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Abstract
After presenting some preliminary results from Morse theory, we discuss topics such as gradient fields, the
Smale condition, and the Morse complex. Then we define the Morse homology and showcase its usefulness
with concrete examples.

I. Introduction

This paper is being written as part of an independent study for the spring’16 semester at CUNY
Hunter College. Our goal is to present a (very) basic introduction to Morse homology and,
eventually, to its infinite-dimensional analogue: Floer homology.1 Before we even dream of
tackling the heavy machinery of Morse homology however, we need to present some of the
language and basic results that we need in order to develop the theory in the following sections.
This is by no means intended to be a complete, rigorous treatment of the deep subject of Morse
theory, but rather an attempt to summarize the essential material that is required to define the
Morse complex (which is given by the critical points of a Morse function and the trajectories of a
gradient field) and compute the associated homology groups. The reader is encouraged to explore
the provided references to further expand his/her knowledge of this wonderful subject and all its
ramifications.

II. A Sprinkle of Morse Theory

Definition 1. Let M be a smooth manifold and let f : M→ R be a C∞ function. A critical point of f is
a point x ∈ M such that d fx = 0; that is, the induced linear map d f : Tx M → Tf (x)R is zero. The real
number f (x) in such case is called a critical value of f .

If x is a critical point of f , we can define a covariant 2-tensor, i.e. a symmetric bilinear form
d2 fx : Tx M× Tx M→ R as follows: If v, w ∈ Tx M, then there are extensions to vector fields V and
W such that

d2 fx(v, w) = Vx(W f (x)), (1)

where Vx is by definition just v. Now consider a local coordinate chart (xi) and let

v = ∑
i

Vi ∂

∂xi

∣∣
x and w = ∑

j
W j ∂

∂xj

∣∣
x.

1Due to time constraints we only discuss Morse homology in this paper. Floer homology and related topics will be
discussed in a sequel.
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(We can also take W = ∑j W j ∂/∂xj, where W j is now a constant function.) Then,

d2 fx(v, w) = Vx(W f (x)) = v(W f )(x) = v

(
∑

j
W j ∂ f

∂xj

)
(x) = ∑

i,j
ViW j ∂2 f

∂xi∂xj (x),

so that the matrix (
∂2 f

∂xi∂xj (x)
)

(2)

represents d2 fx with respect to the basis ∂/∂x1|x, . . . , ∂/∂xn|x. (This matrix is known as the
Hessian of f .)

Definition 2. We will say that a critical point x is degenerate if the bilinear form d2 fx is degenerate
(i.e. if d2 fx = 0); we call x nondegenerate otherwise. Moreover, we will say that a function is a Morse
function if all its critical points are nondegenerate.

Remark 1. It is clear that a critical point x is nondegenrate if and only if the matrix (2) is nonsingular
(i.e. invertible).

It is a fact that studying a well-chosen function on a manifold can give rather precise information
on its topology. A most instructive example is known as the "height" function f : R3 → R and its
restriction f | to the different submanifolds embedded (or immersed) in R3, as presented in the
following figures.

f |

+1

−1

In the figure above, note that for a ∈ R, the level sets of f | are

f |−1(a) =



∅ if a < −1,
a point if a = −1,
a circle if −1 < a < 1,
a point if a = 1,
∅ if a > 1.

Each of these level sets has a well defined topology which changes exactly at the regular points
of the function; in this case at the north pole (maximum) and the south pole (minimum) of the
2-sphere. The situation is analogous for the torus T2 in the next figure, except that there are now
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critical points that are not extrema of the function, namely the two "saddle" points b and c:

a

b

c

d

f |

f |(a)

f |(b)

f |(c)

f |(d)

The corresponding level sets at these saddle points b and c are curves of the form (that is,
S1∨S1), and are therefore not submanifolds (immersed or embedded). The regular, noncritical level
sets must however all be (embedded) submanifolds because of the regular level set theorem.2

Let T2
a be the set of all points x ∈ T2 such that f |(x) ≤ a. Then we have the following:

T2
a



= ∅ if a < f |(d),
∼= D2 if f |(d) < a < f |(c),
∼= S1 × I (a cylinder) if f |(c) < a < f |(b),
∼= T2 r D̊2 if f |(b) < a < f |(a),
= T2 if a > f |(a).

