjects.  Of course, said 
Professor is sent all the intractable cases while the junior doctors and registrars deal with the others.  Your sample is 
now biased towards difficult patients, who probably won't do so well as a randomly chosen cross section. 

Volunteer bias 
Volunteer bias arises when the subjects themselves have the power to include or exclude themselves in the study.  A 
good example would be the 1992 general election; Neil Kinnock (Labour) was ahead by about 20 seats in the exit polls, 
but John Major won the election with an overall majority of 21 seats.  It seems that people were happier to volunteer 
their opinions if they were a Labour supporter, and effect dubbed Shy Tory Syndrome by the pollsters.  This can happen 
in experimental studies.  For example, people with headaches that don't respond to other painkillers might be keen to 
participate in a new trial, but might well do worse than a random sample of subjects.  Since subjects usually have the 
power of veto in a research study, volunteer bias can rarely be discounted completely. 

Allocation bias 
Allocation bias arises where patients are assigned to different groups in a manner that is not completely random.  For 
example, the researcher may be inclined to assign difficult patients to the control group, on the grounds that they are 
less likely to comply with treatment.  Proper randomization and blinding should avoid allocation bias. 

Response bias (the placebo effect) 
Also known as the placebo effect, a subject's response is biased by the belief they are being treated. 

Assessment bias 
Similar to allocation bias; the researcher knows which group the patient is in, and might be influenced in the 
interpretation of the outcome.  This can apply in any study where measurements are open to interpretation.  Studies 
with randomized, blind assessment should avoid this bias.  At least, data should be analysed without knowledge of the 
source. 

Intention to treat 
Once a patient has been admitted to the trial of a treatment, the intention to treat has been established.  From here, the 
data should be analysed as if the patient received the treatment, whether or not they really did.  This fits in with the 
pragmatic trial described later.  The alternative analysis is on treatment ie. subjects are analysed according to whether 
they actually had the treatment, as described for the explanatory trial.  This introduces the volunteer bias described 
earlier.  The ones who actually comply and undergo the treatment have somehow selected themselves, perhaps because 
they are the sicker/not-so-sick/more compliant/older/younger subjects.  This may have implications for outcome. 

Lost to follow-up 
In a similar vein, patients are sometimes lost to follow-up.  They might have died from their condition, or been so 
disenchanted with their treatment that they refuse to return for follow-up.  Alternatively, maybe they suddenly 
recovered and took a round-the-world cruise.  You can imagine that this will introduce some bias. 
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Observational studies 
As you already know, a key distinction is between observational and experimental studies.  In an observational study, 
you simply observe the way things are, without intervening in any way.  It's fair to say that most of the studies you will 
deal with will be experimental, but observational studies are used in the following circumstances: 

Cross-sectional studies (retrospective) 
In a cross-sectional study, you take a cross-section of the population you are interested in (the sample), and measure 
something about them.  Cross-sectional studies are often used in epidemiology. If you wanted to quantify the incidence 
of undiagnosed reflux in the community, you would use a cross-sectional study.  It's important that your sample 
represents a true cross-section of the population, and that each person in the population has the same chance of being 
recruited.  For example, you might pick names at random from the register of electors. But of course, this would exclude 
children, the homeless, those recently moved, pending visa status etc. 

Cohort studies (longitudinal, prospective) 
There are times when an experimental study could not be justified on ethical grounds.  The link between cigarette 
smoking and heart disease would be a good example.  In a cohort study, you might recruit a group of children at birth; 
they form the cohort.  You follow these subjects at intervals through life, keeping track of: 

• Their smoking habits; 
• The presence and degree of any heart disease. 

 
You might then show a link between smoking and heart disease. The cohort study would be considered: 

• Longitudinal, because it studies changes with time; 
• Prospective, because the subjects were recruited before you knew what was going to happen to them. 

 
A cohort study is susceptible to confounding factors.  Perhaps overweight subjects who don't do any exercise are most 
likely to start smoking, and it is the weight and lack of exercise that are the real risk factors for heart disease.  This 
argument was used by the pro-smoking lobby for a long time with great success.  The weight and exercise regime are 
the confounding factors. 
 
A cohort study can take a long time to complete, because you have to wait long enough for the subjects to expose 
themselves to the risk factor (smoking), and then wait to see the heart disease manifest itself.  In the example given, 
you could not obtain meaningful results in less than 40-50 years. 

Case-control studies (retrospective) 
The case control study can be used in similar circumstances, but can be completed much more quickly.  Take the same 
example. In a case control study, you would: 

• Recruit a group of subjects with heart disease (the cases); 
• Recruit a second group of subjects with no heart disease (the controls). 

 
Now, you ask each subject about their smoking habits.  If smoking is associated with heart disease, then you would 
expect more of the case group to be smokers than the control group.  This is a retrospective study, because you recruited 
the subjects after bad things already happened to them; in a sense the patients select themselves, which can introduce 
bias. 

Matched controls 
As described above, your study is still susceptible to confounding factors. Perhaps your case group are heavier and less 
active than the control group, and that weight and lack of exercise are the real risk factors.  In a case-control study you 
match your controls with the cases: 

• Recruit a group of subjects with heart disease (the cases); 
• For each subject with heart disease, recruit a second subject with the same sex, age, height, weight and exercise 

habits, but with no heart disease (the controls). 
 
Very often, matched controls will be recruited from the same GP's surgery as the case, because the GP will have the 
information on height, weight, age, etc.  You can match for all the factors you think might be important, but you might 
struggle to find a 6'3" tall, 80-year-old lady who runs marathons.  The more factors you match, the more difficult it will 
be to find a suitable control. 
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Experimental studies 
In an experimental study, you do something to your patients that wouldn't normally happen to them, and watch what 
happens.  For example, you might: 

• Give them a drug; 
• Perform a surgical procedure on them; 
• Ask them to swallow boluses of water, yogurt and biscuit. 

 
For the sake of illustration, let's consider a fairly simple and common study - a drug trial.  Suppose you want to 
investigate the efficacy of a new painkiller for headaches.  As usual, start with the hypothesis: 
 

We hypothesise that an improvement in headache is linked with being given the new painkiller. 
 
This isn't a great hypothesis. How do you measure 'improvement'?  Well, you could perhaps measure subjective 
improvement on a visual-analogue scale like the Newcastle Headache Assessment Scale, HAS: 
 

Mark the scale to indicate how your headache symptoms have changed: 
 

 
Much worse No change Complete cure 
(-10) (0)  (+10) 

 
Now you can write a testable hypothesis: 

We hypothesise that taking the new painkiller is associated with an improvement in HAS score. 
 
And a null hypothesis: 

We hypothesise that the new painkiller has no effect on HAS score. 
 

A naïve study 
Your first attempt at a study design might go something like this: 

• Recruit 10 subjects with a headache; 
• Administer the new painkiller; 
• After an hour, the subject completes the headache assessment scale. 

 
Your results for the 10 subjects are shown (right).  You observe that: 

• The HAS measurements are largely positive.  Using a suitable statistical test 
(the single-sample t-test, see later), the chance of the null hypothesis being 
true, and these results arising by chance alone is 1 in 50 (p=0.02).  You 
therefore reject the null hypothesis and conclude that the effect is real. 

• The mean effect is +4 points.  This seems like a worthwhile and clinically 
important effect.  The new drug is marketed. 

 

What's wrong with the study?  
In this study, you concluded that any outcome better than 'no effect' would vindicate the use of this drug.  You have 
made the assumption that the improvement was due to the drug, but there are other possibilities: 

• Headaches don't last for ever. The patient might have improved anyway, even if you hadn't given the drug. 
• The improvement wasn't due to the drug itself, but was produced simply because the patient knew he or she 

was being treated. This is the placebo effect. 
 

The randomized controlled trial 
We'll now present the randomized controlled trial.  This has achieved a certain status as the right way to do things, 
particularly for drug trials, because it is felt to be the best way to avoid biases in a study design.  You might not be 
doing a drug trial, but the ideas extend to all types of clinical research. 

Effect

Mean
effect

+ 4 points

No effect

Much
worse

Complete
cure
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A randomised controlled trial (RCT) 
The general idea is this: 

• Recruit a group of subjects; 
• Assign subjects at random to the treatment or control group; 
• The treatment group are treated, the control group aren't; 
• Perform a statistical test to see whether outcome is associated 

with the subject's group (treatment or control). 
 
If the patients were going to get better anyway, then patients in the 
treatment and control groups should both get better.  This way of doing things is known as the randomised controlled 
trial (RCT), because the patients should be allocated to the treatment or control group at random.  Only if patients are 
allocated at random can you say for sure that the two groups were the same before treatment, and claim with any 
conviction that the effect was due to the treatment. 

Placebo control 
The controlled study (above) will deal one of the problems with the naïve 
study.  However, it doesn't deal with the placebo effect, because the control 
group are aware they haven't been treated, and so wouldn't be subject to the 
placebo effect.  If you're in any doubt about whether the placebo effect is 
real, look at the figure (right).  In 1974, Huskisson et al assessed aspirin 
(black) against red, green, blue and yellow placebos.  The outcome was 
measured hourly for 6 hours.  The message is clear. When you've got a 
headache, choose a red tablet. 
 

The solution is a placebo control.  
A placebo gives the impression of 
treatment to the subject, but has 
no therapeutic properties.  In a 
drug trial, it will probably be similar in appearance to the real treatment, but 
will lack the active ingredient. 

 
 
 

 
The outcome data might look something like this (right).  The placebo 
group do slightly better than 'no effect', and the treatment group do better still.  
You can demonstrate this formally using the proper statistical test (the 2-
sample t-test, described later).  This is a well-used study design, which would be 
considered: 

• Prospective: you allocate the subjects to the study groups; 
• Longitudinal: you observe what happens with time. 

 
 
 

In summary - the randomised controlled trial 
The most important feature of an RCT is this: 

 
All subjects should be drawn from the same population, and allocated to study groups at RANDOM! 

 
RCTs are often used in relation to drug trials, but the guiding principles of random selection and allocation are useful 
in many situations: 

• Selecting X-ray images for a study of inter-observer agreement in assessment.  You should pick the images at 
random from all those available, and have the raters assess them in a random order.  

 
• Evaluating a new diagnostic test against the existing gold standard.  Here, your control measurement is the 

old test, which is being evaluated against the new test.  If your subjects can't have both tests, they should be 
allocated to the old or the new test at random.  If they can have both tests, give them in a random order. 

 

Recruit
subjects

Treat

Do nothing

Assign at random
to treatment or
control group

Recruit
subjects

Treat

Treat with
placebo

Assign at random
to treatment or
control group

Time

Pain
relief
score

0

1

2

Effect

TreatmentPlacebo

No effect

Much
worse

Complete
cure
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Picking the control 
If your new drug were first on the market, you'd probably run a placebo-
controlled trial. In reality you are in competition with Aspirin, 
Paracetamol, and all the other headache remedies on the market.  In this 
case, it's no good demonstrating that your new drug is better than 
placebo; you would want it to be better than the current treatment of 
choice.  In this case, your control group might take aspirin or 
paracetamol. 

Control in your study 
If a control group is appropriate in your study, you can use the same general approach.  For example, if you are 
evaluating a new diagnostic test, then the most appropriate control would be the existing gold standard test. 
Note in passing that diagnostic accuracy might not be the only outcome. For instance, if your new test is fast or has 
significantly lower risk for the patient, then that might be measured as an outcome too. Screening programmes are 
often based on tests that have relatively poor diagnostic accuracy. 

Blinding 
Given the placebo effect, it's important that the subject doesn't know whether they are in the treatment or control group.  
Even where a true placebo isn't possible (for example, in a trial of a surgical technique), the patient might be given 
some passive therapy (ultrasound treatment, for example) for placebo.  A study where the subject doesn't know their 
group (treatment or control) is single blind. 
 
Blinding is more generally applicable.  In particular, it is preferable the researcher recruiting the subjects and/or 
analysing the outcome data doesn't know which group the subject is in. It is suggested that: 

• The researcher might give subtle clues to the subject as to which group they are in; 
• More overtly, the researcher might preferentially allocate certain subjects to a particular study groups 

(allocation bias); 
• If the outcome data are subject to interpretation, the researcher might be swayed by knowing the patient's 

group (assessment bias). 
 
The situation where the researcher doesn’t know the patient’s history would be known as a double blind trial.  It's easy 
to arrange a double-blind drug trial, where the treatment and control groups are revealed only after the study is 
complete.  It's difficult to arrange double blind surgery, since one would hope the surgeon at least would know the 
procedure being carried out.  Nevertheless, researchers aspire towards this situation. 
 

If you have different experimental groups, allocate your subjects in random order. 
 

