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Start End Activity Speaker/Lead Location

850 900 Arrival and Registration Neil Rajan
Biomedicine West 
Reception

900 920 Introductions and 
overview

Neil Rajan
Biomedicine West Lecture 
Theatre

920 930 Lab Health and Safety Julie Taggart
Biomedicine West Lecture 
Theatre

930 950
DNA extraction and 
PCR

Kirsty 
Hodgson

Biomedicine West Lecture 
Theatre

950 1000
Transfer to labs, bag 
storage

NR/KH/SM Rajan/Veltman Labs

1000 1045 Practical - PCR setup NR/KH/SM Rajan/Veltman Labs

1045 1115 Coffee B235 Boardroom

1115 1130
Introduction to animal 
cell culture and skin 
disease models

Pawan Gulati B235 Boardroom

1130 1145

3D culture and 
zebrafish models for 
studying melanoma 
metastasis

David Hill B235 Boardroom

1145 1200
Transcriptomics in 
psoriasis

Nick Reynolds B235 Boardroom

1200 1215
Human cell atlas and 
the skin

Muzz Haniffa B235 Boardroom

1230 1330 Lunch B235 Boardroom

1330 1415 Zebrafish practical David Hill Fish room

1420 1430
Birthmarks and genetic 
mosaicism

Siobhan 
Muthiah

B235 Boardroom

1430 1500
Massively parallel 
sequencing 
technologies

Jonathan 
Coxhead

B235 Boardroom and 
Sequencing facility

1500 1520 Coffee B235 Boardroom

1520 1540 Bioinformatics Simon Cockell B235 Boardroom

1540 1620
Bioinformatics 
practical:Heatmaps!

Simon Cockell B235 Boardroom

1620 1700 PCR gel practical NR/KH/SM Rajan/Veltman Labs

1900 Late! Course dinner
Delegates and 
Faculty

Earl of Pitt street 1900 for 
1930 start

MONDAY



Start End Activity Speaker/Lead Location

900 930
Skin ageing in the 
21st century

Mark Birch-
Machin

B235 Boardroom

930 1000 Biomarkers for melanoma
Rob Ellis/
Penny Lovat

B235 Boardroom

1000 1045

Practical analysis of a 
novel 
immunohistochemical 
prognostic biomarker for 
AJCC stage 1 melanoma

Ashleigh 
McConnell/RE/
PL

B235 Boardroom

1045 1110 Coffee+Cake B235 Boardroom

1115 1130
“Cytometry”:  How to 
become a cell detective

Andy Filby B235 Boardroom

1130 1140
Multi-modal microscope 
based imaging: From the 
organelle to the organ 

Alex Laude B235 Boardroom

1140 1230
FACS, live cell imaging 
demos and single cell 
analysis (4x4 group)

Filby/Laude/ 
Poyner

FACS Facility/Bioimaging/
B235

1235 1300 Analysis of FACS data Andy Filby B235 Boardroom

1300 1400 Lunch and feedback
Rajan/
Reynolds

B235 Boardroom

Tuesday
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DNA extraction and PCR

BAD Research Techniques Course 
International Centre for Life

12 Nov 2018

Overview

• What is PCR?
• Core reagents
• DNA extraction
• Primers
• Thermal cycling stages
• Gel Electrophoresis
• Applications
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What is PCR?
• The polymerase chain reaction (PCR) is a 

technique widely used to study DNA

• Developed in 1983, it is a rapid way of amplifying 
a specific target DNA sequence from a mixed pool 
of DNA (often total genomic DNA)

• Numerous applications in basic and clinical 
research

Six core PCR reagents
• Template DNA

• Primers

• DNA nucleotide bases (dNTPs)

• Magnesium Chloride (MgCl2)

• Taq polymerase enzyme

• Buffer
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DNA extraction

Primer design

Template DNA
5’ GCTGGAAAAATCAAGCAGTTTTGTAAAACCTGCAACACTCAAGTGAGCTTCCCTTCACTTAAT 3’
3’ CGACCTTTTTAGTTCGTCAAAACATTTTGGACGTTGTGAGTTCACTCGAAGGGAAGTGAATTA 5’

Region to be copied

5’	GCTGGAAAAATCAAGCAGTTTTGTAAAACCTGCAACACTCAAGTGAGCTTCCCTTCACTTAAT	3’	
	
	
	
	
	
3’	CGACCTTTTTAGTTCGTCAAAACATTTTGGACGTTGTGAGTTCACTCGAAGGGAAGTGAATTA	5’		

G	C	T	G	G	 A	A	 A	A	 A	T	A	A	 T	T	C	C	A	 G	 G	
Primer	1	

T	 G	 G	A	 T	 T	T	A	 A	A	 A	 A	 A	A	C	C	 G	 G	 G	G	

5’	 3’	
Primer	2	

3’	 5’	
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PCR sample preparation

Master mix
• Buffer
• MgCl2
• Taq polymerase
• Primers
• H2O

Template DNA Thermocycler

Step 1. Denaturing

Double-stranded template DNA is heated to split 
it into two single strands

Template DNA
5’ GCTGGAAAAATCAAGCAGTTTTGTAAAACCTGCAACACTCAAGTGAGCTTCCCTTCACTTAAT 3’
3’ CGACCTTTTTAGTTCGTCAAAACATTTTGGACGTTGTGAGTTCACTCGAAGGGAAGTGAATTA 5’

5’ GCTGGAAAAATCAAGCAGTTTTGTAAAACCTGCAACACTCAAGTGAGCTTCCCTTCACTTAAT 3’

3’ CGACCTTTTTAGTTCGTCAAAACATTTTGGACGTTGTGAGTTCACTCGAAGGGAAGTGAATTA 5’

94-95°C
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Step 2. Annealing

The temperature is lowered to allow the primers 
to anneal to the single strand template DNA

5’ GCTGGAAAAATCAAGCAGTTTTGTAAAACCTGCAACACTCAAGTGAGCTTCCCTTCACTTAAT 3’

3’ CGACCTTTTTAGTTCGTCAAAACATTTTGGACGTTGTGAGTTCACTCGAAGGGAAGTGAATTA 5’

GCTGG AA AA ATAA TTCCA G G
Primer 1

T G GA T TTA AA A A AACC G G GG

5’ 3’
Primer 2

3’ 5’

Step 3. Extension

The temperature is raised and new strands of 
DNA are made by the taq polymerase enzyme

5’ GCTGGAAAAATCAAGCAGTTTTGTAAAACCTGCAACACTCAAGTGAGCTTCCCTTCACTTAAT 3’

3’ CGACCTTTTTAGTTCGTCAAAACATTTTGGACGTTGTGAGTTCACTCGAAGGGAAGTGAATTA 5’

GCTGG AA AA ATAA TTCCA G G
Primer 1

T G GA T TTA AA A A AACC G G GG

5’
Primer 2

3’ 5’GTTGTGAGTTC

TTGTAAAACCTG 3’
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30 – 40 cycles of steps 1 - 3

Template DNA

Cycle 1 Cycle 2 Cycle 3

Exponential 
Amplification

Gel electrophoresis
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Applications
• CRISPR

• DNA Barcoding

• Forensics

• Sequencing

• Genotyping

• Cloning

• Mutation detection

• Paternity testing etc

Further reading/Resources

Strachan T & Read A (2010) Human Molecular 
Genetics (4th Ed). Garland Science (pages 182 –
190).

UCSC Genome Browser
https://genome.ucsc.edu

Primer BLAST
https://www.ncbi.nlm.nih.gov/tools/primer-blast

https://genome.ucsc.edu
https://www.ncbi.nlm.nih.gov/tools/primer-blast
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Pawan Gulati

British Association of Dermatologists Research technique course
Newcastle University

12-13th November 2018
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P<0.05

shNT

shFLG

OIL RED O

P<0.01

↑ Trans Epidermal Water Loss

↓ Epidermal lipid

↑ Cornified Envelope fragility

shNT shFLG

*

Areas where cell culture technology is currently  playing a major role
• Model systems for

Studying basic cell biology, interactions between disease causing agents and cells, effects 
of drugs on cells, process and triggering of aging & nutritional studies

• Virology

Cultivation of virus for vaccine production, also used to study there infectious cycle.

