

NHS Foundation Trust

TRANSLATIONAL RESEARCH IN RARE AND NEUROMUSCULAR DISEASES -WHY DATA SHARING MATTERS

Addressing the translational pathway

Gene identification/ pathophysiology

- Biomarkers
- Animal models
- Delivery mechanisms
- Proof of principle studies

Positive environment for RD research

3

Recent years have seen an increased focus on RD research, with funding opportunities from different areas

Result: research projects multiply

4

TREAT-NMD

10M EUR "network of excellence" for rare inherited neuromuscular diseases

NMD-Chip

High throughput sequencing (gene chips) for NMD diagnostics

BIO-NMD

Identifying and validating preclinical biomarkers for diagnostics and therapeutics

3Gb-TEST

Introducing diagnostic applications of '3Gb-Testing' in human genetics

CARE-NMD

Implementing care standards for DMD across Europe, in particular Eastern Europe

MYO-SEQ

Exome sequencing of 1000 patients with limb girdle phenotype

SKIP-NMD

Clinical trial for morpholino antisense oligonucleotide exon skipping (53) in DMD

BIOIMAGE-NMD

Development of imaging technologies for therapeutic interventions in rare diseases

Neuromics

12M EUR research project on nextgen omics approaches to neuromuscular and neurodegenerative disease

RARE Bestpractices

Infrastructure for best practice sharing across rare diseases

OPTIMISTIC

Natural history and exercise therapy clinical study in myotonic dystrophy

MYO-MRI

Applications of MR imaging and spectroscopy techniques in neuromuscular disease

RD-Connect

12M EUR RD infrastructure: central global hub connecting registries, biobanks and clinical bioinformatics

EUCERD Joint Action for Rare Disease

Implementing RD policy and national plans across Europe

SCOPE-DMD

Clinical trial for 2O-ME antisense oligonucleotide exon skipping (45) in DMD

FUTURE ...

Horizon 2020

But: risk of data silos increases

Sharing: What?

- □ Raw data from all types of studies
- Genomic data
- Phenotypic data
- Natural history data
- Clinical trial data
- □ Biosamples (blood, DNA, tissue samples, cell lines...)
- □ Linked data and samples
- Access to patients
- □ ...

Sharing: Barriers

7

General

- Privacy protection issues: "do I have the patient's permission?"
- Lack of infrastructure: "I want to share data but where do I put it?"
- Lack of standards and interoperability

Academia

- Culture of protecting research results: "someone else might scoop my publication!"
- Lack of incentives for sharing

Industry

- IP issues/competition (sharing own data)
- Concerns over data quality, regulatory compliance (reusing data from academia)

Sharing: Benefits

- Overcoming the "rare disease problem"
 - Cohort size
 - Powering trials
 - Finding confirmatory cases
- Reducing costs
- □ Reducing duplication of effort
- □ Facilitating validation of results
- Enabling engagement with experts and the patient community

Using shared biosamples: Infrastructure - the MRC biobank

- MRC biobank established at 2 sites (Newcastle and London)
- □ Full member of EuroBioBank network and open catalogue
- More than 5000 NMD samples collected so far
- More than 100 different neuromuscular pathologies
- Samples distributed to more than 100 scientists (centre and external)
- More than 50 research publications acknowledging biobank
- Several successful grant proposals with strong biobank element

Using shared biosamples: Validating experimental therapies

Using patient cells to validate experimental therapies: Neutral Lipid Storage Myopathy due to PNPLA2 mutations

Recessive inheritance
Adult onset myopathy
Cardiomyopathy
Jordan bodies

Clenbuterol may be an attractive candidate for testing in animal models (R Horvath)

Sharing: example projects

Patient registries:

DMD registries pre-TREAT-NMD (2007)

Patient registries: DMD registries today (2015)

> 10,000 patients in 35+ countries – global data for multicentre trials

Patient registries as a tool for research

- Trial readiness (feasibility and recruitment)
- Standards of care CARE-NMD
- Biomarker discovery and validation BIO-NMD
- Burden of illness (health economics)
- Natural history

Exon skipping - gene and mutation specific therapy for Duchenne

DMD exon skipping – cumulative data from registries for trial feasibility

	Exon 44	Exon 45	Exon 50	Exon 51	Exon 53	all
Belgium	11	18	11	36	14	90
Bulgaria	2	3	0	2	2	9
Czech Republic and Slovakia	8	4	6	12	13	43
France	110	138	57	154	138	597
Germany	17	7	9	32	18	83
Hungary	0	2	0	8	2	12
Italy	7	7	9	10	12	45
Japan	55	37	20	74	64	250
Poland	24	72	12	60	61	229
Portugal	9	16	7	23	7	62
Spain	18	22	13	47	26	126
Switzerland	2	5	5	11	6	29
The Netherlands	11	1	4	7	9	32
Тагкеу	43	38	41	87	65	414
UK and Ireland	17	24	5	30	19	95
U.S.	65	91	36	119	99	410
all	399	485	235	712	555	2386

DMD exon skipping: trial feasibility and recruitment

Yellow pins: German and Austrian trial sites (16)

Blue pins:
DMD & BMD patients
in German/Austrian
patient registry (693)

May 2010

DMD exon skipping: trial feasibility and recruitment

Yellow pins: German and Austrian trial sites

Green pins:
Patients meeting basic inclusion
criteria for trial (67)

Red circle: Under the care of Freiburg (4) and Essen (9)

Recruitment potential (within 2 hours reach)
Freiburg (15) and Essen (15)

Sharing: example projects: Infrastructure for RD data sharing

Infrastructure for RD data sharing RD-Connect

An integrated platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research Overarching objectives:

- Contribution to the IRDiRC objectives of delivering 200 new therapies for rare diseases and means to diagnose most rare diseases by the year 2020
- Development of an integrated, quality-assured and comprehensive platform in which complete clinical profiles are combined with -omics data and sample availability for rare disease research, in particular IRDiRC-funded research.

Infrastructure for RD data sharing Data flow within RD-Connect

Some concluding thoughts

- Collaboration and data sharing are even more crucial in rare disease than common
- Opportunities arising from the increase in RD research will be missed if projects do not share data
- □ For large datasets (omics data), publications are not enough: raw data access is essential
- Number of projects (both academic and PPP) that have been made possible as a result of sharing are proof that hurdles can be overcome
- □ Requires a change in mindset on all sides
- Requires explicit policies and incentivisation
- □ Requires appropriate infrastructure

@bushbykate

@treat_nmd

@ConnectRD

hanns.lochmuller@ncl.ac.uk