Blinding and assessment bias in your study 
There is one key area where blinding can and should be applied in most studies - to counteract assessment bias.  
Assessment bias typically arises where the worker analyzing the results from the study knows where the data came 
from.  In particular, it's important you don't know anything about other measurements in the same subject.  For example, 
in a study of voice changes with age, knowledge of the subject's age would despite your best intentions affect your 
judgement of the voice. 
 
The only circumstance where assessment bias is not a potential problem would be where the outcome measurement is 
completely objective and not open to any interpretation: for example, survived or died. 
 
The best solution is to be sure the person analyzing the data doesn't know anything about the source of data. 

• This might mean that someone not involved in the study performs the analysis; 
• Alternatively, you could arrange for a colleague to put all your data in random order before you make the 

rating. 
 
Analysing your data in random order is always a good idea. Otherwise, you might get better with practice, biasing your 
results towards the later measurements.  This is even more true if you are sharing the work in analyzing the data. We 
know (for example) that there are huge differences in assessment of sleep stage.  If you always analyse a pre-treatment 
study, and your colleague always analyses the post-treatment, you might find the patients were suddenly and 
remarkably cured of their sleep disorder. 
 

Analyse your results in random order, without knowledge of the source of data. 
 

Recruit
subjects

Treat

Treat with
aspirin

Assign at random
to treatment or
control group
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The crossover 
As you might imagine, it would be most useful if the control group was identical to the treatment group.  You could 
then be absolutely sure that any effect you found wasn't due to some unexpected difference between the groups.  In the 
discussion of the case-control study, one approach was discussed.  For every treatment subject, you recruit a control 
subject who is matched for sex, age, weight and any other variables you think might affect the outcome. 

 
In many experimental studies it is 
possible to make both measurements in 
the same subject. If so, you can use a 
crossover design. The idea is like this 
(left).  Each subject receives the active 
treatment and the placebo, though the 
order is again random. 
 
 

Between the active and placebo treatments there is a washout period, long enough to ensure the effect of the first 
treatment has worn off before the second treatment starts. 
 
With this design, each subject receives both treatments and acts as their own control.  
The treatment and control groups are one and the same.  Any effects can be 
attributed to the active treatment, because there are no other differences between the 
groups. 
 
The results might be as shown (right).  If you ignore the black connecting lines for 
the minute, there is only a slight overall difference between placebo and treatment, 
with a lot of overlap.  However, the measurements are paired, as shown by the black 
lines.  All-but-one of the subjects do better with treatment than placebo. 
 
If possible, it's best as shown to allocate the subjects at random to group A (treatment 
then control) or group B (control then treatment).  This will control for the possibility 
that people get better with time in which case, the later treatment will always look 
the best. 
 
As you'd expect, the crossover study is generally a more sensitive way to detect 
effects than the earlier controlled studies. There are statistical tests (Student’s paired 
t-test, or Wilcoxon’s test) that are particularly appropriate for crossover studies. 
 

Applying the crossover design in your study 
The crossover method is useful in any situation where you are making two or more measurements in a single subject.  
For example, you might be evaluating a new diagnostic test for aspiration, and so it would be appropriate to apply the 
old and new tests sequentially for comparison.  Perhaps the subjects become more relaxed after the first test; if you 
always apply the old test first, the second test will come out rosier than it ought to. 
 
The solution might be: 

• To perform the tests in a random order, as shown earlier; 
• In some cases, you might even be able to perform the tests at the same time.  For example, with some effort 

you can perform videofluoroscopy at the same time as nasendoscopy.  So then, you know you are assessing 
the same swallow at the same time.  Any differences from one swallow to the next would disappear. 

 
For a second example, perhaps you're measuring agreement between expert observers in evaluating some diagnostic 
images.  Again, this is a crossover design; each rater is being exposed to all the different images.  So make the order 
random; don't present (for example) all the normal examples first. 
 

If you're making two (or more) measurements in one subject for comparison - make them in a random order. 
 
You'll appreciate that in some cases it isn't possible to perform the two measurements in a random order, perhaps when 
the treatment is irreversible (in surgery, for example).  You have to make the control measurement first, then apply the 
treatment.  If so, think about whether you could make two consecutive control measurements. If these were similar, it 
would provide some evidence that your subjects weren't changing with time. 
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Explanatory and pragmatic studies 
The experiments described so far might be termed explanatory studies, because the investigators try to explain the 
effect of a treatment in tightly controlled circumstances.  However, when many treatments or diagnostic tests become 
part of clinical practice, their performance is not as good as expected from the earlier trials.  Of course, there are a 
number of differences between administration of a clinical trial and use of the same method in day-to-day clinical 
practice. 

• Patients who are part of a research project are typically given more expert attention than the corresponding 
patients in the community; 

• Patients are aware of being part of a research study, which may have a super-placebo, super-compliance effect; 
• Patients are monitored closely for compliance with the treatment; 
• Data from patients who don't comply may be eliminated or analysed differently. 

 
A pragmatic trial will try to establish the likely effect of a treatment or test in clinical practice.  The term intention to 
treat has relevance here.  Once a patient has been recruited to the study, their data are analysed as if they completed 
the study, whether or not they actually comply.  This type of study is likely to be particularly unkind to treatments with 
a complicated or time-consuming regime or with unpleasant side-effects. 
 

Randomisation 
Given that just about everything needs to be in a random order, how do you assign your 
patients to treatment and control groups?  Well, for true randomness you could do worse 
than tossing a coin, but unfortunately a coin is often just too random.  You might end 
up with this situation (right).  There are 20 subjects but only 5 have ended up in the 
treatment group.  You can see it's now not so easy to draw conclusions. In the extreme 
case where all the patients end up in one group, you can't say anything at all. It turns 
out the best situation is the same number of subjects in each group, and you'd like to 
arrange that if possible. 
 
One way would be like this: 

• On ten scraps of paper, write treatment; 
• On another ten scraps of paper, write control; 
• Mix the twenty pieces of paper in a hat; 
• To randomise the next patient, pull out the next piece of paper, read it and then 

throw it away. 
 
This works well, except you might still find for example that the control group are allocated towards the beginning of 
the study, but the treatment group are allocated nearer the end.  This might be a problem if: 

• You're not sure from the outset how many patients you will study; 
• Things change with time. Perhaps the surgeon becomes more skilled with a new procedure. 

In either case, it's better to use a block-randomised design. 

Block randomization 
This is best illustrated with an example as before.  In a study of swallowing, you think subjects might get better with 
practice.  You're going to randomise 20 patients into two groups yogurt then water or water then yogurt; 

• On two scraps of paper, write yogurt then water; 
• On another two scraps of paper, write water then yogurt; 
• Mix the four pieces of paper in a hat; 
• To randomise the next patient, pull out the next piece of paper, read it and then put it to one side. 

 
You've now randomized the first four patients, but two will be in each group.  To complete the randomisation, put the 
four pieces of paper back in the hat and repeat the process until you have twenty patients.  Now: 

• After every multiple of four patients, there will be equal numbers of both groups. 
• At any time, the numbers of patients in each group can be no more than two different. 

 

Randomisation at outcome 
When you come to analyse your data, it's best if possible to use a random order.  You might ask a colleague to number 
the traces and keep the key secret.  If you've got two groups, it's again better to use a block-randomisation scheme to 
make sure you don't get all the of one group early on when you're still a bit rusty. 
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TreatmentPlacebo
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Much
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cure



 Page 27 of 64 
 

Sample size 
Deciding on a sample size is a difficult problem.  Let's take another simple example.  Suppose you have the following 
hypothesis: 
 
We hypothesise that a subject's height is linked to their gender 

 
You do the obvious experiment, measuring 10 randomly selected men and 10 
women, and here are your results (right).  Using the proper statistical test (two-
sample t-test), you show unambiguously that there is a relationship between 
gender and height. 
 
 
With your success, you raise a new hypothesis: 
 

We hypothesise that a woman's height is linked to her country of origin 
 
 
 

 
 
Once again, you study ten subjects but this time (left), there's only the merest hint 
of a link.  The solution is to study more subjects. As you saw earlier, your 
estimates of mean height become more precise as you study more subjects. 
 
But here's a dilemma: how would you know how many subjects to study in order 
to detect the effect?  After all, 10 would have been enough for the first study, but 
you might need 100 or more for the second study. 
 
Well, you can work it out, but you need to know two things: 
• how big the overall effect is; 
• the variability between patients, 
perhaps the standard deviation of height – see later. 

 
 
So generally, you need more patients when: 

• The effect is small as in the UK v France example above; 
• There's a lot of random variability between patients, a high standard deviation between measurements. 

 
But here's the next problem - how do you know the effect or the variability, when you didn't do the study yet? 

• Preferably, you perform a small pilot study to determine the likely effect and its variability. 
• Guess, using the available literature. 
• Failing this, pick the smallest effect that would be of clinical importance.  If the effect is too small to be of 

clinical importance, you don't really care if you don't spot it. 
 
 
This whole procedure – figuring out how many subjects to study - goes by the name of a power calculation. 
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Type I errors, type II errors and power calculations 

Type I errors 
If you remember: 
 

Assume the null hypothesis is true - that there is no link in your study. 
The p value is the probability that the effect you actually observe, however big or small, is due to chance alone. 

 
Suppose you will reject the null hypothesis and conclude you really have found a link on the basis of p = 0.05.  To put 
it another way, there is a one-in-twenty chance that the result was just a fluke, and there really is no link. You have 
conducted the study where the observed link really was due to chance.  This is termed a type I error. 

Type II errors and the power calculation 
Of course, you could make the opposite error; you might fail to find a link that really is there, simply because you 
didn’t study enough subjects.  This is termed a type II error.  So … before starting a large-scale study, you should 
perform a power calculation. 
 

Statistical power is the probability of demonstrating that your hypothesis is true, assuming that it really IS true. 
 
In a study with poor statistical power, there is a danger that you don't reject the null hypothesis because you can't be 
sure enough that the observed link is real.  It would be wasteful and possibly unethical to conduct a low-powered study 
where you had little real chance of spotting the effect you were looking for. 
 
Statistical power increases with sample size.  Typically, you would like a statistical power of at least 80%, and you can 
then work back to determine how many patients must be studied.  As a rule, power calculations are difficult and best 
left to statisticians; the exact method depends on which statistical tests you will be applying to the data.   
 
However, here is a useful web site… 
 
 http://www.stat.uiowa.edu/~rlenth/Power/index.html 
 
…and here are some simple examples to give you an idea of the numbers involved: 
 

If the mean effect is the same size as the variability between subjects, you need just 7 subjects 
 

If the mean effect is half the size of the variability between subjects, you need 18 subjects 
 

If the mean effect is one fifth the size of the variability between subjects, you need 99 subjects. 
 

If the mean effect is one tenth the size of the variability between subjects, you need 387 subjects. 
 

There isn’t much you can do about the effect size – this is what you are trying to measure.  However, notice that the 
number of subjects rises DRAMATICALLY as you increase the variability.   
 
In this context, variability means any effect that is not consistent from one measurement to the next.  This is 
something you DO have control over: 
 
• Variability BETWEEN patients. This is frequently very large, and in some cases can snooker the study 
completely.  The best solution is to use patients as their own controls in some sort of crossover design.  This then 
completely eliminates the effect of variability between patients. 
 
• Variability WITHIN patients. If you measure the same thing on the same patient on two occasions, you are 
unlikely to get the same answer. Think of blood pressure measurements. Wherever possible, you should study 
patients under the same environmental conditions, at the same time of day, etc.  Try to think of all the things that will 
affect your measurements. 

http://www.stat.uiowa.edu/%7Erlenth/Power/index.html
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4 
Studying the behaviour of random or 

noisy variables 
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How do random variables behave? 
To get a bit further we now need to study how random variables 
behave, so let's consider one of the best-known examples of 
variability, peoples' height.  Suppose for a moment that people 
were produced like boxes on a production line, and everyone 
comes out the same.  If you measured 5000 heights, you could 
plot the results as a histogram like this (right).  There are 5000 
people with exactly the same height, and nobody else. 
 
Of course, heights aren't really like this.  As you probably know, 
height is largely dictated by genetic factors, so let's try to 
simulate that (I used MS Excel to perform the simulations). 
 

A simple person with 1 gene 
First, here's a very simple simulation with just one gene.  The 
effect of the gene is this. If it's absent, it decreases that person's 
height a little bit.  Here's what happens (right). 
 
We've now got a group with two heights, depending on 
whether the gene was present or not.  The numbers of people 
with each height are roughly equal, as you'd expect. 
 

If people had a few more genes 
You can now introduce a couple of extra genes, each of which 
can either increase or decrease the height a bit.  There are still 
5000 people in total but as you'd expect, the overall variety of 
heights increases.  However, the distribution is not even. Most of 
the people lie towards the centre, with relatively few towards the 
edges. 
 
The bottom figure again simulates a population of 5000 people, 
but this time with 20 genes.  There are about nine hundred people 
with a height of 180 cm, but less than one hundred with a height 
of 120 cm. 
 