• Genetic Engineering

Production of commercial proteins, large scale    production of viruses for use in vaccine 
production e.g. polio, rabies, chicken pox, hepatitis B & measles

• Gene therapy

Cells having a functional gene can be replaced to cells which are having non-functional gene

• Toxicity testing
Study the effects of new drugs
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Dr David Hill david.hill5@newcastle.ac.uk 
Stratified Medicine, Biomarkers, & Therapeutics,  

Institute of Cellular Medicine,  
Newcastle University, UK 

3D culture and zebrafish models for 
studying melanoma metastasis 

3D culture and zebrafish models for 
studying melanoma metastasis 

• Embryonic zebrafish xenograft 
of human melanoma 

• Full-thickness skin organoid model 

• 3D collagen-embedded spheroids 



3D collagen-embedded spheroids 

Hill DS, and Beaumont KA, et al (2016) 
Cell cycle phase-specific drug resistance as an escape mechanism of melanoma cells.  
J Invest Dermatol; 136:1479-1489. 

Untreated 

Day -1: Grow melanoma cells to 60-70% 
confluence 

Day 0: Add 5000 melanoma cells to 96 
well plates coated with 1.5% agarose 

Day 3: Transfer melanoma spheroids to 
24 well plates in 1 ug/ml collagen gel 

Day 3-10: Use microscopy to monitor growth 
and invasion of melanoma cells into collagen 

for up to 7 days 

3D collagen-embedded spheroids 

Hill DS, and Beaumont KA, et al (2016) 
Cell cycle phase-specific drug resistance as an escape mechanism of melanoma cells.  
J Invest Dermatol; 136:1479-1489. 

Mouse xenograft melanoma 
stained with anti-CD31 

Untreated 



3D collagen-embedded spheroids 

Hill DS, and Beaumont KA, et al (2016) 
Cell cycle phase-specific drug resistance as an escape mechanism of melanoma cells.  
J Invest Dermatol; 136:1479-1489. 

Untreated Bortezomib Temozolomide U0126 (MEKi) 

Full-thickness skin organoid model 

Epidermis 

Dermis 

Normal 
human skin 

Hill DS, et al (2015) 
A Novel Fully Humanised 3D Skin Equivalent to Model Early Melanoma Invasion.  
Molecular Cancer Therapeutics Nov;14(11):2665-73. 



Full-thickness skin organoid model 

MelanA - 
Red 

Type IV collagen - 
Green 

Nuclei - 
Blue 

Week 2 Week 4 

Hill DS, et al (2015) 
A Novel Fully Humanised 3D Skin Equivalent to Model Early Melanoma Invasion.  
Molecular Cancer Therapeutics Nov;14(11):2665-73. 

Full-thickness skin organoid model 
Invasion of metastatic melanoma cells into full-thickness skin organoid 
• Red = SKmel28 melanoma cells 
• White = Cytokeratin 14, marker of keratinocytes 
• Green = Type IV collagen, marker of ECM/basement membrane 
• Blue = DAPI, marker of cell nuclei 



Embryonic zebrafish xenograft of 
human melanoma 

Day -1: Pair up fish for breeding 

Day 0: Collect fertilised eggs 

Day 2: Stain melanoma cells with DiI 
(Red fluorescent dye) 

Day 2: Micro-inject melanoma cells into 
the yolk sac, or circulation of 2-day old 

anaesthetised zebrafish embryos 

Day 2-5: Image live zebrafish by 
microscopy for up to 72 hrs 

Hill DS, et al (2018) 
Embryonic zebrafish xenograft assay of human cancer metastasis.  
F1000Research; Oct, 7:1682-1693. 

72 hours 

500 um 

500 um 

Day 0 Day 1 

Embryonic zebrafish xenograft of 
human melanoma 

Hill DS, et al (2018) 
Embryonic zebrafish xenograft assay of human cancer metastasis.  
F1000Research; Oct, 7:1682-1693. 



Embryonic zebrafish xenograft of 
human melanoma 

Hill DS, et al (2018) 
Embryonic zebrafish xenograft assay of human cancer metastasis.  
F1000Research; Oct, 7:1682-1693. 

Embryonic zebrafish xenograft of 
human melanoma 

Hill DS, et al (2018) 
Embryonic zebrafish xenograft assay of human cancer metastasis.  
F1000Research; Oct, 7:1682-1693. 



Embryonic zebrafish xenograft of 
human melanoma 

500 um 

500 um 

Hill DS, et al (2018) 
Embryonic zebrafish xenograft assay of human cancer metastasis.  
F1000Research; Oct, 7:1682-1693. 

Verykiou et al (2018) 
Harnessing autophagy to overcome MEKi induced resistance in metastatic melanoma.  
Brit J Dermatol; in press. 

Embryonic zebrafish xenograft of 
human melanoma 
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Transcriptomic analysis of psoriasis following 
biologic therapy

Nick J Reynolds
Newcastle University and Royal Victoria Infirmary, 

Newcastle upon Tyne, UK

Outline of talk

z Translational research 
� Identifying important questions and unmet clinical need

z Development of analytical techniques (transcriptomics 
and other omic technologies) that can be usefully 
applied to human tissue samples to address:
� Disease and therapeutic endotypes (psoriasis)



z Lead: Dr Amy Foulkes, Manchester
z GSK-funded pilot study of 10 biologic naïve, psoriasis patients initiating 

etanercept (TNF inhibitor)
z Multiple omic measures at 0wk, 1wk and 12wks

� mRNAseq (Skin biopsies - involved & uninvolved skin)

A pilot omics study of etanercept
response in psoriasis

Psoriasis Stratification to Optimise
Relevant Therapy (PSORT) 

z Multi-disciplinary consortium
� Based around British Association of Dermatologists Biologics 

Intervention Registry (BADBIR)
� Understand determinants of response to biologic therapies 

z Stratification of therapy
� Clinical
� Pharmacological
� Genetic
� Immune



PSORT Integrative Structure

Punch biopsiesVenepuncture mRNAseq

Disease and 
Drug endotype
transcriptomic 

signatures 

RNA

Frozen skin

IHC, validation, spatial 
localisation

Flow cytometry, 
Cytof® mass 
cytometry & 

functional immune 
monitoring

Serum biomarkers 
& drug levels

DNA

Genotyping

Baseline Wk 1 Wk 4 Wk 12

Pt starting biological therapy:
adalimumab or ustekinumab

Sample collection; clinical assessments

Illumina Human
Omni2.5 Beadchip

Discovery Cohort



TNFR1

TGFβ
signalling

Inflammation

Omics
(RNA, protein, FACs) 

Drug Response 
(Connectivity Map)

TNF JNK1
NFKB

IL12

Adalimumab

UstekinumabSecukinumabTNF signalling

Genetic

Skin Plaque

Blood

Predictors of Drug Response

Il-17 signalling IL-12/23 signalling

Drug 
Endotypes

Disease
Endotypes

Molecular &
Immune

Mechanisms

Hypothesis
Driven

Hypothesis
Neutral

z Lead: Dr Amy Foulkes, Manchester
z GSK-funded pilot study of 10 biologic naïve, psoriasis patients 

initiating etanercept (TNF inhibitor)
z Multiple omic measures at 0wk, 1wk and 12wks

� mRNAseq (Skin biopsies - involved & uninvolved skin and blood)

A pilot omics study of etanercept
response in psoriasis



z Advantages compared to gene 
arrays

z Increased sensitivity (low 
abundance transcripts)

z Isoform specific expression

z Integration with genetic data yields 
information on cis and trans eQTL

RNAseq

RNAseq



RNAseq

Principal component analysis of all skin and blood 
transcriptomic samples across all time points



Lesional Non-Lesional

1

2

3

4

Computer cluster analysis

RNAseq

Levels of RNA from individual genes

Red = upregulated (increased)
Green = down-regulated (decreased)

Lesional Non-Lesional

1

2

3

4

Comparison of lesional and non-lesional skin at baseline:
Connectivity map analysis

Cluster 1: 1789 genes up-regulated in psoriasis plaque
- Which drugs down-regulate these genes?

Methotrexate (one of top 3)
• First line treatment for psoriasis

Data base computer search for similar patterns 

Supports concept of disease endotype



Time course analysis of 
anti-TNF response 

• 295 transcripts with different 
levels of expression between 
responders and non-responders

Anti-TNF 
responder  status

Good
Moderate

Poor

A

B

Precision medicine for psoriasis



Perspectives

z Value of combining hypothesis 
driven research with omic analysis 
and data interpretation 

z New analysis techniques readily 
applicable to carefully phenoptyed
clinical samples

z Exciting time to be entering the field
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Birthmarks and genetic mosaicism

BAD Research Techniques Course 

2018

12 November 2018

Aims

• Discuss cutaneous mosaicism and its patterns

• Explore current understanding of naevi in the spectrum of mosaic RASopathies

12 November 2018
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Cutaneous mosaicism

12 November 2018

Mosaicism

Machiela MJ, Chanock SJ. The ageing genome, clonal mosaicism and chronic disease. Current Opinion in Genetics & Development. 2017 Feb 1;42:8–13.