Remark 2. In order to describe the changes in the topology of T2
a as a passes through the critical values of

f |, it is convenient to consider homotopy type rather than homeomorphism type (for a somewhat detailed
discussion the reader is referred to [MJ]).

Now let us take a second look at the "height" function on the 2-sphere, although this time we
consider a "deformed" sphere, which we denote by S2

∗. Obviously, S2
∗ is still diffeomorphic to S2,

but the function now has two local maxima and a saddle point:

a

b

c

d

f |

f |(a)

f |(b)
f |(c)

f |(d)

2Recall that this theorem states that every regular level set of a smooth map between smooth manifolds (or of a smooth
function to R in our particular case) is a properly embedded submanifold whose codimension is equal to the dimension of
the codomain.
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Note that the parity of the number of critical points of the new function is the same as that of the
original one (i.e., they are equal mod 2). It turns out that if we have that the critical points of our
function are nondegenerate (which is indeed the case for the critical points shown in our figures),
then modulo 2 the number of critical points equals the Euler characteristic of the manifold, an
invariant that does not depend on the function but only on the manifold itself. However, note that
this invariant is not especially strong:

χ(S2) = 2, χ(T2) = 0 =⇒ χ(S2)
mod 2
=== χ(T2),

but it is clear that the sphere and the torus are very different manifolds even if the two admit a
function with four nondegenerate critical points (and hence the same Euler characteristic mod
2). It is the concept of Witten spaces of trajectories that will allow us to present a finer invariant
(known as the Morse homology HMk(V) of a manifold V (c.f. §IV)) in the following sections.

We close out this section by presenting the Morse Lemma, which is, for our purposes, the most
important result of Morse theory. We refer the reader to [MJ] for a proof using Hadamard’s lemma,
or to [AD] for a proof that is a direct application of the implicit function theorem.

Definition 3. A symmetric bilinear form g on a vector space V is said to be negative definite provided
that for v ∈ V and v 6= 0, we have g(v, v) < 0. The index of g on V is the largest integer that is the
dimension of a subspace W ⊆ V on which g|W is negative definite. We will refer to the index of the
symmetric bilinear form d2 fx which we previously defined on (1) simply as the index of f at x.

The Morse Lemma will show that the behavior of a function f at p can be completely described by
its index:

Lemma 1 (Morse Lemma). Let p ∈ M be a nondegenerate critical point for f ∈ C∞(M). Then there is
a local smooth chart (U, ϕ), where U is a neighborhood of p and ϕ(p) = (x1(p), . . . , xn(p)) = (0, . . . , 0),
and such that

f ◦ ϕ−1(x1, . . . , xn) = f (p)−
ν

∑
j=1

(xj)2 +
n

∑
j=ν+1

(xj)2,

where ν is the index of f at p.

Definition 4. A chart in whose open set the coordinates given by the Morse lemma are defined is called a
Morse chart.

Remark 3. An immediate result that follows from the Morse lemma is the fact that the nondegenerate
critical points of a function are isolated. This implies, in particular, that a Morse function on a compact
manifold can only have finitely many critical points.
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III. Pseudo-Gradients

Let (M, g) be a Riemannian manifold and recall the notion of the gradient of a function f ∈ C∞(M),
denoted grad f , which is given by

grad f = (d f )] = ∑
i,j

gij ∂ f
∂xi

∂

∂xj .

Unraveling the definitions, we see that for any vector field X ∈ Γ∞(TM), the gradient satis-
fies

g(grad f , X) = (grad f )[(X) = d f (X) = X f .

(Here we are using the "sharp" (]) and "flat" ([) operators, which are the well known musical
isomorphisms between TM and T∗M.) Now we have the following definition:

Definition 5. Let f : M → R be a Morse function on a manifold M. A pseudo-gradient field (also
known as pseudo-gradient adapted to f ) is a vector field V on M such that:

• We have d fx(Vx) ≤ 0, where equality holds if and only if x is a critical point.

• In a Morse chart in the neighborhood of a critical point, V coincides with the negative gradient for the
canonical metric on Rn.

This notion allows us to make the Morse charts more precise by specifying the trajectories (also
known as integral curves or flow lines) of a pseudo-gradient field. For example, Figure 1 shows the
difference between a maximum and a minimum critical points in a Morse chart.