It's clear what's going on.  Since each gene acts randomly, their 
effects tend on average to cancel each other out. But, for a person 
to have a height of 120 cm, a big majority of genes must be acting 
together to reduce the height, and that seems unlikely.  It's like 
tossing 20 coins and getting 18 heads. 
 
It's no surprise, then, that people really do show a distribution of 
heights like this. 
 
In fact, many many things in nature show this distribution with 
some spread about a central mean value.  It can be explained very 
simply as the combined effect of lots of individual factors each 
having a random effect on the outcome. 
 
As you'll probably be aware, this is called a Normal or Gaussian distribution. 
 

 
If you add together enough independent random values, the result will obey the normal distribution. 
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How does the normal distribution help? 

Parameters of the normal distribution 
A normal distribution can always be represented by just two 
parameters: 

• The mean value; 
• The standard deviation (SD) about the mean value. 

 
As you'll know, the mean is just the average of all the 
measurements.  In the example (right) the mean is about 175 cm. 
 
The standard deviation is a bit more complicated.  Your stats 
package will calculate it for you, but here's how to do it: 
 

• For each measurement in turn, find the difference between it and the overall mean. 
• Square all these 'difference' values (5000 'difference' values, in the example).  
• Find the mean of all the 5000 squared values. 

The number you've got now is the variance. 
 

• Find the square root of the variance. 
This is the standard deviation. In the example, the standard deviation is about 22.5 cm. 
 
Why bother explaining this?  Well, as you can see from the rules, the standard deviation is related somehow to the 
distance of your measurements from the mean: 

• If the measurements are generally close to the mean, the standard deviation will be small. 
• If the measurements are generally well spread around the mean, the standard deviation will be large. 

 
So the standard deviation gives some indication of the spread about the overall mean value. 

What use is this? 
It turns out that the mean and the standard deviation are the only 
things you need to know about a normal distribution.  The normal 
distribution for mean = 175 cm and SD = 22.5 cm is superimposed 
(right).  Now, you can calculate or read off the graph that there 
ought to be around 45 people with a height of 120 cm.  This agrees 
quite well with the actual result. 
 
You can make the following generalisations: 

• Two thirds of all the measurements will lie within ±1 
standard deviation of the mean value. 

• 95% of all the measurements will lie within ±2 standard 
deviations of the mean value. 

• 99.9% of all the measurements will lie within ±3 standard deviations of the mean value. 

A simple statistical test 
Suppose a person turns up in your clinic with a height of 120 cm.  You observe other developmental problems, and 
wonder whether their height is within normal limits, but all you know is the mean and SD of the population's height.  
From the normal distribution, you can determine that about 7 in 1000 people would have a height of 120 cm or less.  In 
other words, the probability of this height being due to chance alone is 7 in 1000 (p = 0.007).  This supports your 
suspicion of developmental difficulties. 

Standard deviations and the normal range 
BEWARE - there are 60 million people in Britain, so 420,000 of them will be below 120 cm purely due to chance 
alone.   

 
Having a statistically unlikely height (or any other clinical measurement) does not itself constitute abnormality! 
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Populations and samples 
When you talk about the mean and standard deviation, you would like to talk about the population.  For example, we 
said earlier that the mean and SD of the population's heights are 175 and 22.5 cm respectively.  Of course, it's not 
reasonable to go out and measure everyone's height, and so you would need to make a sample.  You will go and recruit 
perhaps 100 people and measure their heights; this is your sample.  You hope your sample is representative of the 
population as a whole, but there are a couple of things you have to get right: 

The number of subjects in the sample 
 Take the extreme case where you take a sample 
of just a single person (left).  There's a good 
chance your one sample will be quite different 
to the true population mean. 
  
When you sample more subjects (right), the 
errors will tend to cancel out, and your sample 
mean will be closer to the true population mean. 
 
Just as earlier, a study with more measurements 
is better. 

 

The standard error in the mean (SEM) 
The bigger your sample, the more representative it will be of the population, and the more precise your estimate of the 
true population mean.  There is a statistic called the standard error in the mean (SEM).  You calculate the SEM like 
this: 

• Calculate the standard deviation of all the measurements in your sample. 
• Divide it by the square-root of the number of measurements in the sample. 

 
The number you get is the SEM, and tells you something about how precise your sample mean is: 

• There is a 2 in 3 probability that the true population mean is within ±1 SEM of the calculated sample mean. 
• There is a 95% probability that the true population mean is within ±2 SEMs of the sample mean. 

The confidence interval (CI) 
The latter statistic is so well-used that it is often called the 95% confidence interval (CI).  The importance will become 
clear later, because it is becoming the accepted way of reporting the outcome of statistical tests. 
 
For example, at one time you might have read or written this in a report:  Following administration of the drug, there 
was a reduction in blood pressure (p < 0.05). 
 
What you really mean by p < 0.05 is this:   There was a reduction in blood pressure.  The chance that this was due to 
random variation, and NOT to the effect of the drug, is less than 5%. 
 
BUT REMEMBER – by studying lots of subjects, you can spot even a very tiny effect.  There is no mention here of the 
size of the drug’s effect, which is what you are really interested in. 

 
Statistical significance means ONLY that the link you found is unlikely to be due to chance alone. 

It is up to you to decide whether the effect is large enough to be of any clinical importance. 
 
Now, you would be encouraged to do it like this:  Following administration of the drug, the mean reduction in blood 
pressure was 20 mm Hg (95% confidence interval 15 to 25 mm Hg). 
 
What you really mean is this:  From my sample, the best estimate of the true effect of the drug is 20 mm Hg.  If I 
repeated the experiment, I would probably get a slightly different answer. However, I am 95% certain that the true 
effect is in the range 15 to 25 mm Hg. 
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Sampling bias 
The enemy of good sampling is sampling bias.  There is one fundamental rule to unbiased sampling: 
 

 
Everybody in the population being studied should have exactly the same chance of being included in the sample. 

 
 
You want to know the height of the adult population, so one Tuesday you sample 100 adults at random from the streets 
of Newcastle. Therefore, you have excluded everybody who isn't on the streets of Newcastle on a Tuesday.  The people 
excluded will tend to be: 
 

• Older or housebound people; 
• People who don't live in Newcastle; 
• People at work on Tuesday. 
 
So you end up with a biased sample of youngish, unemployed North-
Eastern people.  As a result, the people in the sample might tend to 
be taller than the population as a whole.  With 100 measurements 
you end up with a precise estimate of height (the confidence interval 
is small), but it isn't an accurate estimate because it misses the target. 
 

 

 

 

 
This whole idea of precision and accuracy comes up again later 
under the alternative title reliability and validity.  A reliable instrument will always come up with the same answer, but 
it is only valid if it comes up with the right answer. A stopped clock is reliable but not valid. 
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Degrees of freedom 
Back to the same problem of measuring heights.  This time, you decide you need 
100 heights to get a good estimate of the population mean, but you leave things 
a bit late and the streets are looking empty.  So instead, you decide to recruit five 
people, but to measure them twenty times each.   
 
This seems to be cheating but after all you've got 100 measurements, and your 
stats package still tells you the CI is very small. So surely, the job is done.  Once 
again, you only have to plot the data to see the problem (right). 
 
Sure you've got 100 measurements, but they're not independent.  They are 
clustered into 5 groups.  In fact, the only reason there is any variability within 
subjects is that there's a bit of measurement error that shows up when you 
measure a person repeatedly. 

What is a degree of freedom? 
Degrees of freedom give endless trouble for even well-experienced researchers.  It's very difficult to give an accurate 
definition, but here's an attempt. 
 

The number of degrees of freedom in a sample is the number of independent measurements in that sample. 
 
In the example above, you made 100 measurements, but there are only 5 degrees of freedom.  That's because each 
person produced 20 measurements that were very closely related to each other and not at all independent. 
 

How should you analyse the data? 
It would be tempting to type the 100 measurements into 
your stats package, and ask for the mean and 95% CI.  
Remember that the CI becomes smaller as you make 
more measurements.  The stats package would assume 
that the 100 measurements are all independent, and 
give you a very small CI (left).  You have a precise 
estimate of the mean, but it isn't accurate - it missed the 
target. 
 
In reality, you have just five peoples' heights.  
However, you've measured each person's height 20 
times; there's no reason why you shouldn't take the 
average of the 20 measurements, to give you a very 
accurate estimation of those five heights. 
 
 
 

Notice that when you do things the proper way (right), 
the standard error in the mean is larger.  These results 
are telling you that your estimate isn't so precise, and the 
true population mean might actually be quite a bit 
different from the sample mean you just calculated. 
 
This mistake is extremely common.  One day, you will 
read a paper where the authors draw seemingly 
improbable conclusions from a small number of 
subjects.  Look closer and you might find lots of 
repeated measurements that have been analysed as 
though they all come from different subjects in the way 
we've described. 
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Summary or descriptive statistics 
Every time you write a paper, you will need to provide some descriptive statistics.  For example, suppose you're 
conducting a study of bladder control in normal young people, normal elderly and post-stroke elderly. 
 
You might typically summarise the following parameters: 

• Sex; 
• Age; 
• Body mass index; 
• Distribution of subjects into normal, normal elderly and post-stroke. 

 
What's the right way to go about it?  Below are the most common ways of expressing these things: 

Gender (a binary or dichotomous variable) 
The easy one first.  

• 20 M, 20 F  
Says everything about the gender of your subjects☼. 
 

Age (a continuous numeric variable) 
Whereas age is continuous, in practice it is almost always recorded to the nearest year.  However precisely the age is 
recorded, the approach is the same: 

• 60.7 ± 10.3 years (mean ± standard deviation); 
 
is perfectly acceptable.  When quoting summary statistics, it's quite acceptable to use one further decimal place than 
the original values were recorded to, though the value of knowing the mean age to the nearest month could be disputed. 
 
It is also common and useful to add the overall range: 

• range 24 to 80 years. 
 

Body-mass index (a continuous numeric variable) 
The same as for age: 

• 25.1 ± 5.3 kg m-2 (range 18.7 to 34.4 kg m-2) 
On this occasion, BMI is quoted to the nearest 0.1 kg m-2, because two decimal places would be needlessly precise. 
 

Distribution of subjects (a categorical variable) 
As for gender, you can say everything about the distribution of subjects in a single sentence: 

• 10 young, 10 elderly, 20 post-stroke. 
 
However… 
Age, gender and BMI are used simply to describe your subjects.  However, your hypothesis might be (say): 

We hypothesise that frequency of incontinence is linked to group (young normal, elderly normal or post-stroke) 
 
It seems that the grouping of subjects is fundamental to your hypothesis; it's the predictor, the independent variable.  
The audience would probably like to see how well-matched the groups were, and so you might summarise your subjects 
separately for each group, probably in a table like this: 
 

 Young normal Elderly normal Post-stroke 
Number and gender 10 (5M, 5F) 10 (6M, 4F) 20 (9M, 11F) 

Age (years) 31.0 ± 8.2 (24 to 40) 63.3 ± 11.2 (52 to 79) 67.5 ± 9.7 (59 to 80) 
Body-mass index (kg m-2) 22.1 ± 4.1 (18.7 to 25.4) 25.7 ± 5.3 (20.4 to 32.1) 27.1 ± 5.3 (22.9 to 34.4) 

 

                                                           
¤ Not quite.  A colleague was once involved in a long-term study where a subject had a gender re-assignment part-way 
through the study.  How would you deal with that? 
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Graphical description of data 
On some occasions, a parameter in your study might be so important that you would like to give more than just summary 
statistics.  On these occasions, a graphical summary might be appropriate.  Thinking about the earlier examples, you 
might do it something like this: 

Gender (a dichotomous variable) 
Probably not worth a figure, because it won't convey any more information than the basic values. 
 

Age (a continuous numeric variable) 
If you were studying the link of age with (say) frequency of 
incontinence, you would probably want to say more about the ages of 
your subjects. A histogram would be an appropriate way of 
representing your data. Notice that a histogram is used to summarise 
continuous numeric data.  Each bar represents a range of ages.  For 
example, the first bar (labelled 25-) indicates two subjects in the range 
25-29 years.  The bars should all be next to each other, indicating that 
age is a continuous variable; a gap would imply no subjects in that 
age range. 
 

Subject groups (a categorical variable) 
Contrast the histogram with a bar chart (left).  As shown, the 
bar chart is used to summarise data by category.  In this case, 
the bars are separate, indicating that the three categories are 
completely separate. 
 
As shown, it's also possible to divide the bars by (in this case) 
numbers of male and female subjects. 

 

 

Pie charts 
You might summarise the same data using a pie chart.  We'd 
caution against using pie charts because the eye isn't particularly 
good at judging angles, and it's difficult to see at a glance how 
the different categories match up. 
 