12 November 2018
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• Mosaicism can involve all organs but is most easily apparent in the skin in the form of 
birthmarks

• It can arise through a number of ways
• Loss of heterozygosity

• Lethal mutations

• Nonlethal mutations

Cutaneous mosaicism

12 November 2018

• In an individual heterozygous for a mutation, post-zygotic loss of the corresponding 
wild-type allele may result in a mosaic phenotype

• Benign and malignant skin tumours can be seen as examples of cutaneous mosaicism. 

• This idea is known as the "two-hit" hypothesis, and it was first proposed by geneticist 
Alfred Knudson in 1971.

• LOH may arise from a variety of mutational events

Loss of heterozygosity

12 November 2018
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Loss of heterozygosity

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.

Mitotic crossing-over

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.
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Gene conversion

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.

Point mutation

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.
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Mitotic non-disjunction

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.

Mitotic non-disjunction Deletion

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.
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• Malignant skin tumours originating from LOH

• Nevoid basal cell carcinoma originates from loss of the wild-type

allele at 9q22.3 

Loss of heterozygosity

12 November 2018

Happle R. Loss of heterozygosity in human skin. Journal of the American Academy of Dermatology. 1999 Aug 1;41(2):143–61.

• Happle described patterns of non-lethal mutations as

• Type 1 segmental

• Type 2 segmental

Mosaicism of Nonlethal Mutations

12 November 2018
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Happle, Rudolf. Mosaicism in Human Skin:  Understanding Nevi, Nevoid Skin Disorders, and Cutaneous Neoplasia. 2013. 229 p

Patterns of cutaneous mosaicism

12 November 2018
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Patterns of cutaneous mosaicism

6 archetypical patterns of cutaneous mosaicism can be distinguished

1. Lines of Blaschko

2. Checkerboard pattern

3. Phylloid pattern

4. Patchy pattern without midline separation

5. Lateralisation pattern

6. Sash-like pattern

12 November 2018

Happle, Rudolf. Mosaicism in Human Skin:  Understanding Nevi, Nevoid Skin Disorders, and Cutaneous Neoplasia. 2013. pg 46
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Naevi

12 November 2018

Naevi

• Naevoid proliferations make obvious mosaic presentations particularly when 
they are extensive. Examples include:
– Systemised keratinocytic epidermal naevi (KEN) 
– Schimmelpenning syndrome

–Phacomatosis pigmentokeratotica

• The molecular basis for these naevi continue to be elucidated and recently 
RAS signalling appears to be an important pathway in the formation of some 
naevi

12 November 2018
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RASopathies and mosaic RASopathies

12 November 2018

RAS proteins

• RAS proteins transduce 
extracellular growth factor 
stimuli into the intracellular 
environment

• 2 RAS dependent pathways
–Ras-Raf-MEK-ERK

–PI3K-Akt

12 November 2018

Asati V, Mahapatra DK, Bharti SK. 
PI3K/Akt/mTOR and Ras/Raf/MEK/ERK 
signaling pathways inhibitors as 
anticancer agents: Structural and 
pharmacological perspectives. 
European Journal of Medicinal 
Chemistry. 2016 Feb 15;109:314–41.
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RAS proteins

• RAS proteins are encoded for by 3 genes
–HRAS, KRAS and NRAS

• Activating mutations in RAS genes are found in 30% of human cancers

12 November 2018

RASopathies and mosaic RASopathies

• “RASopathies are a group of syndromes with overlapping clinical symptoms 

due to GERMLINE mutations in the Ras/MAPK signalling pathway”

–Noonan, NF1, Costello syndrome, cardio-facio-cutaneous syndrome

• Mosaic RASopathies are due to mutations in the Ras/MAPK signalling pathway 

that occur in the mosaic state presenting with a congenital syndrome distinct to 

that seen in the corresponding germline mutation

Hafner C, Groesser L. Mosaic RASopathies. Cell cycle (Georgetown, Tex). 2013 Jan 1;12(1):43–50

12 November 2018
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Mosaic RASopathies

• Epidermal naevi
–Represent a unique paradigm for cutaneous mosaic disorders
– Follow Blaschko’s lines
–Become visible at birth or in first few years of life

12 November 2018

Mosaic RASopathies
• Keratinocytic Epidermal Naevi (KEN) 

– Can occur as a result of mosaic 

mutations in FGFR3 and PIK3CA

–More recently KEN has been reported to 

occur as a result of mosaic RAS mutation

– The RAS mutation were seen in the 

lesion BUT not in the epidermal tissue 

adjacent and in blood leukocytes

12 November 2018

Happle, Rudolf. Mosaicism in Human Skin:  Understanding Nevi, Nevoid Skin Disorders, and Cutaneous Neoplasia. 2013. pg 80
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Mosaic RASopathies

• Sebaceous Naevus

– A type of epidermal naevus which can develop secondary tumours in later life (25%), 

preferentially affecting the scalp and face

• Schimmelpenning syndrome

– Is the presence of sebaceous naevus and extracutaneous abnormalities

12 November 2018

Groesser L, Herschberger E, Ruetten A, Ruivenkamp C, Lopriore E, Zutt M, et al. Postzygotic HRAS and KRAS 
mutations cause nevus sebaceous and Schimmelpenning syndrome. Nature Genetics. 2012 Jun 10;44:783. 
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Groesser L, Herschberger E, Ruetten A, Ruivenkamp C, Lopriore E, Zutt M, et al. Postzygotic HRAS and KRAS mutations cause nevus sebaceous and Schimmelpenning syndrome. Nature 
Genetics. 2012 Jun 10;44:783. 

Mosaic RASopathies

• Sebaceous Naevus

– Underlying genetic cause of this is a post zygotic mutation in HRAS c.37G>C of the 

epithelial cells

• Schimelpenning syndrome

– Extensive mosaicism for activating HRAS and KRAS (HRAs c.37G>C and KRAS c.35G>A) 

mutations involving the skin, skeletal, ocular and CNS is the genetic cause for this 

syndrome

12 November 2018
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Mosaic RASopathies

• Phacomatosis 
pigmentokeratotica

– Epidermal naevus 

syndrome 

• Sebaceous naevus 

• Speckled lentiginous 

naevus (naevus spilus)

12 November 2018

Groesser L, Herschberger E, Sagrera A, Shwayder T, Flux K, Ehmann L, et al. Phacomatosis 
Pigmentokeratotica Is Caused by a Postzygotic HRAS Mutation in a Multipotent Progenitor 
Cell. Journal of Investigative Dermatology. 2013 Aug 1;133(8):1998–2003

Mosaic RASopathies

12 November 2018

Groesser L, Herschberger E, 
Sagrera A, Shwayder T, Flux K, 
Ehmann L, et al. Phacomatosis 
Pigmentokeratotica Is Caused 
by a Postzygotic HRAS Mutation 
in a Multipotent Progenitor 
Cell. Journal of Investigative 
Dermatology. 2013 Aug 
1;133(8):1998–2003
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Mosaic RASopathies

• This study showed that, sebaceous naevi, speckled naevi (papular type) and congenital 
melanocytic naevi all harbour same HRAS mutation within each patient

• Highlights the pleiotropy (single gene influences 2 or more unrelated phenotypic traits) of 
HRAS mosaic mutation in the context of an ectodermal progenitor cell

12 November 2018

Speckled lentiginous naevi (naevus spilus)

12 November 2018
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SLN
Papular type Macular type

12 November 2018

Happle, Rudolf. Mosaicism in Human Skin:  Understanding Nevi, Nevoid Skin Disorders, and Cutaneous Neoplasia. 2013. 

Small naevus spilus

• Khavari group in 2014 published work looking at HRAS in SLN/ naevus 
spilus

12 November 2018

Sarin KY, McNiff JM, Kwok S, Kim J, Khavari PA. Activating HRAS Mutation in Nevus Spilus. Journal of Investigative Dermatology. 2014 Jun 1;134(6):1766–8
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Naevus spilus and spitz naevi

• Khavari group in 2013 identified agminated spitz naevi in a naevus spilus 

• They identified HRAS in the naevus spilus and a copy number increase in 

HRAS in the agminated spitz naevi

12 November 2018

Sarin KY, Sun BK, Bangs CD, et al. Activating hras mutation in agminated spitz nevi arising in a nevus spilus. JAMA Dermatology. 2013 Sep 1;149(9):1077–81.