Figure 1: Trajectories of a pseudo-gradient field in a Morse chart at a maximum (left) and a minimum (right).

Recall that a flow domain for a manifold M is an open subset D ⊆ R×M with the property that
for each p ∈ M, the set D(p) = {t ∈ R | (t, p) ∈ D} is an open interval containing 0. A flow on
M is then a continuous map θ : D → M, where D ⊆ R×M is a flow domain, that satisfies the
following group laws: for all p ∈ M, we have θ(0, p) = p, and and for all s ∈ D(p) and t ∈ D(θ(s,p))

such that s + t ∈ D(p),
θ(t, θ(s, p)) = θ(t + s, p).

Now we make the following important definition:
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Definition 6. Let p ∈ M be a critical point of f ∈ C∞(M). Denote by θt the associated map θt : M→ M
of the flow θ : D → M of a pseudo-gradient. We define the stable manifold of p to be

Ws(p) =
{

x ∈ M | lim
t→+∞

θt(x) = p
}

,

and its unstable manifold

Wu(p) =
{

x ∈ M | lim
t→−∞

θt(x) = p
}

.

Remark 4. Note that with regards to stable/unstable manifolds, it only makes sense to considerD = R×M,
i.e. we are only going to focus on global flows.

Remark 5. The stable and unstable manifolds of the critical point p are submanifolds of M that are
diffeomorphic to open disks. Moreover, we have

dim Wu(p) = codim Ws(p) = Ind(p),

where Ind(p) denotes the index of the point p as a critical point of f .

To illustrate the concept of stable/unstable manifolds, here is a very simple example. Consider the
2-sphere S2 with the height function f described earlier. Let p be the minimum (south pole) and
let q be the maximum (north pole). Then, for any pseudo-gradient field, we have

Ws(p) = S2 r {q}, Wu(p) = {p},

and similarly
Ws(q) = {q}, Wu(q) = S2 r {p}.

The most important property of the trajectories of a vector field is that they all connect critical
points of a function: all trajectories come from a critical point and go towards another critical
point:

Proposition 1. Suppose that M is a compact manifold. Let γ : R → M be a trajectory of the pseudo-
gradient field V. Then there exist critical points c and d of f ∈ C∞(M) such that

lim
t→−∞

γ(t) = c and lim
t→+∞

γ(t) = d.

Proof. A proof can be found on [AD, 28-29].

Now we are finally arriving at the main result of this section. First let us recall that on a manifold
M two embedded submanifolds S, S′ ⊆ M are said to intersect transversely if for each p ∈ S ∩ S′,
the tangent spaces TpS and TpS′ together span Tp M (where we consider TpS and TpS′ as subspaces
of Tp M). We denote the intersection of two submanifolds S, S′ that meet transversally as S t S′.
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Definition 7. A pseudo-gradient field adapted to the Morse function f is said to satisfy the Smale
condition if all stable and unstable manifolds of its critical points intersect transversally, that is, if for all
critical points p, q of f , we have

Wu(p) t Ws(q).

Remark 6. Certain stable and unstable manifolds always meet transversally. For example, we always have:

• Wu(p) t Ws(p) (for the same critical point p), which is what we see in a Morse chart around p.

• Wu(p)∩Ws(q) = ∅ if p and q are distinct and f (p) ≤ f (q) (in particular, these stable and unstable
manifolds are transversal).

If the vector field satisfies the Smale condition, then for all critical points p and q, we have

codim(Wu(p) ∩Ws(q)) = codim Wu(p) + codim Ws(q);

that is,
dim(Wu(p) ∩Ws(q)) = Ind(p)− Ind(q).

Under our condition, this intersection Wu(p) t Ws(q) is a submanifold of M, which we will
denote byM(p, q). It consists of all points on the trajectories connecting p to q:

M(p, q) =
{

x ∈ M | lim
t→−∞

θt(x) = p and lim
t→+∞

θt(x) = q
}

.

IV. Morse Homology

Recall that a chain complex is a sequence C of modules endowed with linear maps ∂ : Ck → Ck−1
that satisfy ∂ ◦ ∂ = ∂2 = 0. Now let C and D be complexes of Z2-vector spaces. Then their tensor
product is the complex defined by

(C⊗ D)k = ⊗i+j=kCi ⊗ Dj

with boundary operator

∂C⊗D
k (c⊗ d) =

(
(∂C

i c)⊗ d, c⊗ (∂D
j d)

)
∈ Ci−1 ⊗ Dj ⊕ Ci ⊗ Dj−1

⊂ (C⊗ D)k−1 for c⊗ d ∈ Ci ⊗ Dj ⊂ (C⊗ D)k.