In the example (right), which is the biggest sector?  The 
smallest?  In fact, the data are the same as in the bar chart above. 
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Plotting the results of a clinical study 
So far, we've considered the presentation of summary data, possibly demographic data for a group of subjects.  This 
might easily be in the Methods section of your paper.  You might also use such methods in the Results section of an 
observational study.  However, in most clinical studies, you will be trying to demonstrate a link between two variables.  
As we said earlier: 
 

Plotting the data should be the first step in your analysis. 
 
By tradition, the most useful type of plot is the scatter plot (also known as X-Y plot or dot plot).  The rules for the 
scatter plot are: 

• Measure the independent variable (the predictor, the factor, the group, the cause) on the X (horizontal) axis; 
• Measure the dependent variable (the effect, the outcome) on the Y (vertical) axis. 
• Plot each measurement in the appropriate place according to the values. 

 
Let's look at an example.  You are studying the relationship between gender and the pitch of voice – phonation 
frequency.  So plot the predictor (gender) on the X axis, and plot the outcome (phonation frequency) on the Y axis.  
Here are three sets of results you might get.  Following your gut feeling, in which cases is there a real link? 

 
If you were like me, you'd be quite convinced by the first example.  In the second one, you'd not be sure.  In the third 
example, you'd probably want to continue with the experiment and record lots more data. 
 
And you'd be right. You can do the statistics formally using the 2-sample t-test.  In the first example, the probability of 
this arrangement arising by chance alone (if males and females are really the same) would be about 1 in 1600 (p = 
0.0006).  In the second example, it would be 1 in 16 (p=0.06).  In the third example, 2 in 5 (p=0.4). 
 
If the probability is lower than 1 in 20 (p=0.05), you would be probably conclude the link was real. This means that 
your gut feeling was right. The first example would be convincing to even a skeptical reader.  The second example 
(p=0.06) is equivocal and you would probably stay with the null hypothesis of no relationship. The third example shows 
really no evidence at all of a relationship. 
 
The moral of this is this: 
 

Gut feeling is useful - plot the data. 
 

Plotting more than two categories 
Using the same idea, you can handle lots of categories.  
Here are three categories presented using the same idea 
in fetching shades of pink and yellow. 
 
Once again, there's a statistical test that can be used 
naturally to analyse data arranged this way.  It's an 
extension of the t-test called analysis of variance 
(ANOVA).  It will be mentioned later. 
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Confusing stuff 
Before diving into statistical tests in the next section, some stuff that causes difficulties. 

Handling data where both variables are numeric 
In very many cases, your data will be arranged like the data just described.  That is, you will have subjects in categories 
that might be: 

• Treatment or placebo; 
• Young normal   or   old normal   or    post-stroke; 
• Male or female. 

 
And so forth.  Then, you measure something from each subject: 

• Improvement in clinical condition; 
• Incontinence frequency. 
 

and try to demonstrate a link between this, and the subject's group.  That's why the various incarnations of the t-test 
and ANOVA are probably the most-used statistical tests; they are the appropriate tests for data arranged this way. 
 
However, there are lots of studies where the independent (predictor) variable is continuous.  For example; 

• The relationship between quantity of drug administered and improvement in condition; 
• The relationship between age and the frequency of incontinence episodes. 

 
Nevertheless, you can plot the data in exactly the same way 
(right).  Here, we've again got the independent variable 
(height) on the X axis, with the outcome (phonation 
frequency) on the Y axis.  The only difference is that this time, 
the predictor (height) is a continuous variable. 
 
There's another statistical test (correlation) to examine 
whether the relationship between height and frequency is 
likely to be due to chance alone.  Correlation will be discussed 
later. 
 
In this example, p=0.006; the probability of observing this 
distribution due to chance alone is about 1 in 160. You'd 
probably accept that the relationship was real, but it's not 
absolutely convincing.  Your gut feeling would probably 
agree. 
 

But beware… 
In exactly the same way as the t-test, correlation can be used to demonstrate that there is a relationship or link between 
two variables.  In fact, correlation and the t-test are intimately linked.  What correlation does not do is show how well 
the two variables agree, but it is often abused for this purpose.  This is wrong, and will be discussed later in some depth. 
 

Footnote 
If you look through the BMJ book Statistics at Square One, all but one of the figures are covered by the few types 
we've discussed here.♣  The reason is simple; the vast majority of studies follow this same general format with an 
outcome variable, and a predictive factor that you believe might be associated with the outcome. 

                                                           
♣ The exception shows survival data from an epidemiological study - and it's not so different. 
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Parametric or non-parametric statistics? 
The mean and standard deviation are termed parametric statistics, because they are the two important parameters that 
describe a normal distribution.  Many of the best-known statistical tests (Student’s t-test; analysis of variance; 
correlation) are based on the properties of the normal distribution, and are termed parametric tests. 
 
However, not all variables follow a normal distribution, and you might be advised by your local statistician to adopt 
non-parametric statistics. There are a whole set of non-parametric statistical tests, some of which are described later.  
These tend to be based on the rank order of the values, rather than the values themselves. 
 
There is LOTS of debate about whether this is the right thing to do or not.  An eminent local statistician is broadly 
against non-parametric statistics, on the following grounds: 
 

• There is a widely-held belief that non-parametric tests are better for small groups.  This is simply not true. 
With some non-parametric tests it is actually impossible to obtain a positive result in small group sizes. 

 
• Though they are based on the normal distribution, parametric tests such as the t-test are reasonably robust in 

the face of non-normally distributed data. 
 

• If you have highly non-normal data, you can use a transform (for example, a logarithmic transform) that will 
often sort out the problem.  The general idea is that you simply take the logarithm of each value before 
performing the test, but you should take advice. 

 
• There are only a few fairly basic non-parametric tests, non-parametric equivalents to t-tests and ANOVA.  

There are no tests for many more complex analysis problems.  It will look odd if you suddenly jump to 
parametric tests part-way through your analysis simply because there are no suitable non-parametric tests. 

 

Some stuff on non-parametrics 
Nevertheless, you might find yourself using non-parametric statistics, or at least reading papers where other authors 
have used them.  If you do want to summarise data using non-parametric descriptive statistics, your stats package 
should produce them for you, but here are the rules: 

• First, arrange all the measurements in order, smallest to largest; 
• Number the measurements, from smallest (#1) to largest (#100, say); 
• The median is the value half-way down the list (or half-way between the two middle values, #50 and #51); 
• The lower quartile is the value just one quarter way down the list (#25); 
• The upper quartile is the value three-quarters way down the list (#75). 

 
In the example (right), the data are shown without, and then with, an outlying measurement.  The outlier affects both 
the mean and standard deviation of the data. 
 
The box and whisker plot is often used to show non-normal data: 

• The central horizontal line indicates the median; 
• The yellow box marks the upper and lower quartiles, indicating the inter-

quartile range; 
• The vertical whiskers indicate the overall range of the data, or possibly 

some other measure of overall spread eg. they contain 95% of all the 
measurements. Check to be sure. 

• Outlying points are shown separately. These are the ones that aren’t 
included by the whiskers, if any. 

 
Since the median in the figure is closer to the upper quartile than the lower, this 
indicates that the distribution of heights is skewed.  Notice that the median and the inter-quartile range are not affected 
by the outlier, indicating that the overall distribution of the data hasn't changed.  However, the extended whisker 
indicates the presence of the outlier. In other cases, this might be shown as a separate point. 
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Standard deviation, standard error or confidence interval? 
It's quite common to show error bars on graphical data.  The question is: should you present the standard deviation 
(SD), the standard error in the mean (SEM), or the 95% confidence interval (CI)? 
 
It's tempting to use the SEM, because it's always smaller than the SD or the 95% CI, and so makes your results look 
better.  The rules are these: 
 
• If you want to describe the population as a whole, then use the SD. 
• If you specifically want to quantify the mean value of something, then 

use the SEM or the 95% CI. 
 
 
 
 
 
In the example (right) the SDs are shown in orange, with the SEMs in 
green.  Notice that the SD stays (more or less) same as the number of 
subjects increases, but the SEM gets smaller.  This reflects the fact that the 
mean is becoming a more accurate estimate of the true population mean. 
 
• Remember that the 95% CI is just about double the SEM – so it doesn’t matter hugely which is used, so long as 

you are clear in your report.  You don’t need both, but I’d probably favour the 95% CI. 
 
In your paper, you might say: 
 
The heights of the men studied had a mean of 175 cm, with an SD of 10 cm. 
Here, you are describing the study population.  You wouldn't expect to see the distribution of heights to change just 
because you studied more subjects. 
 
In our results, the mean height of the swimmers (175cm, 95% CI 173 to 177 cm) was significantly different to that of 
the runners (168 cm, 95% CI 165 to 171 cm) (p < 0.01). 
 
Here, you are demonstrating the grounds on which you made your statistical judgement.  The confidence interval is 
appropriate, because more subjects lets you quantify the mean more accurately and therefore be more confident in your 
results. 
 
Notice again that we have quoted the size of effect in our results ie. the difference in height between the two groups is 
168 to 175 cm, or about 7 cm.  Remember… 

 
 
 

Statistical significance means ONLY that the link you found is unlikely to be due to chance alone. 
It is up to you to decide whether the effect is large enough to be of any clinical importance. 
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6 
Comparing between groups: the t-test 

6 
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The single sample t-test 
Once again, let's invent a hypothetical study.  You think that people are getting taller with time. 
 

We hypothesise that the height of adult men is linked to the year in which they were born. 
 
Unfortunately, you missed the boat in making the measurements, but know (from a big historical study) that the average 
height of men born 1800 was 170 cm.  So, you'd like to compare a group of modern men to see how they measure up.  
Here are the results from 100 men (right).  You can now use the single sample t-test.  The process with your stats 
package will be something like this: 

• Arrange all the measurements in a column; 
• Select the single sample t-test; 
• Pick the column containing the data; 
• Enter '170' as the value for comparison. 

 
The package will say something like this: 

• N = 100,  Mean = 175.06 
• Standard deviation = 10.17,  SEM = 1.02 
• t = 5.0,     p = 0.0000024 
• 95% CI = 173.02 to 177.10 

Interpreting the t-test 
Here's what this all means: 

• The number of values in the test is 100. The mean and standard deviation were described earlier. 
 

• The SEM (standard error in the mean) was also described earlier.  Remember this gives some indication of 
how precise your estimate of the true population mean is.  With the data given you can interpret it this way: 

o The probability the estimate is within 1 SEM (1.02 cm) of the true mean is 2 in 3; 
o The probability the estimate is within 2 SEMs (2.04 cm) of the true mean is 19 in 20 (95%); 
o The probability the estimate is within 3 SEMs (3.06 cm) of the true mean is 999 in 1000 (99.9%). 

 
• The t statistic (5.0 in this case) indicates that the calculated mean of 175.06 cm is actually 5 SEMs away from 

170 cm. 
 
• The p value is the probability that you get your observed results, assuming there is no link between height and 

birth year. The stats package has determined that p = 0.000 002 4. Pretty unlikely. 
 

• Finally, the 95% confidence interval is given.  The probability the estimate is within 2 SEMs (2.04 cm) of the 
true mean is 19 in 20 (95%).  You can be 95% confident that the true population mean is within 2.04 cm either 
way of the calculated mean of 175.06 cm.  This leads to the 95% CI of 173.02 to 177.10 cm. 

Interpreting the p value 
For those interested, here's another hand-waving interpretation of the p value: 

• Fill a big hat with a billon (or more) random numbers.  The overall mean should be 170, and the overall 
standard deviation should be 10.17. 

• Pick 100 numbers from the hat at random, and calculate their average. 
 
The p value indicates the probability that the average of the 100 balls will be 175 or higher. It's about once in every 
400,000 repeats, so don't try it. 

One or two sided? 
In some packages, you can select a one-sided test, which is slightly more sensitive that the two-sided one you should 
be using.  The one-sided test does not allow for the possibility that change could be in either direction; the mean height 
could be either side of 170 cm. 
 

You should rarely if ever use a one-sided test. 
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The 2-sample t-test 
The single-sample t-test as described in the last page isn't so common.  That's because in a well-designed study, you 
will aspire to have some control data, for the reasons we've already covered.  In the same vein, but much more common, 
is the two-sample t-test.  The two-sample t-test goes naturally with data arranged as shown (right).  In this example, 
you are looking for a link between height and the country of 
origin. 
 
The operation of your stats package will be something like this: 

• Arrange all the UK measurements in a column; 
• Arrange the France measurements in a second 

column; 
• Select the two sample t-test; 
• Pick the columns containing the data. 

 
Your data might look something like this: 
 

UK France 
173 182 
186 201 
175 164 
… … 

 
Some stats packages do things a bit differently.  You need all the measurements in the 
same column.  A second column is used to identify UK and France data, like this (right): 
 
In the example, '1' is used to indicate a measurement from the UK, and '2' is used to 
indicate a measurement from France.  It's a bit more fiddly doing things this way, but 
can be useful when you come to do more complex analyses. 
 