Naevus spilus/SLN and spitz naevi

• However they have yet to identify the secondary mutations that give rise to the 
diverse melanocytic neoplasms seen in SLN

• Or how HRAS mutations are represented differentially amongst the different types 
of SLN
–Papular versus macular

12 November 2018
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Nevus Spilus-Type Congenital Melanocytic Naevus

12 November 2018

Naevus Spilus-Type CMN

• Phenotype that has 

been described with 

café au lait macule 

and medium/large 

CMN 

12 November 2018

Kinsler VA, Krengel S, Riviere J-B, Waelchli R, Chapusot C, Al-Olabi L, et al. Next-Generation Sequencing of Nevus Spilus–Type Congenital Melanocytic Nevus: Exquisite Genotype–Phenotype 

Correlation in Mosaic RASopathies. The Journal of Investigative Dermatology. 2014 Oct;134(10):2658–60. 



21

Naevus spilus-type CMN

• A single NRAS mutation was found in the café-au-lait macule and the 
superimposed CMN

• The missense activating mutation in NRAS was identified in the skin and absent 
from the blood

12 November 2018

Summary

• Various patterns found on the skin, such as the lines of Blaschko, checkerboard and 
phylloid patterns, are well-known manifestations of mosaicism

• Nevoid proliferations make obvious mosaic presentations, particularly when they 
are extensive

• The molecular basis for these phenotypic expressions are continually being 
elucidated

12 November 2018
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Massively parallel sequencing
technologies (2018 overview)

Dr Jonathan Coxhead
12th November 2018

Overview

• NGS glossary and terms
• Importance of sample QC
• Commercially available NGS technologies
• Massively parallel sequencing is here to stay –

keeping up to date

[Use of images in this presentation – unless otherwise stated, the images related to the technologies 
described in this presentation have been taken from publicly available marketing material associated with 
the relevant technology manufacturer]
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Technology >10 years of NGS

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

ABI 3730xl

Capillary 

454 

GS-20

Roche 

GS-FLX

Solexa / Illumina

GA 

ABI 

SOLiD

Roche 

GS-FLX+

Illumina

GAII 

ABI 

SOLiD 3.0

Illumina

GAIIx

Illumina

HiSeq 2000 

Roche 

GS-Junior

Illumina

HiSeq 2500 

Illumina

MiSeq
ABI 

SOLiD

5500xl

Ion Proton 

Ion Torrent

PGM 

PacBio

RS

PacBio

RSII
ONT

MinION

(MAP)

2014 2015

Illumina

HiSeq X-Ten 

Illumina

NextSeq 500

Helicos Genetic 

Analysis System

Illumina

HiSeq X - Five 

Illumina

HiSeq 3000 

Illumina

HiSeq 4000 

Illumina

HiSeq 1500 

2016

ONT

PromethION

(MAP)

PacBio

Sequal

Illumina

MiniSeq

BGI 

BGISEQ-500

Ion S5 / XL 

2017

ONT

GridION

Illumina

NovaSeq 6000 

BGI 

BGISEQ-50

Qiagen

GeneReader

2018

Illumina

iSeq

BGI 

MGISEQ-2000

BGI 

MGISEQ-200

2019

BGI 

MGISEQ-T7

Technology - commercial platforms

Helicos
Bankruptcy 2012 

Roche 454
Discontinued 2016 

Life Technologies SOLiD

NG
S 

Pr
es

en
t

NG
S 

Pa
st

Illumina Life Technologies Ion Pacific Biosciences
http://www.illumina.com http://www.lifetechnologies.com/uk/ http://www.pacificbiosciences.com

http://www.illumina.com/
http://www.lifetechnologies.com/uk/
http://www.pacificbiosciences.com/
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Sequencing pipeline - broken down

• DNA fragmentation
• Adaptor ligation 

(include barcode 
sequence)

Library Preparation Sequencing
Bioinformatics / 
data analysis & 
interpretation

• Open source
• Commercial
• [Cloud]

• Immobilise to a solid surface
• Clonal amplification
• Step-wise order of sequencing
• Photo detection (not always)

In-house or outsourced

• Targeted
• Whole genome

• Sequencing technology

• Base calling
• Alignment
• Variant calling

Illumina sequencing chemistry

• Fragment DNA
• Adaptor ligation
• Cluster formation
• Sequencing

http://youtu.be/womKfikWlxM

http://youtu.be/womKfikWlxM
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Illumina throughput specifications
Instrument / 

Format
Read Length 

(bp) No. Reads Output Run time Fluorophore
chemistry

Flow cell 
Architecture

iSeq 100 2 x 150 4 million 1.2 Gb 17.5 hours 2 colour Patterned

MiniSeq High 2 x 150 25 million 7.5 Gb 24 hours 2 colour Random

MiniSeq Mid 2 x 150 8 million 2.4 Gb 17 hours 2 colour Random

MiSeq v3 2 x 300 25 million 15 Gb 65 hours 4 colour Random

NextSeq 500 High 2 x 150 400 million 100 Gb 29 hours 2 colour Random

NextSeq 500 Mid 2 x 150 130 million 36 Gb 26 hours 2 colour Random

HiSeq 2500 v4 High 2 x 125 4 billion 1 Tb 6 days 4 colour Random

HiSeq 2500 v4 Rapid 2 x 250 600 million 300 Gb 60 hours 4 colour Random

HiSeq 3000 2 x 150 2.5 billion 750 Gb 3.5 days 4 colour Patterned

HiSeq 4000 2 x 150 5 billion 1.5 Tb 3.5 days 4 colour Patterned

HiSeq X * (x5 or x10) 2 x 150 6 billion 1.8 Tb 3 days 4 colour Patterned

NovaSeq S1 2 x 150 1.6 billion 1 Tb 25 hours 2 colour Patterned

NovaSeq S2 2 x 150 4.1 billion 3 Tb 36 hours 2 colour Patterned

NovaSeq S4 2 x 150 10 billion 6 Tb 45 hours 2 colour Patterned

Illumina sequencing capacity

HiSeq X
• 16 human genomes / 

per instrument

HiSeq 2500 Rapid Run / 
High Output
• 40 – 260 ChIP-Seq
• 15 - 100 mRNA-Seq
• 20 - 150 exomes
• 1 – 10 genomes

NextSeq 500 Mid Output 
/ High Output
• 40 Gene Expression
• 3 - 10 mRNA-Seq
• 20 Gene panels
• 3 – 9 exomes
• 1 genome

MiniSeq and MiSeq v4
• Amplicon
• Gene panels
• Microbial 

genomes
• Metagenomics
• mtDNA

sequencing

HiSeq 3000/4000
• 50 - 100 transcriptomes
• 90 - 180 exomes
• 6 -12 human genomes

• Range of platform 
options

• Widely adopted (USA 
colleges etc.)

• Where’s the 
competition?

• Poor for amplicons
• Substitution error

Pros / Cons
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Illumina – $1000 genome and population scale 
sequencing

• 18k genomes / year
• Patterned flow cell

• “Genomics England machine” • Exclusion amplification chemistry
• Up-graded camera and lasers

Only cost effective if 
run consistently!

Illumina – Flexible affordable platforms

• Whole genome bench-
top sequencing

• Budget bench-top 
sequencing

• Tumour profiling
• Germline testing
• Expression profiling
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Illumina instrument evolution

HiSeqX

HiSeq 4000

Patterned flow cell 
technology

• Increased sequencing 
capacity

NextSeq

MiniSeq

2 colour sequencing 
chemistry

• Faster sequencing
• Modular hardware
• Onboard clustering

Genome 
Analyzer

HiSeq

MiSeq

NovaSeq 6000

Illumina NovaSeq 6000

• Large dataset applications –†WGS, Ultra-
deep WES and Tumour-Normal profiling

• Large sample projects - WES, RNA-Seq and 
Single Cell studies

• Single or dual flow cells; 3 flow cell sizes S1, 
S2 and S4; 1.6 – 10 billion reads or max 
output 0.5 – 3 Tb per flow cell.