It can be shown then that the homology of the tensor product complex is the tensor product of the
homologies; i.e., H∗(C⊗ D) = H∗(C)⊗ H∗(D) (see [AD, Proposition B.11, Pg 556]).

Now, letting Critk( f ) denote the set of critical points of index k of a function f , we define the
vector space

Ck( f ) =

 ∑
p∈Critk( f )

αp p | αp ∈ Z2

 .
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In other words, for every integer k, we let Ck( f ) be the Z2-vector space generated by the critical
points of index k of f (we will often denote this simply by Ck when there is no risk of confusion).
Using the connections between critical points established by the trajectories of a generic (that is,
satisfying the Smale condition) pseudo-gradient field V, we define maps

∂V : Ck → Ck−1.

In order to define such map ∂V on Ck( f ), it suffices to know how to define ∂V(p) for a critical
point p of index k. This must be a linear combination of the critical points of index k− 1:

∂V(p) = ∑
q∈Critk−1

ηV(p, q)q with ηV(p, q) ∈ Z2.

The idea is to define ηV(p, q) as the number (modulo 2) of trajectories of V going from p to q. We
will show later on that this number is indeed finite.

Let us now employ these ideas on the examples previously shown on Section §II:

• The Height on the Round Sphere: Here, C0 = Z2, with generator a, C1 = 0 and C2 = Z2, with
generator b (refer to the examples on Section §II to see what these generators are). The homology
group is given by

H∗ =

{
Z2 if ∗ = 0, 2,
0 if ∗ 6= 0, 2.

The same computation with the height function on the unit n-sphere in Rn+1, which also has only
a minimum and a maximum, gives

H∗ =

{
Z2 if ∗ = 0, n,
0 if ∗ 6= 0, n.

• The "Deformed" Sphere: Now C0 = Z2, with generator a, C1 = Z2, with generator b, and
C2 = Z2 ⊕Z2, with generators c and d. By counting the trajectories connecting the critical points,
we find

∂c = b, ∂d = b, and ∂b = 2a = 0.

Thus we get 
H0 = Z2,
H1 = 0,
H2 = Z2.

Note that even though the complex is quite different from that of the regular sphere, its homology
is the same (as expected).

• The Torus: Consider the function cos(2πx) + cos(2πy) on the torus. Here C0 = Z2, with
generator a, C1 = Z2 ⊕ Z2, with generators b and c, and C2 = Z2, with generator d. The
differentials are

∂d = 2b + 2c = 0 and ∂b = ∂c = 2a = 0.

Thus the homology modulo 2 is 
H0 = Z2,
H1 = Z2 ⊕Z2,
H2 = Z2,

8



CUNY Hunter College • Dpt of Mathematics & Statistics • Spring 2016 Independent Study

which is indeed the homology of T2.

If p and q are two critical points of a function f : M→ R, then we let LV(p, q) denote the set of
trajectories from p to q of the vector field V. Similarly, the set of broken trajectories from p to q is
given by

LV(p, q) =
⋃

ci∈Crit( f )

LV(p, c1)× · · · × LV(cn−1, q).

(As suggested by the notation, this space is meant to be a compactification of LV(p, q).)3

Now, if p is a critical point of the Morse function f , then its stable manifold Ws(p), which is
diffeomorphic to a disk, is an orientable manifold. We then choose, for each critical point p ∈ M,
an orientation for Ws(p), for which there is a corresponding co-orientation on Wu(p). Thus, if p
and q are any two critical points, we have that Wu(p) t Ws(q) is therefore oriented. The same
holds for its intersection with a regular level set (a regular level set is co-oriented by the transverse
orientation given by the pseudo-gradient field V that is used). Hence the space of trajectories
LV(p, q) is also an oriented manifold.

Since the homology H∗( f , X) (X being a vector field) of the Morse complex on a manifold V
depends only on V, we denote it by HM∗(V; Z2) (for "Morse homology modulo 2" of V). Likewise,
the homology of the complex taking into account orientations is denoted by HM∗(V; Z) (integral
homology of V).