Interpreting the two-sample t-test 
The output will look very similar to that for the 1-sample t-test.  Here's the first part of the output from SPSS.  This is 
just the descriptive stuff, split for the UK data (country 1) and the France data (country 2).   
 

 Country N Mean Std. Deviation Std. Error Mean 
Height 1.00 20 176.9951 9.7908 2.1893 

  2.00 20 182.9806 10.2224 2.2858 
 
Here’s the second part: 
 

   F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% CI of the 
Difference 

  

                  Lower Upper 
Height Equal variances 

assumed 
.014 .907 -1.891 38 .066 -5.9855 3.1651 -12.3929 .4219 

  Equal variances 
not assumed 

    -1.891 37.929 .066 -5.9855 3.1651 -12.3933 .4223 

Things to note: 
• There are two versions of two-sample t-test, slightly different.  Since both sets of data (UK and France) have 

approximately the same variance (the variance is just the SD squared), they give almost identical results. 
• The F-test can be used to decide whether the variances are really equal.  This gives you a hint as to which test 

to believe; a low p value means they probably aren't equal.  The p value of 0.907 means you can use either 
test. 

• The t statistic (-1.891) is shown, along with the number of degrees of freedom.  Don't even ask how this is 
calculated. 

• The Sig (significance) column is what we've been calling the p value. 
• The mean difference and the rest of the values are as for the single sample t-test.  They relate to the difference 

between the UK and France data.  The mean difference is -5.99 cm, with a 95% CI of -12.4 to +0.42 cm. 

Height Country 
173 1 
186 1 
175 1 
182 2 
201 2 
164 2 
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The paired t-test 
The paired t-test is appropriate for use in any situation where the 
measurements are paired in some way.  In particular this includes controlled 
studies where: 

• Subjects act as their own controls, such as a crossover study; 
• The controls are matched per patient with the treatment group.ß 

 
In the example (right), you are investigating a bunch of patients post stroke.  
In the pre-therapy measurement, you evaluate their ability to speak with some 
kind of word score. 
 
In post-therapy, you measure the same subjects again after 3 months of speech 
therapy.  The question is: did the therapy have any effect? 
 
In this case, you clearly have paired data, and so the paired t-test is appropriate.  You might arrange the data in two 
columns as for the two-sample t-test.  However, it's possible you'll do it as shown (left). 

 
This table shows the data for the first three patients. 
• The measurements are in the first column; 
• Column 2 indicates which subject the measurement is from; 
• Column 3 indicates whether this is the pre-therapy (1) or post-
therapy (2) measurement. 
 
This allows the stats package to pair up the measurements correctly. 

 

Interpreting the paired t-test 
Interpretation of the paired t-test is very similar to that for the single-sample 
t-test, and for good reason because they are essentially the same test.  If your 
stats package doesn't do a paired t-test (for example, Minitab doesn't), you 
can easily do one like this: 

• For each subject, subtract the 'pre-therapy' value from the 'post-
therapy' value.  This gives you a list of differences. 

• Compare these differences to 0, using the single-sample t-test. 
 
The figure (right) shows the differences.  If the therapy isn’t having much 
success, then you'd expect the differences to lie either side of the red line, 
and the mean difference to be about zero. 
 
In this case, the mean difference from zero is +5.2 points, and the SEM is 2.1 points.  Therefore, your stats package 
will tell you that: 

• The chance of this distribution arising by chance alone is 1 in 50 (p=0.02); 
• The mean effect is +5.2 points; 
• The 95% confidence intervals are ±2 SEMs from the mean, or from 1.0 points to 9.4 points. 

 
Of course, it's now up to you to decide whether or not this is a worthwhile improvement. 
 
 
Footnote… 
This example is a bit like a crossover trial (see earlier), but shows you why randomisation of the treatment order is 
important.  Much as you have detected an effect, you can't say for sure that it was due to the therapy.  That's because 
the patients might have got better anyway.  The solutions might be: 

• Set up a control group who didn't get any therapy. Would this be ethical? 
• Study each patient twice at 3-monthly intervals before the therapy began. Would this be ethical? 
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Multiple comparisons and analysis of variance (ANOVA) 
Back to the 'comparing heights' example.  It's possible you just want to 
compare heights from two countries, but more likely you would want to 
compare three or more.  Your data might look like this (right).  How do you 
perform the statistical tests to show the link between height and country of 
origin? 
 

Multiple testing 
One way would be to use the two-sample t-test exactly as before.  The 
trouble is, you've now got five countries, and the t-test can only be used to 
compare two sets of data.  You would have to perform the following tests: 
 

UK v France UK v Germany UK v Spain UK v Italy France v Germany 
France v Spain France v Italy Germany v Spain Germany v Italy Spain v Italy 

 
There are two problems here: 

• It's tedious. 
• Typically, you might accept that a link is real if the probability of it occurring by chance alone is less than 1 

in 20 (p<0.05).  However, you are performing ten separate comparisons. There is more than a one-in-three 
chance that one of the comparisons will produce such a result by chance alone. 

 

Fishing for links 
Let's tackle the second problem first.  It's not uncommon that the workers will measure a large number of parameters, 
and look for a link between every combination of two parameters.  This is particularly true for correlation analysis, but 
the same principle applies to any statistical tests.  There's a saying in statistics: 
 

If you torture for long enough, then the data will eventually confess. 
 
And sure enough, the workers might well discover some bizarre link.  In one paper on sleep, the researchers went 
fishing for links between daytime sleepiness, demographic factors, and 24 separate indicators of overnight sleep quality.  
They found a link between daytime sleepiness and the subject's level of postgraduate education (!), and then spent some 
time debating where the relationship might come from. 
 

The Bonferroni correction 
Bonferroni says something like this: 
 

If you make N comparisons, then make your criterion for believing a result N times more severe. 
 
In the earlier example, you were making 10 separate comparisons, and so you must make your criterion 10 times more 
severe.  Instead of taking 1-in-20 as the acceptable value, you would take 1-in-200 (p<0.005). 
 

Analysis of variance (ANOVA) 
Generally, analysis of variance (ANOVA) is the right way to tackle these problems.  
You'll arrange your data as for the two-sample t-test (right), except this time there are 
more countries. 
 
The output from the stats package will also be very similar to that for the two-sample t-
test.  In fact, the two-sample t-test is just a special case of ANOVA. If you performed 
ANOVA with just two countries, you would get exactly the same results. 
 

Height Country 
173 1 
186 1 
175 1 
168 2 
192 2 
174 2 
182 3 
201 3 
164 3 

150

160

170

180

190

200

210

UK     France  Germany  Spain   Italy

He
ig

ht
 (c

m
)



 Page 47 of 64 
 

More about analysis of variance 

Repeated measures ANOVA 
The comparison above would be called a one-way ANOVA, 
because each height measurement was classified only by 
country.  However, you might well have a situation (right), 
where the data are paired (or tripled, in this case).  It's the same 
example as for the paired t-test, but this time you're making an 
extra measurement after 6 months of therapy. 

 
 
 
 
 
 
 
 
 

The repeated-measures ANOVA is the generalization of the paired t-test when you have more than two measurements 
in each subject (these are the repeats).  As for the paired t-test, you will classify each patient by subject number (1..20) 
and by study (1, 2 or 3). 
 

In summary… 
• ANOVA is a generalized form of the t-test that can deal with more than two categories of data. 
• One-way ANOVA is a general form of the two-sample t-test. 
• Repeated measures ANOVA is a general form of the paired t-test. 

 
If you have a complex experimental design (for example, subjects might be classified by gender and young/old age and 
diseased/normal and pre/post-therapy) you can also do three, four, five, one-hundred way ANOVA.  
 

Cautions about ANOVA 
Beware. When you use two- or more way ANOVA, there are all kinds of traps to fall into. In the example above, you 
have a repeated measures design. The same measurement is made three times on the same 20 patients. There are two 
factors: patient (1…20) and measurement (pre/post1/post2). However, the measurements are not necessarily 
independent because there were three measurements on each patient. Particular problems arise when some of the 
measurements are closer-related than others. 
 
Alternatively, perhaps you have 60 different patients but each patient belongs to one of three groups (first factor) and 
each patient has one of four treatments (second factor). These measurements may very well be independent, and under 
some circumstances will need to be analysed differently than the first example. 
 
There are other situations where you have multi-level repeated measures, for example you might make a series of 
measurements on a given day, and then further series of measurements at monthly intervals. If you have data of this 
complexity, it’s best to get good advice on the proper analysis. 
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Non-parametric tests 
Before diving into this section, read the earlier warnings about non-parametric statistics. 

 
In this study, you want to show a link between larygectomy and a reduced quality 
of life, as measured using a validated questionnaire.  So you recruit 15 
laryngectomees and 15 normal controls, and measure their quality of life. 
 
Here are your results (right).  Your gut feeling says you were right, and the two-
sample t-test says this link would only arise by chance with a probability of 
p=0.0035, and so you're convinced. 
 
But suppose your data had come out like this (right).  Exactly the same, except the 
one normal subject who now clearly has the weight of the world on his shoulders.  
Your gut feeling probably hasn't changed because this outlier is clearly not 
representative of the group.  However, the t-test now says p=0.06.  This one 
outlying measurement has converted your study form a convincing yes to a 
probable no. 
 
The problem goes back to the way the t-test works.  This one outlier has reduced 
the mean and greatly increased the SD of the measurements in the normal group, 
to the extent that the t-test is no longer sure the two groups are different. 
 

Non-parametric tests 
The three non-parametric tests appropriate for discussion here are Wilcoxon's sign-rank test, the Mann-Whitney U test 
and the Kruskal-Wallis test.  These are all based on rank order; the actual measurement is not important, just its rank 
order in relation to the other measurements.  The stats package will do the ranking for you, but the process is something 
like this: 

• Arrange all the measurements in order, smallest to largest; 
• Number the measurements from 1 (smallest) to (in our case) 30 (largest); 
• If two measurements are exactly the same, they will share a number. 

The Mann-Whitney U test 
This is a non-parametric replacement for the two-sample t-test used above.  In SPSS, you need to arrange the data 
exactly as for the two-sample t-test, but simply choose the alternative test. 

• For the first set of results, Mann-Whitney says p = 0.007. 
• For the second set of results, Mann-Whitney says p = 0.009. 

 
These values can be interpreted exactly as for the t-test - the probability that your result (or one more extreme) would 
have been observed, if there was no link between patient group and quality of life.  Notice that: 

• In the first set of data, Mann-Whitney is not as sensitive as the t-test.  When the data follow an (approximately) 
normal distribution, the t-test is generally better. 

• However, Mann-Whitney gives a very similar result for the second set of data.  When the data are non-normal 
(particularly, with outliers), Mann-Whitney is better. 

 
There are formal ways to test your data for normality, but like all statistical tests they become more sensitive as you 
increase the sample size.  For large samples, they tend to indicate your data are not normal even in cases where the t-
test would be absolutely fine.  The moral is: plot your data first!!! 

The Wilcoxon signed-rank and Kruskall-Wallis tests 
These tests work in a very similar way to Mann-Whitney: 

• Wilcoxon is a direct replacement for the paired t-test; 
• Kruskall-Wallis is a direct replacement for one-way ANOVA. 

 
In SPSS, you arrange your data exactly as for the corresponding t or ANOVA test, then simply pick the alternative non-
parametric test from the menu.  Much as this might not be considered good etiquette, it's easy to perform both tests to 
see how things work for your own data. 
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Writing up your statistical test 
A bit of re-iteration here.  When you come to write up your results in a paper, the traditional way has been something 
like this: 
 
Apnoea duration in the normal group was significantly different to that in the post-stroke group (p<0.05). 
 
There are some shortcomings in this style of report: 
 

• Statistical significance shows only that the effect is probably not due to chance.  It says nothing about how 
clinically important the effect is. 

 
• You get no impression of how big the effect is. 
 
• The style p < 0.05 is a throwback to the days of statistical tables, where the exact probability couldn't be 

computed.  It's crazy to suggest that p = 0.049 is dramatically different to p = 0.051.  These days, you should 
be using a computer that can give the exact value, so quote it and let the readers judge the evidence for 
themselves. 

 
You would be better using something like this: 
 
Mean apnoea duration in the normal group was 0.45 s (95% CI  0.31 to 0.59 s), but in the post-stroke group was 0.63 
s (95% CI 0.52 to 0.74 s). 
The mean difference in apnoea duration between the groups was 0.18 s (t-test, p = 0.023, 95% CI 0.11 to 0.25 s). 
 