• Read length 2 x 50 bp, 100 bp or 150 bp
†48 human genomes per run at 30x

• Launched January 2017
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Ion Torrent & Proton sequencing chemistry 
(Life Technologies)

• Fragment DNA
• Adaptor ligation
• Bead Capture
• emPCR
• Semi-conductor sequencing

http://youtu.be/WYBzbxIfuKs

Ion Torrent throughput specifications

Instrument / 
Format

Read Length 
(bp)

No. Reads Output Run time

PGM 314 400 600 thousand 100 Mb 4 hours
PGM 316 400 3 million 1 Gb 5 hours
PGM 318 400 5 million 2 Gb 7 hours
Proton PI 200 82 million 10 Gb 4 hours
Ion S5 510 400 3 million 1 Gb 4 hours
Ion S5 520 400 6 million 2 Gb 4 hours
Ion S5 530 400 20 million 8 Gb 4 hours
Ion S5 540 200 80 million 15 Gb 2.5 hours

http://youtu.be/WYBzbxIfuKs
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Ion Torrent sequencing capacity

• Fast run time (doesn’t take into 
account prep)

• Main instrument relatively 
simple – no expensive optics

• Diagnostic market

• Small user base – bioinformatics 
& technical expertise

• Homopolymer error
• At the moment limited for 

human WGS

• Amplicon
• Small genomes
• Small gene panels
• Gene expression 

(targeted RNA)

• Gene expression 
(targeted RNA)

• 1 – 3 exomes
• 1 – 4 transcriptomes
• 2 – 4 ChIP-Seq

Pros / Cons

• Amplicons
• Gene panels
• 2 exomes
• 48 – 384 16S 

metagenomics

PacBio sequencing chemistry – SMRT (single 
molecule real-time)

DNA sample

Fragmentation

End Repair

Adaptor Ligation

Primer Annealing and 
Polymerase Binding to SMRTbell
Template

http://youtu.be/NHCJ8PtYCFc

http://youtu.be/NHCJ8PtYCFc
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PacBio throughput specifications

• V2 Chemistry 30 min – 20 hour run time, 1 – 12 SMRT Cells per run
• Continuous Long Read (CLR) 85-89% accuracy

• Stochastic error rate
• Circular Consensus Sequence (CCS) >99.999% accuracy (at 30x)

PacBio (RSII and Sequel) - applications

Modest number of long reads (as 
opposed to a large number of short reads)

• De Novo Assembly
• genome finishing

• Targeted Sequencing
• Haplotype phasing
• Full length transcripts

• Base Modification detection
• epigenetics

• Microbial genomes
• Emerging technology in cancer 

genomics
• …human WGS?
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Oxford Nanopore Technologies
protein nanopore

electrically resistant 
membrane bilayer

analyte e.g. 
nucleotide

disrupted ion 
flow leads to 
characteristic 
change in 
current

……….not quite that simple yet

• Biological nanopores in the form of propriety pore-forming proteins, similar to those found in nature that 
transport ions and molecules through cell membranes

• Each nanopore embedded in a polymer membrane across the top of a microwell with its own electrode
• Multiple microwells per array chip – each nanopore sequencing independently
• Technology designed so that data analysis is simultaneous - sequencing can be stopped when enough data 

has been collected
• https://nanoporetech.com/applications/dna-nanopore-sequencing

Nanopore sequencing technologies

Necessary to evaluate based on personal 
experience with relevant application / sample, for 
instance accuracy could be 85%-95% (or lower)
• Sample input 10 pg – 1 µg
• Min sample prep time = 10 mins
• Time to first usable read = 2 mins
• Read length = fragment length
• Raw read accuracy = up to 99%

MinION
• Run time 1 min - 48 hrs
• Output 10-20 Gb
• Up to 512 channels

GridION
• Run time 1 min - 48 hrs
• Output 50-100 Gb
• Up to 2560 channels

PromethION
• Run time 1 min - 64 hrs
• Output 4.3-6 Tb
• Up to 144k channels

https://nanoporetech.com/applications/dna-nanopore-sequencing
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End-to-end solution

Clinical Market
$$$$$$$

DNA extraction >>> Candidate gene list

Ion PGM Dx MiSeq Dx NextSeq 550 Dx Qiagen GeneReader

Technology - keeping up to date
• Press releases - news outlets - social media

@DailyNewsGW

https://www.genomeweb.com/

@Genbio

http://www.genengnews.com/

@bioitworld

http://www.bio-itworld.com/

• Journals

https://www.genomeweb.com/
http://www.genengnews.com/
http://www.bio-itworld.com/
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https://www.gov.uk/government/news/matt-hancock-
announces-ambition-to-map-5-million-genomes

https://www.gov.uk/government/news/matt-hancock-announces-ambition-to-map-5-million-genomes
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Introduction to R

R is a programming language and environment for statistical analysis and data visualisation. It is used
extensively in bioinformatics because it enables the manipulation and analysis of very large data sets.

R is an extensible environment and new functionality can be added to the core language via installation
of packages. There are large existing repositories of these packages for R, including the Comprehensive R
Archive Network (CRAN)1 which includes thousands of packages covering many use-cases, and Bioconductor2

which caters specifically for the analysis of biological data.

Bioconductor

Bioconductor is an open source software project for R. It is a collection related R packages, which you can
install and use in your code. These packages are tailored to perform a set of specific tasks based around a
particular type of analysis.

As well as packages, the Bioconductor site also provides documentation for each package, often a brief vignette
and a more comprehensive user guide.

Tidyverse

Tidyverse3 is set of packages available through CRAN. It describes itself as “an opinionated collection of R
packages designed for data science”. Components of the Tidyverse provide convenient methods for reading,
writing, visualising and organising data.

RStudio

RStudio4 is an Integrated Development Enviornment (IDE) which supports the development and running of
R programs. It has a number of convenience features that make developing R code much more user-friendly.

The RStudio interface is split into four panes as shown:
1
https://cran.r-project.org

2
https://bioconductor.org

3
https://www.tidyverse.org

4
https://www.rstudio.com

1

https://cran.r-project.org
https://bioconductor.org
https://www.tidyverse.org
https://www.rstudio.com


Using R

We will be using R as a command-driven data analysis environment. R is a Turing-complete5 programming
language capable of much more than will be demonstrated today, but that is beyond the scope of this course.

The commands we will use in R take a general form:

command(arguments)

The name of the command to be executed is followed by a paranthetic, comma-separated list of arguments
that provide input, or modify the behaviour of that command. The results of a command can be stored as a
variable by using the assignment operator (=):

x = command(arguments)

Help on a command, and the arguments it takes, can be found using the ? operator before the name of the
command:

?command

This help will open in the bottom right-hand pane of RStudio.

Installing Packages

Packages provide vital extensibility to the core functionality of R. We will be using Bioconductor’s package
installer as a universal interface to a large number of package repositories (including Bioconductor, CRAN
and Github). To install the installer, simply execute the following command in the R Console (bottom left
pane of RStudio).
install.packages(�BiocManager�)

library(BiocManager)

5
https://en.wikipedia.org/wiki/Turing_completeness
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Now we have the BiocManager package, we can use this to install all of the other packages we need for
today’s exercises.
install(c(�devtools�, �pheatmap�,

�Bioinformatics-Support-Unit/bsudata�,

�DESeq2�, �tidyverse�))

In order to make use of these packages, they must be included in our session with the library() command.
library(tidyverse)

library(DESeq2)

library(pheatmap)

library(bsudata)

Introduction to RNA-Seq

RNA-Seq, or Whole Transcriptome Shotgun Sequencing (WTSS) refers to the sequencing of cDNA in order
to profile the RNA content of a sample. The technique takes advantage of a simple assumption – that the
number of reads that map to a particular gene in a sequencing experiment is in direct proportion to both its
length, and the amount of that molecule that is present in the sample. So if two RNAs of equal length are
present at a ratio of 2:1 in the sample, then we will retrieve twice as many reads for one as we will for the
other when we sequence the sample. So, given two samples we can normalise for transcript lengths and total
number of reads, and work out which species are di�erentially expressed between the two samples.

RNA-Seq is often seen as a replacement for the very popular microarray approach to studying gene expression,
and while the two approaches have di�erent strengths and weaknesses, it is generally true that the data from
RNA-Seq correlates better with qPCR data (the “gold standard” for measuring gene expression data) and
the sheer depth of the data generated makes RNA-Seq the better choice in many circumstances - assuming
the budget allows.

This also means that many of the mistakes, with regards to experimental design, that were made in the early
days of microarrays are being repeated in earnest with RNA-Seq experiments. Good experimental design
is out of the scope of this course, but come and speak to the BSU – as we can help you with experimental
design. One of the most common false assumptions is that with RNA-Seq you don’t need replicates. This is
simply untrue, we still need to model the variance of the population in order to return meaningful statistics
and consequently it’s advisable to do at least 4 biological replicates per condition minimum for cell lines,
more for mice/rats and many more for humans. Unlike with microarray analysis however technical replicates
are seldom required, as despite the stochastic nature of sequencing runs they tend to be highly reproducible.

TPM

TPM stands for Transcripts per Million (mapped reads), and it is a way of expressing the normalised read
counts for each transcript in an RNA-Seq experiment. In order to calculate TPMs for a sample, you do the
following:

1. Divide the read counts by the length of each gene in kilobases. This gives you reads per kilobase (RPK).
2. Count up all the RPK values in a sample and divide this number by 1,000,000. This is your “per million”

scaling factor.
3. Divide the RPK values by the “per million” scaling factor. This gives you TPM.