Proposition 2. If V is a compact connected manifold, then HM0(V; Z2) ∼= Z2.

Corollary 1. Let V be a compact connected manifold of dimension n. Then HMn(V; Z2) ∼= Z2.

Both the proposition and the corollary do in fact hold over Z if we take into account orientations.
The analogue of the corollary states that if V is a compact, connected, oriented n-manifold, then
HMn(V; Z) ∼= Z.

Corollary 2. Let V be a compact n-manifold. Then HM0(V; Z2) and HMn(V; Z2) are Z2-vector spaces
of dimension the number of connected components of V.

Proof. Write V as the disjoint union of its connected components V = qk
j=1Vj. Then on each Vj,

choose a Morse function f j and a suitable vector field Xj. It then follows that

C∗
(
q f j
)
= ⊕C∗( f j) and ∂qXj = ⊕∂Xj.

Proposition 3. If the manifold V admits a Morse function with no critical points of index 1, then it is
simply connected.

Proof. We may assume that V is path-connected and choose a minimum (say p0) of f as the base
point. Let α be a loop in V. We may also assume that this loop is smooth. If q is a critical point of
index k, then we know that dim Ws(q) = n− k. By a general position argument, we may further
assume that α meets none of the stable manifolds of the critical points of index greater than
or equal to 2. Since we have assumed that there are no critical points of index 1, the loop α is
contained in the union of the stable manifolds of the local minima, which are disjoint. Therefore α

3See [AD, Section 3.2] for details.
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is contained in one of these stable manifolds, namely that of the minimum p0. But this is a disk,
and therefore α is contractible onto the base point p0.

We are now going to compare the fundamental group and the first homology group of a connected
manifold V. First we state the following fundamental result:

Theorem 1. Let V be a compact connected manifold of dimension 1. Then V is diffeomorphic to S1 if
∂V = ∅ and diffeomorphic to [0, 1] if its boundary is nontrivial.

Proposition 4. If V is simply connected, then HM1(V; Z2) = 0.

Proof. We choose a Morse-Smale pair ( f , X) (meaning a Morse function f and a generic (i.e. Smale)
pseudo-gradient field X) on V. Then we begin by describing the 1-cycles in V; that is, the elements
α of C1( f ) such that ∂Xα = 0. These are linear combinations α = a1 + · · ·+ ak of critical points of
index 1, where ∂Xa1 + · · ·+ ∂Xak = 0. Now, for a critical point a of index 1, we have

∂Xa = c1 + c2,

where c1 and c2 are two critical points of index 0, which are not necessarily distinct (see Figure 2):
the unstable manifold of a is an open disk of dimension 1 and we continue applying Theorem 1.

Figure 2

Therefore our cycle α is the sum of cycles

β = b1 + · · ·+ b`

with ∂bi = ci + ci+1 for local minima c1, . . . , c` (with c`+1 = c1), as in Figure 2. Such a β defines an
embedding ιβ of the circle S1 into V such that the function gβ = f ◦ ιβ has the ci as local minima
and the bi as local maxima. Each β in a basis of ker ∂ ⊂ C1( f ) defines an injective morphism of
complexes

(ιβ)∗ : C∗(gβ, Xβ)→ C∗( f , X),

where Xβ is the vector field on S1 whose image is the restriction of X, such that the image of

(ιβ)∗ : HM1(S
1; Z2)→ HM1(V; Z2)

is the subspace generated by the class of β.
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Now, under the condition of simple connectedness on V, every map ν : S1 → V extends to a map
ν̃ : D2 → V. In particular, in homology,

ιβ : S1 ↪→ D2 ι̃β−→ V

gives a factorization

(ιβ)∗ : HM1(S
1; Z2)→ HM1(D

2; Z2)
(ι̃β)∗−→ HM1(V; Z2),

so that the class of β comes from HM1(D
2; Z2) = 0 and is therefore trivial, as desired.

We now have gathered (to some extent, at least) enough machinery to delve deep into the
construction of the Floer homology, with the aim of proving the Arnold conjecture. This states
that the number of periodic trajectories of period 1 of a Hamiltonian vector field on a symplectic
manifold W is greater than or equal to ∑j HMj(W; Z2). A follow-up of this paper will be devoted
entirely to this topic.
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