Or perhaps, you might summarise the data in a table: 
 

 Normal group (n=10) Post-stroke group (n=10) Difference (normal to post-stroke) 
 Mean 95% CI Mean 95% CI Mean 95% CI P ( two-sample t-test) 

Apnoea duration 0.45 s 0.31 to 0.59 s 0.63 s 0.52 to 0.74 s 0.18 s 0.11 to 0.25 s 0.023 
… … … … … … … … 

 
The important points are: 
• Give the means for the two groups and the difference between them, so you get an impression of the effect (about 

0.18 s) in relation to the individual measurements. 
 
• The 95% confidence intervals are given. These let the reader judge how confident you are that your mean values 

are accurate.  These values will be produced by your stats package. 
 
• There's nothing wrong with p values; just give the exact value and discuss it later.  Let the readers judge for 

themselves how to interpret your data.  Again, the p value will be produced by your stats package. 
 
• You can also include the numbers of subjects in each group, though this should of course be given elsewhere in 

the paper, and cite the test being used. 
 

Once again… 
At risk of becoming boring, we'd like to see you plot your data (right).  
From the figure, you get immediate impressions: 
• The numbers of subjects studied are relatively small. 
• There's quite a lot of spread, giving considerable overlap between 

the two groups; 
• Nevertheless, the post-stroke group have a mean apnoea duration 

that's about 25% longer than the normal group. 
• The difference probably isn't due to chance alone. 
 
This just backs up what the statistical data in the table tell you. 
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7 
Links in numeric variables: correlation 

and regression 

7 
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Demonstrating a link in numeric data - correlation 
Here are some results from a 'height versus phonation frequency' 
experiment (right).  You think there's a link between height and 
phonation frequency, but would like the statistical test to show it 
formally.  That test is correlation.ψ 

Performing the correlation 
In your stats package, you'll set up your data something like this: 
 

Height Frequency 
156 0.88 
145 1.02 
159 0.77 
… … 

 
And select the correlation option from the menu.  You'll need to select the two columns.  The values are clearly paired, 
so both columns must contain the same number of measurements. 
 
Many stats packages let you pick 3 or more variables, and produce a cross correlation table, where everything is 
correlated with everything else.  This is fishing for links, a recipe for torturing the data. As we said earlier, be very 
careful what you read into multiple comparisons. 
 

Interpreting the correlation 
For the data shown, the stats package will say something like: 

• r = -0.48 
• p = 0.007 

 
The r value is loosely equivalent to the t statistic.  It's a test statistic that quantifies the agreement between the two 
variables.  The r value has the following properties: 

• It is always in the range -1 to +1; 
• A positive r value means that the variables tend to increase and decrease together 
• A negative r value means that as one variable increases, the other tends to decrease (as above) 
• A value of +1 indicates a straight-line relationship between the two variables with a positive slope. 
• A value of -1 indicates a straight-line relationship between the two variables with a negative slope. 
• A value of 0 indicates no relationship whatsoever between the variables. 
• Correlation shows only that two variables are related!!!  It is completely insensitive to the actual numerical 

values of the two variables.  You could multiply all the heights by 100, or add 50 to each frequency - the 
correlation coefficient would be exactly the same. 

 
Next, the p value.  This is interpreted exactly as for every other p value as the probability that this value of r (or one 
more extreme) would have arisen by chance alone.  For our example, you could interpret it like this: 

• Write down all the heights on scraps of paper, and put them in one hat; 
• Write down all the frequencies on scraps of paper, and put them in a second hat; 
• at random, pick a height and a frequency, your first pair of measurements; 
• repeat until you have all the pairs of measurements; 
• now work out the correlation coefficient for the pairs of measurements you just created. 

 
The p value is the probability that your 'random chance' correlation coefficient is 0.48 or higher.  Since p=0.007, you'd 
expect it in 7 out of every 1000 trials.  Once again, don't try it. 
 

Correlation shows only that two variables are related!!! 
It is completely insensitive to the actual numerical values of the two variables. 

                                                           
ψ The correct name is Pearson's product moment correlation coefficient, sometimes called 'the Pearson', 'the correlation 
coefficient', or 'the r value'. 
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Some examples of correlation 
Here are examples of data with a range of correlation coefficients: 

• (top row)     r = -1.0,     r =-0.62,     r =-0.21. 
• (bottom row)     r = +0.50    and     r =+1.0. 

 

 
  

 

 

 
 
 
 

Quantifying the effect - linear regression 
Once you've established the relationship is real, you will 
want to say something about the effect.  In this case, you 
want to know how much the height affects the phonation 
frequency. 
 
Superimposed on the graph (right) is the regression line.  
Clearly, you couldn't draw a straight line that went through 
all the points.  The stats package has calculated the 
regression line such that the errors in phonation frequency 
are reduced to the absolute minimum. 
 
Underneath is printed the regression equation: 
 

y = -0.0077x + 1.9515 
 
 
This equation simply represents the line on the graph.  
Remember that: 

• The x axis represents height in cm (the independent or predictor variable); 
• The y axis represents frequency in kHz (the dependent or outcome variable). 
 

You could interpret the equation like this: 
• At a height of 0 cm, you would expect a phonation frequency of 1.9515 kHz. 
• For every 1cm increase in height thereafter, the phonation frequency will decrease by 0.0077 kHz. 

 
So this agrees in principle with the correlation coefficient; as height increases, frequency decreases. 
 
If you knew a person's height, you could now use the regression equation to predict their phonation frequency.  Since 
there's lots of variability it probably wouldn't be exactly right but on the evidence of this study, this would be your best 
possible estimate of their phonation frequency. 
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Non-parametric tests 
Just as for the t-test, there is a non-parametric version of the 
correlation coefficient. 
 
Here (right) are some results you might have obtained from 
the 'height versus phonation frequency' experiment.  There's 
clearly a strong relationship here, and for these data: 

r = -0.81,    p = 0.000 138 
 
So the statistical test agrees with you. 
 
 

Correlation and outliers 
Now, introduce just a single outlier (bottom): 
 

r = -0.2,   p = 0.47 
 
All of a sudden, the story isn't so convincing.  This is quite 
a common problem with correlation; it is VERY sensitive to 
outliers. 
 

Rank correlation 
There is a non-parametric test called Spearman's Rank 
Correlation Coefficient.  Your stats package will probably 
do it; Minitab and Excel don't, but it's quite simple: 

• Rank the height measurements in order, smallest = 
1, biggest = 15; 

• Rank the frequency measurements in order, 
smallest = 1, biggest = 15; 

• Calculate a standard correlation coefficient by replacing each measurement with its rank number, rather than 
on the measurements themselves. 

 
So: 

• For the first set of data, Spearman's rank correlation coefficient (rs) is -0.79 (p < 0.001). 
• For the second set of data, Spearman's rank correlation coefficient (rs) is -0.53 (p = 0.043). 

 

Parametric or non-parametric? 
We’ve already covered this, but for completeness, here are the issues again. 
 

• There is a wider range of parametric tests available. 
• Parametric tests are better when the data are normally distributed, and will also work well with small 

deviations from normality. 
• Non-parametric tests are generally more robust in the face of outliers. 
• There is a general feeling that non-parametric tests work better with small sample sizes.  This isn't true! 

 
Most statisticians would probably stick with parametric tests, perhaps using a logarithmic transform if necessary. So, 
once again: 
 

Check with the statistician. 
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8 
Reliability, validity and agreement 

8 
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Agreement - what’s it all about? 
This is a relatively new addition to the manual, and we’ve added it because so many people have needed it in the past.  
Reliability and validity are both well-used when describing the performance of a clinical test.  The terms are often used 
interchangeably, and in fact both are measures of agreement.  In some cases, you can use the same statistics to describe 
both, which just adds to the confusion.  So here’s the thing: 

Reliability 
Reliability is to do with repeatability. A reliable test will give the same answer every time you use it.  If you want to 
measure the reliability of a test, you need to apply the same test on two or more occasions. 
 

Reliability: agreement across repeated applications of the same test. 
 
For any test, the hope is that the outcome of the test reflects only the clinical status of the patient.  Ideally, the test could 
be performed by a different person, using a different instrument on a different occasion and they would get the same 
answer.  In practice, that isn’t the case – there are lots of sources of error: 

Instrumental errors 
Measuring instruments are not entirely reliable.  To assess instrumental errors, you will ideally make the measurement 
on a so-called phantom, an inanimate object with known properties that are absolutely constant.  For example, you 
could use a rock to assess the errors in a set of weighing scales. Presumably, this led to the stone being adopted as a 
unit of weight. If you must use live subjects, you would want to make repeated measurements on the same subject, 
closely spaced in time to be sure the subject themselves hadn’t changed. 
 
You might split instrumental errors down further.  For within instrument errors, you are interested in the variation from 
one measurement to the next on a given set of weighing scales.  These errors might be due to friction in the mechanism, 
or perhaps exactly where on the weighing pan you put the rock.  For between instrument errors, you would study the 
agreement between two different sets of scales.  For example, one set might be reading low relative to the other because 
it has been calibrated incorrectly. 

Rater errors 
This is all fine for an objective measurement, where the test is not open to interpretation by the user.  For example, a 
set of digital weighing scales is reasonably objective.  Things start to get more complicated for old-fashioned scales 
with a moving dial.  The weight you get depends what angle you read the scales from (or how optimistic you’re feeling), 
but it’s still hard to affect the measurement by more than a kilogramme or two.  You probably wouldn’t be worried that 
the person reading the scales was having a big effect on the measurement. 
 

 
 
Many tests are at the opposite end of the scale.  For example, assessment of radiological images is highly subjective.  
The clinician doing the rating is actually part of the measuring instrument. 
 
This being the case, you can measure within-rater (intra-rater) and between rater (inter-rater) agreement, just as you 
can for within-instrument and between-instrument agreement.  There’s no difference because the rater is just part of the 
instrument. 

Within-subject errors 
Even with an instrument that gives good repeatability on a phantom, it is likely that repeated measurements on a live 
subject will not be identical.  Weight varies according to hydration status, and blood pressure from minute to minute. 

Hmm - don't book 
any long holidays.

Objective measurement
rater error is probably unimportant.

Subjective measurement
rater error needs consideration.
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Test-retest errors 
If you’re keen you can separate out all these different sources of error.  But unless you’re very keen, you are probably 
just interested in the overall effect on your own experiment.  The easiest way is to measure test-retest agreement, ie. 
you make the measurement now, and you make the same measurement again in a little while.  It’s likely though not 
essential that you will use the same measuring instrument and the same rater on both occasions.  In this case, you will 
be estimating the combined effect of within-instrument, within-rater and within-subject errors. 

Validity 
Reliability is agreement across repeated applications of the same test.  Our set of scales can be reliable by measuring 
the same thing repeatably – but are the measurements valid?  Let’s say we’re trying to diagnose reflux.  I can give 
you a highly reliable diagnosis of every patient you meet: they have reflux.  The next time I assess the same patient, I 
give the same answer. It’s reliable, but of very little value. 
 

 
So … reliability is no use without validity.  Less obviously though, you can’t have validity without reliability.  If a test 
isn’t reliable (the results aren’t consistent from one measurement to the next), then some of the time it must be wrong. 
 

Validity: agreement of a test with the right answer. 
 
Validity is always in the eye of the beholder.  A test that is valid for detecting cancer is unlikely to be much use in 
measuring voice quality.  To measure validity, you need to measure agreement with some kind of standard that tells 
you the ‘right’ answer.  Notice the scare quote marks around ‘right’ - this is where the problems start. 

Criterion validity 
The best way is if you have an indisputably correct answer.  A good example might be the diagnosis of cancer – 
presumably a patient either has the disease, or doesn’t.  That is the correct answer.  If you were developing a new 
screening test for cancer, you would want to validate it against the known diagnosis (from biopsy, say).  That’s criterion 
validity – agreement with a criterion that gives the known correct answer.  Of course if you dig a little deeper you 
realise that occasionally a biopsy gets it wrong – but not that often, so it’s a reasonably good standard. 

Construct validity 
Sometimes, there is no right answer.  Suppose you were developing a new questionnaire to measure reflux.  It comes 
up with a number from 0 (normal) to 10 (very bad).  Is it valid?  
 
Well, in this case you there isn’t a right answer.  It isn’t going to give exactly the same answer as an instrumental 
investigation but you could make some predictions: 

• It will probably have some relationship with other methods to measure reflux such as pH-metry. 
• If a person’s reflux changes, it probably should measure the change. For example, you might apply the 

questionnaire before and after prescribing a course of PPI; it ought to show a change in response to the therapy. 
This is construct validity – showing that your new test responds to the things you predict it should respond to. 

These scales have good reliability...

...but not validity.
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Measuring agreement – categorical stuff, reliability and Kappa 
Reliability is agreement across repeated applications of the same test.  So – how should you measure reliability?  Let’s 
take an easy case, a clinical diagnostic test for aspiration.  The answer from the test is ‘yes’ or ‘no’: we’re not going to 
allow a ‘not sure’.  Two experiments come to mind: 
 
Test-retest agreement: Perform the test now, and repeat it in an hour.  Measure agreement between the two tests. 
Inter-rater agreement: You and your colleague observe the same test, and privately form your own view on the results.  
Measure agreement between your judgements. 
 