In practice, however, we rarely need to compare the expression levels of di�erent genes to one another, we
are usually comparing the expression of Gene A in sample 1 to Gene A in sample 2 and so on. Therefore,
normalisation based on gene length as well as total number of reads is unnecessary. Most packages in
Bioconductor normalise based on read count across samples.
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The Dataset

For this session we will be working with a human cell line RNA-Seq dataset in R. The dataset has six
conditions, 3 treatments at each of 2 timepoints. For each of these we have four replicates (except one
condition, with only 3). The sequencing used in this experiment is 100-bp paired-end data from an Illumina
sequencer (the HiSeq 2500).

Quantification of RNA-Seq Data

Modern RNA-Seq analysis procedures tend to avoid an alignment step, which is computationally costly, slow,
and results in very large output files. These output files are largely redundant, given that they replicate the
contents of the raw FASTQ files.

Rather than alignment, we have used Salmon6, a tool which performs ‘quasi-alignment’ to quantify transcript
expression via read abundances. For completeness, the commands used to generate the quantification data
are included below, as a BASH script.
#!/bin/bash
wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.v27.transcripts.fa.gz

salmon index -i salmon.idx -t gencode.v27.transcripts.fa

vals=($(seq 1 1 23))

for i in ${vals[@]}; do
salmon quant -i /data/rna-seq-course/salmon.idx -l A \

-1 fastq/Sample${i}_R1_001.fastq.gz \

-2 fastq/Sample${i}_R2_001.fastq.gz \

-o ~/rna-seq/counts/Sample${i}

done

This raw count data is then imported into R as a gene-level count matrix, via the Bioconductor package
tximport.
library(tximport)

# where count_files is a named vector of file names:
quant_table = tximport(count_files,

type="salmon",

tx2gene=gene_map,

ignoreTxVersion=TRUE)

To analyse the count data for di�erentially expressed genes, we use the DESeq2 package7. DESeq2 uses a model
based on the negative binomial distribution for testing di�erential expression among RNA-Seq expression
data.

Again, we provide a reference implementation here, for information.
library(DESeq2)

deseq_data = DESeqDataSetFromTximport(txi=quant_table,

colData=sample_table, design = ~ treatment)

deseq_data = DESeq(deseq_data)

Principal Component Analysis

At this point we can examine the ordination of the samples, to get some idea of how similar samples are to
one another, and whether any need to be excluded as outliers. In general, dimensionality reduction techniques

6
https://www.nature.com/articles/nmeth.4197

7
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
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such as Prinicpal Component Analysis (PCA) are used for this8.
rlog_data = rlogTransformation(deseq_data, blind=TRUE)

plotPCA(rlog_data, intgroup=c("treatment"))

The PCA plot above demonstrates that we have a clear outlier among our samples - the magenta point at the
bottom of the plot is almost entirely responsible for the variation we see in the second principal component
(22% of the variation in the entire dataset), and clusters nowhere near the other samples with which it belongs
in a group. For all analysis going forward, we will remove this sample from the raw data, and re-process.

Determining Di�erentially Expressed Genes

DESeq2 includes a results function, which we can use to extract di�erentially expressed genes for the
comparisons defined by our experimental design. The primary use of this function involves 2 arguments:

1. The dataset you want to analyse (created as per the above)
2. A list of the conditions you want to analyse - in the simplest form this consists of 3 things:

i. The column of the sample table containing the conditions you care about
ii. The numerator condition for calculating di�erential expression
iii. The denominator condition for calculating di�erential expression (by convention the control)

result_table = results(deseq_data,

contrast = c("treatment", "96hrs_knockin", "96hrs_control_b"))

Finally for this introduction, an MA plot provides a useful overview of a two-group comparison (such as we
have here). The MA plot has mean normalised count on the x-axis, and log2 fold change on the y, with

8
https://www.nature.com/articles/nbt0308-303
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points coloured according to whether they are significantly di�erentially expressed (depending on defined
cut-o�s). plotMA is a handy DESeq2 function for producing the plot:
plotMA(result_table, alpha=0.05, ylim=c(-6,6))

Making Heatmaps from RNA-Seq data

The Data

All the data we will need for today’s exercise is provided in the bsudata package you installed above. You
can list, attach, and take a look at any of the data in the package:
library(bsudata)

# list available data
data(package="bsudata")

# attach specific dataset
data("count_table")

# take a peek at this data
head(count_table)
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Gene Expression Heatmap

We’re going to use data, analysed according to the workflow detailed above, to make heatmaps of gene
expression values and fold changes for the top 20 di�erentially expressed genes for one comparison (96 hrs
knock-in vs control B). All the data we need for producing these heatmaps is provided in the bsudata package.
Briefly, this is how these objects are prepared:
# Get the normalised count table
data("count_table")

# Get the full list of differentially expressed genes
data("T96_vs_B_sig")

# Select the �top 20� - the genes are ordered by fold change
top20_genes = slice(T96_vs_B_sig, 1:20)

# Extract the counts for the top 20 genes
top20_ensembl = pull(top20_genes, ensembl_geneid)

top20_counts = slice(count_table, match(top20_ensembl, count_table$ensembl_geneid))

# Transform these counts into a matrix, for making heatmaps
top20_matrix = select(top20_counts, -starts_with("ensembl")) %>% as.matrix

rownames(top20_matrix) = pull(top20_genes, symbol)

This matrix is available in the bsudata package as the object top20_matrix. We can use this directly for
drawing heatmaps.

To begin with, use R’s built in heatmap function to produce a default plot.
data("top20_matrix")

heatmap(top20_matrix)
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This default function has several problems that it would be good to resolve.

1. Every row is scaled to its own minimum and maximum, making comparisons between rows impossible
2. There is no colour scale provided. How do we know what each colour in the plot represents?
3. The heatmap function doesn’t provide us with easy ways of resolving these issues (it is di�cult to

configure)

For these reasons, we will use an alternative heatmap implementation for the remainder of the session. There
are many of these available to R users, including heatmap.2 (in the gplots package)9, ComplexHeatmap

10

and superheat
11. For the purposes of this tutorial, we’re going to use the pheatmap package12, which you

should have already installed.
library(pheatmap)

pheatmap(top20_matrix)
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The defaults of pheatmap are preferable to base heatmap, but we still have a couple of issues to address here.
Primarily:

1. The range of the data is very skewed - 1 gene (KLHDC7B) has some very large expression values
compared to the rest and this dominates the colour scale

2. pheatmap uses a diverging colour scale by default - this is good if the data centres around an inflection
point and has ‘up’ and ‘down’ directionality, but not so good for this kind of numerically sequential
data.

To address the first of these issues, we can apply a simple transformation to the data. We are going to use a
logarithmic transform (log2). In order that this doesn’t create problems where we have zeros in our data we

9
https://cran.r-project.org/web/packages/gplots/index.html

10
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html

11
https://rlbarter.github.io/superheat/index.html

12
https://cran.r-project.org/web/packages/pheatmap/index.html
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will add 1 to every observation:
transformed_counts = log2(top20_matrix + 1)

pheatmap(transformed_counts)
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This transformation reveals more detail in our data. Now, in order to address the colour scheme, we must
create a new list of colours, using the colorpanel function from the gplots package. This lets us rapidly
create simple colour schemes from 2 or three named colours (‘low’, ‘mid’ and ‘high’ - mid is optional). R has
a large number of named colours, you can get a list of them using the colors() function.
library(gplots)

mycolours = colorpanel(n=100, low=�blue�, high=�white�)

pheatmap(transformed_counts, color = mycolours)
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GBA3
DPYS
CHRNA4
KCNC1
PTPRO
CSRNP3
NID2
PCDHA11
UST
DDX60
PCDHA8
RNASE2

0

2

4

6

Fold Change Heatmap

In an experiment with many comparisons, it can be useful and informative to see how a set of genes are
varying across all the analyses. For this, a fold change heatmap can be very useful. In the bsudata package,
there is a matrix that contains the fold changes for the top 20 genes plotted above, across 4 comparisons in
the experiment (knock-in vs control A and control B at 48 and 96 hours).

To plot a basic heatmap from this data:
data("fc_matrix")

pheatmap(fc_matrix)
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Again, this requires some configuration to improve it. There are two main things we will address:

1. The ‘inflection point’ - the scale is not symmetrical about 0, so the midpoint of the colour scale is also
not falling at 0.