It doesn’t matter which experiment you perform; you can measure agreement the same way. 

Pairwise agreement 
The easiest thing is just measure how often the pair of tests agreed.  This is pairwise agreement.  If you perform the 
test on 20 patients and agree on 14, then the pairwise agreement is 70%.  You can do exactly the same thing for three 
or four repeats of the test, or for three or four raters, just measuring agreement between each pair of raters in turn.  It’s 
perfectly okay to quote this as your measure of agreement. 

The Kappa statistic 
Pairwise agreement makes no allowance for raters sometimes agreeing by chance.  In our simple example, two raters 
who were just guessing would expect to agree about half the time.  The Kappa statistic is an attempt to correct for the 
expected chance agreement.  Lots has been written about Kappa – some love it, others hate it – but here are the facts 
that no-one will dispute… 
 
Kappa uses pairwise agreement, but simply changes the 
measurement scale.  Work out what pairwise agreement you 
would expect by chance, and call that zero agreement.  In our 
simple case above, you would re-label 50% agreement as zero 
agreement, as shown in the picture.  And that’s it.  Think of it 
like changing from Fahrenheit to Centigrade: the actual 
numbers change, but higher is still hotter (or better agreement). 

The Kappa statistic and bias 
The problem arises with this expected chance agreement 
business – how do you work it out?  Well if there are two choices 
then surely it’s just 50%? But them, I can make myself look like 
a great rater just by guessing ‘yes’ all the time; then I agree with 
myself all the time.  Kappa sorts this out by taking account of 
bias. If the ratings are biased, they will tend to agree more often, 
and the expected chance agreement is higher.  You might end up 
with something like this (right), where the expected chance 
agreement is 70% (0.7). 
 
Even this isn’t as simple as it sounds. There are versions of Kappa described by Fleiss and Cohen, and they measure 
expected chance agreement differently.  But maybe the ratings are biased towards ‘yes’ because all the patients really 
are aspirators.  In that case, it seems a bit unfair to put the agreement down to bias. 
 

Kappa assumes that any bias is not real, and is the fault of the raters. 
It gives a misleadingly low agreement when the patients or whatever being rated are truly biased. 

  
If you are going to use Kappa, make sure the data being rated are not heavily biased towards one outcome or the other. 
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A bit more oddness… 
An unexpected corollary of this effect is seen if you work out the intra-rater agreement separately for each of the raters 
in a study.  It’s possible that rater one might actually agree with themselves more frequently than rater two, but get a 
lower Kappa score because they are more biased in their ratings.  Look at the table… 
 

  Patient number 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Rater 
1 

1st 
rating 

                    

2nd 
rating 

                    

                      

Rater 
2 

1st 
rating 

                    

2nd 
rating 

                    

 
Rater 1 and rater 2 both rated the same 20 patients on two separate occasions.  They both disagreed on just one occasion 
(patient 20).  They both had the same pairwise agreement (95%).  But rater 2 has a higher Kappa score, simply because 
he or she was less biased; tthe expected chance agreement for rater 1 was 50%, but for rater 2 was 53%. 
 

Weighted agreement 
Pairwise agreement and Kappa are most appropriate for categorical things: yes or no, normal or abnormal.  But many 
questionnaires and scales have four categories (0=normal, 3=severe).  Either two ratings agree or they don’t, but this 
doesn’t seem quite fair. If the two ratings are 2 and 3, then this seems like better agreement than 0 and 3. 
 
In this case, it seems reasonable to award some credit for partial agreement.  If we award an agreement score of 3 for 
two identical ratings, we might award a score of 2 when the ratings are one point apart, or a score of 1 when the ratings 
are two points apart.  This is weighted pairwise agreement.  You can go on to calculate weighted Kappa exactly as 
before, but using the weighted pairwise agreement. 
 
But by using Kappa like this, you’re getting on dodgy ground.  In the extreme, you could have a rating scale with 100 
categories and Kappa wouldn’t be the right choice.  Some people will argue that you should use the intra-class 
correlation coefficient instead, but this isn’t necessarily correct.  First, the two give almost the same answer; the ICCC 
is often used to estimate Kappa.  But more importantly, correlation isn’t the right answer either.  Read the later page 
on correlation. 

Remember… 
This is quite high-level stuff.  We’ve put it in here because it’s something that lots of people come across, but don’t 
worry if you don’t understand it.  All will become clear when you actually try to use it. 
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Measuring validity - evaluating a diagnostic test 
We’ll talk about validity by example.  You are investigating the swallows of normal elderly, and of patients who are 
known aspirators.  Let’s suppose you suspect a link between aspiration and apnoea duration. 

Picking a gold standard 
If you wanted to measure the validity of your clinical diagnostic test, you first need to decide on the standard you’re 
going to measure against.  Let’s suppose you pick VF as your criterion standard, so you’re measuring criterion validity. 

Performing the study 
You recruit 40 patients of whom 20 aspirate according to the VF gold 
standard.  You need to compare the apnoea duration of the normal and 
aspirator groups. Using the two sample t-test, p = 0.000 000 065, and 
so the probability of this outcome by chance alone is tiny. 
 
The effect is measured as follows: 

• The mean apnoea duration for normals is 0.26 s. 
• The mean apnoea duration for aspirators is 0.51 s. 

 
This, along with the 95% confidence intervals, is shown on the figure.  
Subjects with a longer apnoea duration are more at risk of aspiration. { 
Except that it’s more likely to be the other way round, but we’ll ignore that! } 
 
Given results this convincing, you might reasonably think to use the apnoea duration as a non-invasive clinical test to 
detect aspiration without exposing the subject to X-rays. 

Setting the test cutoff 
To use the apnoea duration as a diagnostic test, you need to pick a cutoff value of apnoea duration. 

• Below this cutoff level, you will describe the measurement as normal. 
• Above this cutoff level, you will describe the measurement as abnormal; 
 

There will, of course, be a trade-off: 
• If you pick a low cutoff level, you will detect most of the aspirators, but probably detect some of the normals 

as well. These would be called false positives. 
• If you pick a high cutoff level, you will have few false positives, but probably miss some of the true aspirators. 

These would be called false negatives. 
 

As a first attempt, you might well pick 0.37. It's half way 
between the two mean values, so might be a reasonable 
trade-off.  The figure (right) shows what happens if you 
pick that cutoff.   

• Subjects in the red and green sections were 
predicted correctly.   

• Subjects in the yellow sections were predicted 
wrongly. 

 
By just counting the numbers of dots in each section, you 
can create a contingency table: 
 
 

 Normal  
on video 

Aspirator  
on video 

Predicted  
aspirator 4 17 
Predicted  

normal 16 3 
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Validity, pairwise agreement and diagnostic accuracy 
As a first attempt, you can use very similar statistics as before; pairwise agreement between the new test and the VF 
standard.  This would be called diagnostic accuracy ie. the overall proportion of times that the new test gets the correct 
answer. In our case, this was 16 out of 20 normals and 17 out of 20 aspirators.  In total, the new test was correct on 33 
out of 40 occasions, so the diagnostic accuracy is 83%.  You can correct for chance agreement just like for Kappa. The 
expected chance agreement is about 0.5 (50%), so our corrected agreement by treating chance agreement as zero is 
0.66.  This isn’t called Kappa, but it’s the same idea. 

Sensitivity and specificity 
In practice, you can do a bit more because you know the right answers from your VF standard.  Each patient can be 
classified according to the following table: 
 

 
What the 

gold standard said 

Negative Positive 

What the 
new test said 

Positive FALSE 
POSITIVE 

TRUE 
POSITIVE 

Negative TRUE 
NEGATIVE 

FALSE 
NEGATIVE 

Sensitivity 
The proportion of people with the disease that are correctly detected.  
 
In our case (previous page), we detected 17 out of the 20 aspirators, or 85%. Notice that 
to calculate sensitivity we only need to study people who definitely do have the disease and see 
how many we spot with the new test.  People who don’t have the disease do not enter into the 
calculation. 

Specificity 
The proportion of non-diseased people that are correctly identified as such. 
 
We correctly identified 16 out of the 20 normals, or 80%.  To calculate specificity, we only 
need study people who definitely don’t have the disease and see how many we reject with the new 
test. 

Positive and negative predictive values 
Sensitivity and specificity are important, but don’t take account of the population split, the proportions of normal versus 
diseased.  Suppose you have a screening test for ALD (a rare disease, see Lorenzo’s oil) that is correct 90% of the time, 
ie. sensitivity and specificity are both 90%.  What does a positive test mean?  There’s 1 in 20,000 people who have the 
disease, but a 1 in 10 chance the test is wrong.  Which is more likely? 
 
Clinically more appropriate statistics are predictive values.  This is what matters to your patient; if they have a positive 
(or negative) test, how likely is it that they really have (or don’t have) the disease?  In our ALD example, a positive 
test means you have about a 1 in 2,000 chance of having the disease.  Yes really. You don’t believe it, do you? 

Positive predictive value 
 The proportion of positive tests that really have the disease. 
 
17 out of the 21 indicated positives were actually positive, so PPV = 81%. 

Negative predictive value 
And likewise…The proportion of negative tests that really don’t have the disease. 
 
16 out of the 19 indicated negatives were actually negative, so NPV = 84%. 

  
  

  
  

  
  

  
  

FNTP
TPySensitivit
+

=
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TNySpecificit
+

=
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Statistical tests if you want them - the chi-squared test 
You've reduced the numeric measurement (apnoea duration) to a binary categorical variable (predicted aspirator or 
predicted normal), and given some summary statistics sensitivity, specificity, etc. that tell you how well the test works. 
Often you won’t need any more, but if you only have a few patients you might want to show that the effect you see 
isn’t just a fluke.  
 
The chi-squared (pronounced kye squared) test is appropriate for 
analysing such data. The table (right) gives some clue how the test 
works: 

• Assume that the subjects ought to be distributed evenly 
amongst the four quadrants, 10 in each¥; 

• Work out the residual - the difference between the actual and expected distribution of subjects; 
• Work out how likely the actual pattern is by chance alone. 

 
Here's the rest of the output, very like the output for the other tests.  The chi-squared statistic 
is loosely equivalent to the r value in that it's a statistic calculated directly from the data.  
The sig (or p) value can be calculated from chi-squared if you know the number of degrees 
of freedom.  In this case, the value of 0.001 means this arrangement of patients among the 
four quadrants is very unlikely.  
 
More commonly, you will want to compare one test with another to show which is best.  A slight alteration of the chi-
squared test can be used. 

Some other things about chi-squared 

• Outliers aren't a problem for chi-squared, because the data are categorical and not numeric; 
• Since the data are not numeric, and chi-squared doesn't rely on properties of the normal distribution it is a  

non-parametric test. 

Fisher's exact test 
Chi-squared can be adjusted for small numbers of measurements, but it is not recommended for use when any of the 
expected counts are less than 5.  You can read the expected counts from the SPSS output above.  In this case, you 
should use Fisher's exact test.  Fisher's exact test works for contingency table data just as for chi-squared, but works 
out the exact probability of the observed distribution by laboriously going through all the different possible 
combinations. 
NOTE: for chi-squared, the actual observed count might be zero. It's the expected count that is important in deciding 
whether or not you have enough data to believe the results. 
 

But beware… 
What was described here was a retrospective analysis; the new test was developed, and then evaluated on the same 
data.  It would be better to do a prospective trial of the new test with fresh patients.  The performance would inevitably 
be poorer, because it is very unlikely that the best cutoff for one set of subjects would be best for a second set. 

                                                           
¥ It isn't always this easy to work out expected values. Our numbers came out like this because there were equal numbers 
of normals and aspirators.  In reality, go to a stats book to find out the proper way to work out the expected values. 

 Observed N Expected N Residual 
1.00 4 10.0 -6.0 
2.00 17 10.0 7.0 
3.00 16 10.0 6.0 
4.00 3 10.0 -7.0 

Total 40   

Chi-square 17.00 
Df 3 

Asymp.sig .001 
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Some more about cutoffs – the receiver-operator characteristic 
Back to the original data.  We picked a cutoff of 0.37 because it 
seemed about right, but you could put the cutoff anywhere.  In 
our example, a lower cutoff would improve sensitivity with more 
true positives so we would detect more aspirators. This is at the 
expense of specificity because with more false positives we 
falsely diagnose more normals as aspirators. 
 
Clearly, there is a trade-off to be had.  The cutoff we choose to 
use will depend on what the test is for.  If this was a screening 
test for cancer, it is essential we don’t miss any positives.  We 
would want a very high sensitivity, at the expense of specificity. 
False positives scare the patient and are a drain on healthcare, but 
false negatives are potentially fatal. 
 
If this test was being used to recommend radical surgery, things change.  We don’t want to operate on anyone unless 
we’re absolutely sure they have the disease, so we would require high specificity.   

Receiver-operator characteristics 
The receiver-operator characteristic is a graphical means of showing this trade-off between sensitivity and specificity. 

 
• Suppose we use a very high cutoff (0.9, say) to diagnose aspiration.  We’ll score everybody as normal, whatever 

their true status.  That gives us a point on the bottom left of the graph. 
• If we used a very low cutoff (less than 0.1), everybody gets scored as aspirators.  That gives us a point on the top 

right of the graph. 
• For a good test, you want to score a diseased person as diseased, but not to score a normal person as diseased.  This 

would (ideally) give us a point at the top-left of the graph.  The closer to the top left, the better. 
 
It turns out that the area under this curve, the blue shaded area in the picture, is an absolute measure of how well the 
test can separate the two patient groups.  It is independent of the particular cutoff you choose to use.♣ 

                                                           
♣ If you really want to know, the area under the ROC curve is the probability that a randomly chosen aspirator will have 
a higher apnoea duration than a randomly chosen normal person.  With a value of 1, this would mean that any aspirator 
has a higher duration than any normal – so the test is very useful.  With a value of 0.5, it’s 50-50 – this means the 
aspirators and normals are all mixed up, and the test has no diagnostic value. 
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 Measuring agreement – The use and abuse of correlation 
 

Correlation shows only that two variables are linked!!! 
It is completely insensitive to the actual numerical values of the two variables. 

 
Correlation is often used to measure agreement between two different instruments that are 
meant to be measuring the same thing.  Suppose you just bought a new set of weighing 
scales.  You want to check they read the same as the old ones, and so you recruit 40 of 
your best friends and weigh them using both sets of scales.  Here are your results (right). 
If the two scales agree, the points should lie on the blue line of equality.  The correlation 
coefficient is 0.88, and you conclude there is good agreement between the two sets of 
weighing scales.  But is there?  Look at the two figures below: 

 
In the first 
example, there's 
a clear problem. The new scales are 
systematically under-measuring the weight 
relative to the old scales, but the correlation 
coefficient is still 0.88.  That's because the 
correlation coefficient is insensitive to the 
numbers involved. There is still a relationship 
between the measurements, and so the 
correlation coefficient is the same. 
 

In the second example we've used the same weighing scales and the same measurements, except this time plotted only 
15 subjects' data, excluding some with very high and low weights.  But now, r is only 0.33.  However, it would be 
ridiculous to say the scales have suddenly gotten worse because the data still lie close to the blue line of equality.  
Nevertheless, if you imagine the graph axes were taken away, there is now no clear linear relationship between the 
values. 
 

A correlation coefficient improves when the overall range of the data is increased. 
 
The proper way to analyse the data was described at length by Bland & 
Altman, and is shown (right).  You should: 

• Calculate the difference between each pair of measurements.  
This represents the error, though you can't say which pair of 
scales is causing the error. 

• Calculate the mean of each pair of measurements.  This 
represents your best estimate of the true weight. 

• For each subject, plot the difference (y-axis) against the mean of 
the two measurements (x-axis). 

 
The appropriate statistics are: 

• The mean difference between the two measurements (0.05 kg), 
which reflects any systematic difference between the scales. 

• The standard deviation of the difference between the two 
measurements (3.75 kg), which reflects the overall random error. 
NOTE: you can't say which set of scales is the inaccurate one. 

 
You can then mark the mean difference (in red), and the limits of agreement (in blue, 2 standard deviations either side 
of the mean) on the graph, as shown.  In an ideal world, all the points would lie on the X-axis where there is no 
difference between the measurements.  Deviations from the ideal can be interpreted as follows: 

• For 95% of all measurements, the difference will lie within the limits of agreement. 
• If the mean difference (red line) is not zero, then one of the tests may be systematically over-estimating with 

respect to the other. 
• You could calculate a standard error of the mean, as described earlier, to better evaluate whether the 

discrepancy is statistically significant.  In effect, you would be conducting a paired t-test between the two sets 
of scales. 
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Useful resources 
Books we like 
• Statistics at square one.  TDV Swinscow and MJ Campbell.  BMJ Books. 
A very simple, but extremely useful book.  Covers a lot of the same things we do.  Now in its tenth edition, so it can't 
be doing too badly. 
 
• An introduction to medical statistics.  Martin Bland.  Oxford Medical Publications. 
A classic of its time.  More comprehensive than the BMJ book, but more maths too. 
 
 

Papers we like 
Reid MC, Lachs MS,  Feinstein AR. Use of methodological standards in diagnostic test research. Getting better 
but still not good. JAMA 1995; 274(8): 645-51.  
Contains guidelines on good practice if you're developing a diagnostic test, but is also of general interest. 
 
Bland JM. Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. 
Lancet. 1986; 1(8476): 307-10, 1986. 
Another classic of its time - on measuring agreement.  Read it now. 
 
Begg CB, Cho MK, Eastwood S, et al.  Improving the quality of reporting of randomized controlled trials: the 
CONSORT statement. JAMA. 1996; 276: 637-639. 
If you're doing a controlled trial, you should read this paper.  Some journals insist you follow the guidelines. 
 

Web sites we like 
• Statsoft 
A very comprehensive on-line statistics handbook, with some cute animated pictures: 
 

http://www.statsoft.com/textbook/stathome.html 
 
You used to be able to download the whole thing, but at last check that had changed.  If you have trouble, contact 
Michael D for your own copy. 
 
 
• Power calculations 
 

http://www.stat.uiowa.edu/~rlenth/Power/index.html 
 
 
This web site is very useful for research design.  You can work out sample sizes for a range of experimental designs. 
 
 
• Bandolier 
 

http://www.jr2.ox.ac.uk/bandolier/ 
 
An on-line journal for evidence-based medicine.  Very evangelical, but worth a look. 
 
 
 

http://www.statsoft.com/textbook/stathome.html
http://www.stat.uiowa.edu/%7Erlenth/Power/index.html

	Ten things to remember
	Write a protocol before starting the study.
	Talk to a statistician BEFORE you mess up the study - not afterwards.
	BACK UP YOUR DATA - computers are cheap and replaceable, but research data are neither cheap nor replaceable.
	Plot your data.
	Use a computer stats package to do your statistics - don't do them by hand.
	The p value indicates the probability that there is no link between the test variables, and the observed pattern (or one even more extreme) arose by chance.  It will be improved by: a bigger effect; making more measurements; less random variability be...
	Don't confuse statistical significance with clinical importance.  It's the effect you're interested in - not the p value.  A highly significant p is NOT evidence of a clinically important effect.
	You can never be ABSOLUTELY sure a link is real.
	The correlation coefficient shows there is a link between two variables - but is NOT a measure of agreement.
	KEEP IT SIMPLE!
	1

	Scientific research
	1
	What is scientific research?
	1 You observe some interesting phenomenon in nature
	2 You form a hypothesis to explain how nature is working
	3 You conduct a study to test the hypothesis
	4a You reject your hypothesis based on the outcome of the study
	4b The study supports or at least, doesn't completely refute your hypothesis
	5 After some time, your hypothesis becomes an accepted theory
	But notice…
	And so…

	Picking the right research question
	Is this study worth doing?
	Can these people do it?
	Forming your hypothesis
	What happens next?

	The effect of random variability
	A physics experiment
	A medical experiment
	The need for statistics

	Forming your hypothesis
	The null hypothesis
	A testable hypothesis
	An untestable hypothesis
	The types of variable

	The different types of variable
	Numeric (AKA quantitative) variables
	Continuous numeric variables
	Discrete numeric variables

	Categorical (AKA nominal, qualitative) variables
	Ordered nominal (AKA ranked, ordinal) variables
	Nominal variables
	Dichotomous (binary) variables


	Independent and dependent variables
	Cause and effect
	Independent variable (AKA category, predictor, explanatory variable, cause, factor)
	Dependent variable (AKA outcome, effect)
	For example…

	Experimental studies…
	…and observational studies

	Hypotheses and p values
	The study hypothesis
	The null hypothesis
	Perform the experiment
	Plot the data
	Perform a statistical test to show the link

	The p value and the effect - statistical and clinical significance
	Statistical significance and the number of measurements
	Statistical significance and the spread of data
	To summarise…
	2



	Choosing and refining your research question
	Choosing and refining your research question
	Some drivers to research question development
	3 broad categories of research question
	Brass tacks
	Whose choice is it anyway?
	First Draft
	Checklist
	Go Public
	Pilot
	Things best avoided by the inexperienced
	Curtail the Novelty
	Memos
	And never forget...
	3


	The basics of study design
	3
	Introduction to study design
	Grant applications and protocols
	Write a protocol!

	Bias
	Sampling bias
	Volunteer bias
	Allocation bias
	Response bias (the placebo effect)
	Assessment bias
	Intention to treat
	Lost to follow-up

	Observational studies
	Cross-sectional studies (retrospective)
	Cohort studies (longitudinal, prospective)
	Case-control studies (retrospective)
	Matched controls


	Experimental studies
	A naïve study
	What's wrong with the study?
	The randomized controlled trial

	A randomised controlled trial (RCT)
	Placebo control
	In summary - the randomised controlled trial

	Picking the control
	Control in your study
	Blinding
	Blinding and assessment bias in your study


	The crossover
	Applying the crossover design in your study

	Explanatory and pragmatic studies
	Randomisation
	Block randomization
	Randomisation at outcome

	Sample size
	Type I errors, type II errors and power calculations
	Type I errors
	Type II errors and the power calculation
	4



	Studying the behaviour of random or noisy variables
	4
	How do random variables behave?
	A simple person with 1 gene
	If people had a few more genes

	How does the normal distribution help?
	Parameters of the normal distribution
	What use is this?
	A simple statistical test
	Standard deviations and the normal range

	Populations and samples
	The number of subjects in the sample
	The standard error in the mean (SEM)
	The confidence interval (CI)

	Sampling bias
	Degrees of freedom
	What is a degree of freedom?
	How should you analyse the data?
	5



	Presentation of data
	5
	Summary or descriptive statistics
	Gender (a binary or dichotomous variable)
	Age (a continuous numeric variable)
	Body-mass index (a continuous numeric variable)
	Distribution of subjects (a categorical variable)

	Graphical description of data
	Gender (a dichotomous variable)
	Age (a continuous numeric variable)
	Subject groups (a categorical variable)
	Pie charts

	Plotting the results of a clinical study
	Plotting more than two categories

	Confusing stuff
	Handling data where both variables are numeric
	But beware…
	Footnote

	Parametric or non-parametric statistics?
	Some stuff on non-parametrics

	Standard deviation, standard error or confidence interval?
	6


	Comparing between groups: the t-test
	6
	The single sample t-test
	Interpreting the t-test
	Interpreting the p value
	One or two sided?

	The 2-sample t-test
	Interpreting the two-sample t-test
	Things to note:


	The paired t-test
	Interpreting the paired t-test

	Multiple comparisons and analysis of variance (ANOVA)
	Multiple testing
	Fishing for links
	The Bonferroni correction
	Analysis of variance (ANOVA)

	More about analysis of variance
	Repeated measures ANOVA
	In summary…
	Cautions about ANOVA

	Non-parametric tests
	Non-parametric tests
	The Mann-Whitney U test
	The Wilcoxon signed-rank and Kruskall-Wallis tests


	Writing up your statistical test
	Once again…
	7



	Links in numeric variables: correlation and regression
	7
	Demonstrating a link in numeric data - correlation
	Performing the correlation
	Interpreting the correlation

	Some examples of correlation
	Quantifying the effect - linear regression
	Non-parametric tests
	Correlation and outliers
	Rank correlation
	Parametric or non-parametric?
	8



	Reliability, validity and agreement
	8
	Agreement - what’s it all about?
	Reliability
	Instrumental errors
	Rater errors
	Within-subject errors
	Test-retest errors

	Validity
	Criterion validity
	Construct validity


	Measuring agreement – categorical stuff, reliability and Kappa
	Pairwise agreement
	The Kappa statistic
	The Kappa statistic and bias

	A bit more oddness…
	Weighted agreement
	Remember…

	Measuring validity - evaluating a diagnostic test
	Picking a gold standard
	Performing the study
	Setting the test cutoff
	Validity, pairwise agreement and diagnostic accuracy
	Sensitivity and specificity
	Sensitivity
	Specificity

	Positive and negative predictive values
	Positive predictive value
	Negative predictive value


	Statistical tests if you want them - the chi-squared test
	Some other things about chi-squared
	Fisher's exact test
	But beware…

	Some more about cutoffs – the receiver-operator characteristic
	Receiver-operator characteristics

	Measuring agreement – The use and abuse of correlation

	Useful resources
	Books we like
	Papers we like
	Web sites we like