2. The colour scheme - the default is OK, but it can be useful to know how to change it.

To address the first point, we have to set what’s known as the ‘breaks’ - this sets the breakpoints in a scale,
in the case of a heatmap, the breaks are the point along the numerical scale at which the colour being used
changes. By default, pheatmap uses 100 colours, so we need 101 breaks:
# get the largest number in the fold change matrix
big_fc = max(abs(fc_matrix))

# set the breaks to move evenly between
# the negative and positive versions of this number
hm_breaks = seq(-big_fc, big_fc, length.out = 101)

# now use these breaks to draw the heatmap
pheatmap(fc_matrix, breaks=hm_breaks)
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Finally, we’ll set a bolder colour scheme, running from blue for negative fold change to red for positive.
mycolours2 = colorpanel(n=100, low=�blue�, mid=�white�, high=�red�)

pheatmap(fc_matrix, breaks=hm_breaks, color = bluered(100))
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Biomarkers in Melanoma

Dr Rob Ellis

Consultant Dermatologist, County Durham and Darlington NHS FT
Honorary Clinical Senior Lecturer, Newcastle University

Chief Medical Officer, AMLo Biosciences Ltd.

Nov 2018

What is a biomarker?

• Portmanteau of “biological marker”

• National Institutes of Health Biomarkers Definitions Working Group 
defined a biomarker as “a characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, 
pathogenic processes, or pharmacologic responses to a therapeutic 
intervention.

• Objective, quantifiable characteristics of biological processes.



What is a biomarker?

• Diagnostic
– Blood Sugar in diabetes

What is a biomarker?

• Diagnostic
– Blood Sugar in diabetes

• Prognostic 
– PSA in prostate cancer



What is a biomarker?

• Diagnostic
– Blood Sugar in diabetes

• Prognostic 
– PSA in prostate cancer

• Predictive
– ER positive breast cancer

Melanoma examples

• Diagnostic
– HMB45



Melanoma examples

• Diagnostic
– HMB45

• Prognostic
– Ki-67

Melanoma examples

• Diagnostic
– HMB45

• Prognostic
– Ki-67

• Predictive
– BRAF



Current role of Biomarkers in Melanoma

• Currently very limited

• Diagnostics performed by Pathologist

• Prognostics incorporated in AJCC staging (SLNB?)

• Predictive only BRAF at present

• Most have either been shown to be surrogate markers of Breslow 
Depth, or studies not undertaken rigorously enough

Which type of biomarker is most useful?

• Diagnostic?
– Pathologists’ eyes are very good 
– MLUMPs/Spitzoid tumours?

• Prognostic
– “Is my melanoma going to spread?”
– Help design further management

• Predictive
– Which is the best drug to give to this patient?



Cancer Research UK Biomarker Roadmap

REMARK Guidelines



Current situation

New Prognostic Biomarkers in Melanoma

31-gene expression profile

8-gene expression profile

AJCC I - III

AJCC II+



New Prognostic Biomarkers in Melanoma

$

Ideal Prognostic Biomarker

• Accurate

• Reproducible

• Fits into current pathway

• Cheap

• Quick

• Health Economic Assessment



Autophagy and Melanoma

Ambra-1
p62

DFS AJCC II Melanomas

Ellis et al. J Invest Dermatol 2014

Epidermal AMBRA1 



Epidermal AMBRA1 

AJCC Ia Melanoma

AJCC Ib Melanoma

Epidermal AMBRA1 does not correlate with degree of 
melanoma invasion



AMBRA1 as a Prognostic Biomarker

AMBRA1 as a Prognostic Biomarker



Epidermal differentiation is associated with increased 
AMBRA1

The AMLo Biomarker

AMBRA1 and loricrin optimized on James Cook Hospital clinical platform with 
DAB counterstaining



The AMLo Biomarker – Low Risk

AMBRA1

Loricrin

The AMLo Biomarker – High Risk

AMBRA1

Loricrin



The AMLo Biomarker – Combined Cohort

How does TGFB2 influence metastasis

Loricrin

TGF-β2 TGF-β2

TGF-β2 Secretion

Loricrin 

Endothelial 
Breach

Epidermal AMBRA1

Endothelium 
Intact

AMBRA1 
Down  

Regulation

Deregulated 
Epidermal 

Differentiation

Endothelial 
Breach

Ulceration 
& Metastasis

→ + →

Deregulated epidermal 
differentiation/loss of integrity 

Maintained epidermal 
differentiation 

Endothelial AMBRA1
+

Gap junctional proteins

→

Endothelial AMBRA1
+

Gap junctional proteins



The AMLo Biomarker – Endothelial involvement

What next?

Previous Funding Streams

Melanoma Focus Group - £100 000 Patient Impact Programme

iCURE Programme – £40 000

Innovate UK - £210 000

Current Funding

NIHR Health Technology Assessment – Evidence based assessment of AJCC I melanoma
£215 000

NIHR i4i – Development of AMLo Biomarker
£1.2 million

NICE AdviseMe Prize winners 2018



AMLo Biosciences Ltd

www.amlo-biosciences.com

The future

Academic

• Further AJCC I/II cohorts from Buffalo, Tauranga, Barcelona, Kyoto

• Links with Brisbane, Berlin, Turin, Brazil, Sweden, Russia

• Prospective trials for SLNB stratification and WLE margins

• Finalise role of AMLo in melanoma management

• Drug development work

Commercial

• CE Marking of clinical grade antibody

• NICE Guidelines

• CLEA labs in US
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Biomarkers in Melanoma
Practical Session

Dr Ashleigh McConnell, Professor Penny Lovat  & Dr Rob Ellis

Newcastle University 
AMLo Biosciences Ltd.

Nov 2018

Outline

• Immunohistochemistry 

• The AMLo Biomarker

• Practical Examples: Your turn to be the pathologist

• Statistical Analysis



Immunohistochemistry

• Visualises distribution and amount of antigens or proteins (Nucleic 
acids/lipids/carbohydrates) in tissue sections

• Uses a specific antigen-antibody reaction tagged with a visible label

• Doesn’t destroy tissue architecture, assess expression of antigen in the 
microenvironment

• Can be preformed on formalin fixed paraffin embedded (FFPE) and frozen 
tissue, smears, cytospins

• Label antibodies with a chromogen that produces a visible colour, 
fluorochrome, radioactive element, colloidal gold

Pathology Lab IHC Workflow

Lecia Aperio scanner
User portal

HER2 Scoring   

Automated IHC: Ventana, Bond.
Multiplex systems



Immunohistochemistry Protocol: 
Tissue Fixation 

FFPE Frozen

Tissue Fixation, embedding & 
sectioning

OCT & Sectioning

Immunohistochemistry Protocol:
Antigen retrieval 

FFPE Frozen

Tissue Fixation, embedding & 
sectioning

OCT & Sectioning



Immunohistochemistry Protocol:
Primary antibody binding to selected antigen 

FFPE Frozen

Tissue Fixation, embedding & 
sectioning

OCT & Sectioning

Immunohistochemistry Protocol:
primary antibody binding detection and visualization  

FFPE Frozen

Tissue Fixation, embedding & 
sectioning

OCT & Sectioning



The AMBLor Biomarker - Practical

AMBRA1 maintained

Loricrin lostLoricrin maintained

AMBRA1 lost

The AMBLor Biomarker - Scoring

Maintained Decreased/Lost
AMBRA1 1 0
Loricrin 1 0

High Risk Low Risk
AMBLor Score 1 or 2 0
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“Cytometry”:  How to become 
a cell detective

Dr Andrew Filby 
Director of Newcastle Cytometry Platform and Single Cell Unit

Dermatology:  Research techniques course
Newcastle: 13/11/2018

Heterogeneity:  The biggest challenge to ALL cellular research  

1. Different (stable) cell types 3. Functional states

Cells doing a 
“job” such as 
killing others

• Establishing cellular identity is a fundamental question to 
understanding health and disease

2. Transition states (temporal) 4. Location
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How do we begin to prove Cellular Identity?

1
2 3

4

The (un) usual suspects

The talk in 3 words…

Cytometry

Cytometrist
Cytometer
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Cytometry

Greek = “Kytos”
“hollow basket”
Relates to CELL

Greek = “Metria”
“Process of Measuring”

Cytometry:  We turn cells into 
numbers…..

Questions we want to ask/answer with these numbers:
• What types of cells are there?
• How many are there?
• What do they do normally/abnormally?
• Can cell A become cell B?
• What role in development/disease?
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Cytometry in the context of “BIG” data?
- Environment
- Ethnicity
- Age
- Sex
- Health
- Wealth

Multi-Omics
Cytometry 
(single cell)

The 3 pillars and foundations of cytometry

Controlled Quantitative Comparable
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The talk in 3 words…

Cytometry

Cytometrist
Cytometer

A cytometrists asks as many informative 
questions to cells as we can

- Does it express CD4?  Yes
- Does it express IL-4? No
- Does it express IL-17? Yes
- Does it express FoxP3? No
- Does it express RORγt? Yes
- Is it a TH17 cell?
- Yes!

Cytometrists are “cellular 
detectives”

Daddy…what 
do you 

actually do?
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The Newcastle Cellular detectives..

Solving “crimes against biology” and bringing the 
perpetrators to justice 

Welcome to the Newcastle “Cellular Detective 
Agency”

Meeting the cytometry needs of 
over 300 users across several 

different disciplines/institutes

William Leech
Medical School

NICR: Herschel iCFL

NICR:  POG Main HUB
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AAAAAAA

AAAAAAA

AAAAAAA

GTACCAGTAATC
CATGGTCATTAG

- Analyte could be
1. Fluorescent
2. Metal isotope
3. Oligo-based

GTACCAGTAATC
CATGGTCATTAG

GTACCAGTAATC
CATGGTCATTAG

GTACCAGTAATC
CATGGTCATTAG

= GFP

= RFP

Genetic-tagging (FPs)

= CFP

How do we ask these questions? With labels

AUGCAGCU

Analyte

Analyte

Analyte-tagged oligos
scRNA seq etc.

DNA intercalators

PI

Iridium

Analyte

Analyte-tagged Ab

Analyte

Analyte

Analyte
Analyte

Functional reporters

CFSE

Indo-1

RNA

DNA

Transcription

mRNA

Post-Transcription

mRNA

Translation

ribosome

polypeptide

Post-Translational

P

Signalling cascade

Ligand binding

PDNA 
modification

Receptor 
expression

We can ask our questions in many aspects of 
single cell biology

ALWAYS in 
population 

context
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The talk in 3 words…

Cytometry

Cytometrist
Cytometer

So many cytometers and so many ways to do cytometry
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The 3 pillars and foundations of CYTOMETERS

A CYTOMETER generates and measures signals from single 
cells in a high-throughput, (semi) quantitative, multi-

parameter fashion

Hi-dimensional 
Fluorescence-based (n = 30)

CyTOF Mass Cytometry (n = >40)

Mid-dimensional 
Fluorescence-based (n = 20)

Know and master your cellular heterogeneity @ FCCF

Hypothesis Analytical Cytometry:
Decoding and 

identifying 
heterogeneity

Low dimensional 
Fluorescence-based (n = 

10)

Image Cytometry (n = ∞)

Cell Sorting:
Ability to 

control/limit/influence
heterogeneity

Sorting:
6 way/single cell

Sorting:
4 way/single cell
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“global” screen of resident phenotypes (suspects)
• Throughput

• Loss of spatial relationships of cells in tissues

Spatial reconstruction of key phenotypes (crime scene)
• Lower speed/throughput

• Preservation of cells spatial context

Nucleic acidFluorescence
Scatter*

Mass

Zero-res no spatial info Spatial/morphometric info provided

Fluorescence
Scatter*

Transmitted*

MassFluorescence
Transmitted*

Summary

• Heterogeneity pervades ALL cellular systems
• Cytometry helps us to APPRECIATE and DECODE
• We do this using specialised systems called Cytometers
• People who do this are Cytometrists aka “Cell Detectives”
• Cytometry is always single cell and usually multiparameter
• It is ALWAYS controlled and quantitative
• It allows us to measure and master cellular heterogeneity
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Multi-modal microscope based imaging: From the 
organelle to the organ
Alex Laude
The BioImaging Unit

Bias……

• Everybody publishes the best 
image…right?
– They may only report what they want to see

• But is that image representative 
of the population?

• There is a need to quantify our 
observations.

• But what features can we quantify 
and how do we go about it?



HeLa cells (epithelial)
Phase contrast time lapse
(5min/frame, 18hrs)
Playback x 3600

Contrast

Brightfield imaging: limited ability to make out intracellular organelles
Impossible to identify individual proteins / processes
we need to make them standout from the background 

Mitotracker Red

Use of fluorescence – increase contrast



Typical research microscope

X-Y-Z-l-position-t (6D)

Multidimensional imaging & techniques

• Live-Cell imaging 
Fast dynamic processes (>10fps)
Longer lasting (days / weeks)

• Brightfield, phase and DIC microscopy

• Wide field fluorescence microscopy
• multi-parametric (x5) analysis

• Confocal & Multi-photon microscopy 

Multi-dimensional, multi-modal imaging at the sub-cellular level

X-Y
2D

X-Y-Z
3D

X-Y-Z-l
4D

X-Y-Z-l-position
5D

X-Y-Z-l-position-t
6D



…..and analysis

• Segmentation
• Intensity analysis
• Colocalisation
• 2D & 3D tracking
• 3D visualisation
• Deconvolution

X-Y
2D

X-Y-Z
3D

X-Y-Z-l
4D

X-Y-Z-l-position
5D

X-Y-Z-l-position-t
6D

Imaging workflow

Sample prepAssay

Imaging

Data mining Analysis

Cultured cells (live & fixed)
Post-mortem sections
Biopsy (live & fixed)
3D organotypic cultures



Speed

Resolution

Sensitivity

Signal:
Noise

Choosing the right imaging modality: The ‘Triangle of Compromise’

Viability 
/ toxicity

Throughput

Speed

Resolution

Sensitivity

S:N

Viability &
Throughput

Choosing the right imaging modality: brightfield time-lapse

• Cultured fibroblasts
• Monitored using Nikon BioStation

Capture @ 1fph
Playback x25k



Speed

Resolution

Sensitivity

S:N

Choosing the right imaging modality: 3D confocal time-lapse

• Cultured HeLa cells expressing GFP-
tubulin & RFP-histone protein

• Multi-point acquisition over 18 hours

• Maximum intensity projection image 
formed from 7-confocal stacks
• Several fields observed 

Capture @ 12fph
Playback x300

Viability &
Throughput

Confocal microscopy

• Skin cell monolayer loaded with Fluo
Ca2+ indicator
• Monolayer ‘wounded’ - intercellular 

Ca2+ signalling

Capture @ 5fps
Playback x4

Speed

Resolution

Sensitivity

S:N

Viability

Choosing the right imaging modality: resonant confocal or spinning disk



Wavelength of light 

2 x Numerical aperture of lens
d (resolving power) =

Ernst Abbe

500 nm

2 x  1.4
d GFP = d = 179 nm

13

Super resolution imaging: resolving structures 

Speed

Resolution

Sensitivity

S:N

Viability & 
Throughput

Choosing the right imaging modality: STED super resolution

• Leica SP8 STED super resolution
• Up to 60 nm X-Y resolution
• Up to 130 nm Z resolution
• Fixed samples
• White light laser – 200 excitation 
possibilities 

• Hybrid detectors – sensitive
• Live-cell capability



Multidimensional imaging & techniques

• Live-Cell imaging 
Fast dynamic processes (>10fps)
Longer lasting (days / weeks)

• Automated high-content imaging / screening (live & fixed)
population data at the sub-cellular level

• Brightfield, phase and DIC microscopy

• Wide field fluorescence microscopy
• multi-parametric (x5) analysis

• Confocal microscopy

• Super resolution microscopy (live & fixed)

Multi-dimensional, multi-modal imaging at the sub-cellular level

X-Y
2D

X-Y-Z
3D

X-Y-Z-l
4D

X-Y-Z-l-position
5D

X-Y-Z-l-position-t
6D

‘Scalability’

Sample prepAssay

Image acquisition

Data mining Image Analysis

Cultured cells (live & 
fixed)
3D organotypic cultures

Image segmentation
Feature extraction

Data analysis

Drug
RNAi

Automated TC

Fix
Stain

HTS facility

High-content imaging / screening / analysis – typical workflow



Wellcome funded

Robot loader
& scheduling software

Automated incubator

Cell Discoverer7

20-plate capacity

Fixed plate storage
40-plate capacity

Zeiss Cell Discoverer7

Automated, live-cell microscope – Zeiss Cell Discoverer7

Multidimensional imaging & techniquesHigh-Content / Throughput Imaging
Automated ‘smart’ multi-colour imaging & analysis

…one cell at a time

Metric A

M
et

ric
 B



Statistical Analysis (pooling data from well and plates)
• Cell count (live / dead)
• Segmentation (requires cell surface / cytoplasm marker)
• Spot count (per cell)
• Intensity of protein (per cell or population)
• Morphology

19

Multidimensional imaging & techniquesHigh-Content / Throughput Imaging
Data analysis

Metric A

M
et

ric
 B

Light
Microscopy

Confocal
Wide field

Live & Fixed -cell

Brightfield

BioImaging

Electron 
Microscopy

Flow
Cytometry

Super resolution
Imaging

High-Content
Imaging

Re
so

lu
ti

on

Population

HTS facility

BioinformaticsCorrelative microscopy

in vivo
imaging
facility

Multi-photon

in vivo imaging

The BioImaging network
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