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Preface

As of now, this book is merely a compilation of course notes that I took while I was an
undergraduate student at CUNY Hunter College. As such, large portions of the text is
copied nearly verbatim from the literature cited on the references (something I intend to
correct later on). I am currently at a stage in my career in which I have to focus all my energy
on doing research rather than writing books; writing this one was merely a "fun exercise."
Nevertheless, I have rewritten many of these notes with my own flavor and there are some
original proofs here and there as well as exercises from homework problems that I had to
solve as part of my own coursework. My main goal is to provide undergraduate students
with a meaty summary of some of the major topics that (I think) every undergraduate
student should have before pursuing graduate studies. Of course, a textbook of such nature
must necessarily sacrifice depth of content for scope; indeed there are plenty of textbooks
out there dedicated to just one of these subjects alone! The main advantage of having a
book like this one is to have a wide-scope reference available whenever you need to brush
up your knowledge, and it is also a resource that may serve you well as a companion guide
to your main textbooks. I sincerely hope that you enjoy the readings and learn something
(or a lot!) from them.
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Chapter 1

Real Analysis

R
eal analysis is an exciting challenge of wrestling with big ideas related to the
development of the mathematical machinery of real numbers and real-valued
functions of real variables. You may have heard that this subject is "calculus on

steroids;" this is indeed a fitting "definition" in my opinion (seriously, make sure you have
some Tylenol1 within reach before you start reading this; I kid you not). That being said
however, once you get past the headaches you will find yourself immersed in a rich world
of elegant mathematics at which point you will go sprinting to your registrar’s office and
declare yourself a math major if you haven’t already. Getting through this course will not
be an easy ride, but hey, nothing worth fighting for comes easy, right? Real analysis is one
of your first true expositions to advanced mathematics, and as such you are bound to find
numerous counterintuitive surprises. Having seen mainly graphical, numerical, or intuitive
arguments throughout all your baby-math courses, you will now need to learn what consti-
tutes a rigorous mathematical proof and how to write one. You will need to be convinced
of the need for a more rigorous study of functions. The necessity of precise definitions and
an axiomatic approach must be carefully motivated. There needs to be significant reward
for the difficult work of firming up the logical structure of limits. Specifically, real analysis
should not be just an elaborate reworking of standard introductory calculus. You will be
exposed to the tantalizing complexities of the real line, to the subtleties of different flavors
of convergence, and to the intellectual delights hidden in the paradoxes of the infinite. Get
ready to have your mind blown over and over again!
] t

1 This is not an endorsement!
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1.1 Real Number System

Our goal in this first section is to provide a quick review of a handful of important ideas
from advanced calculus (and to encourage a bit of practice on these fundamentals). We will
make no attempt to be thorough. Our purpose is to set the stage for later generalizations
and to collect together in one place some of the notation that should already be more or
less familiar.

Proposition 1. Let p be a prime number. Then there are no integers m, n 2 Z such that
⇣m

n

⌘2
= p. (1.1)

Proof. Suppose to the contrary that such a number does in fact exist. We can assume that
this fraction m/n is in simplest terms, i.e. gcd(m, n) = 1, since otherwise we could just
divide by the common factor and get an equivalent fraction. Then the equation (1.1) can
be rewritten as m2 = n2 p, which means that p|m2 (this notation means that p divides m2).
Thus, it follows that p|m. In particular, there exists an integer k such that m = kp, from
which it follows that

m2 = k2 p2 = n2 p =) k2 p = n2.

But this would mean that p|n2 and therefore that p|n. This is a contradiction, because 1 =
gcd(m, n) � p > 1. Thus, we conclude that no rational function x2 = p exists.

Now we make the following observation: Let p be a prime number, and set

A =
�

r 2 Q+ | r2 < p
 

and B =
�

r 2 Q+ | r2 > p
 

.

Then for each r 2 A, there exists s 2 A such that r < s. Similarly, for each r 2 B there exists
s 2 B such that s < r. Let us proceed to define this number s:

• If r 2 A, then

r2 < p =) r <
p

p = r + (
p

p � r)

= r + (
p

p � r) ·
(
pp + r)
(
pp + r)

= r +
p � r2
pp + r

> r +
p � r2

p + r
| {z }

we call this number s

> r.

XcamZ\g g
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• Similarly, if r 2 B, we have

r2 > p =) r >
p

p = r � (r �p
p)

= r � (r �p
p) ·

(r +pp)
(r +pp)

= r � r2 � p
r +pp

< r � r2 � p
r + p

| {z }
we call this number s

< r.

Thus we have that s 2 Q+. If r 2 A, then r2 � p < 0, implying that r < s. On the other
hand, if r 2 B, then r2 � p > 0, implying that r > s.

Remark: The observation above suggests that any element in B ⇢ Q is an upper bound
of A. In other words, if s 2 B and r 2 A, then r < s. Furthermore, A has no smallest upper
bound (in R): For any s 2 B, there is an s1 < s, with s1 2 B, such that s1 is an upper bound
of A. Similar reasoning shows that B is bounded below by elements in A with no largest
lower bound. We will soon examine this observation more closely.

Definition 1. Let S be a set. An order on S is a relation, denoted by <, with the following two
properties:

• If x, y 2 S, then one and only one of the statements below is true:

x < y, x = y, y < x.

• Let x, y, z 2 S. Then if x < y and y < z, it is always true that x < z.

An ordered set is a set S in which an order is defined (for example, Q is an ordered set if r < s is
defined to mean that s � r is a positive rational number). There are sets in which certain elements
are ordered, but some are not. These sets are said to be partially ordered (for a silly example take
for instance the set {1, 3, 4, pizza}. Then we can put an order (either increasing or decreasing) on the
numbers 1, 3, 4, but obviously that delicious pizza is left out of any possible ordering!).

Definition 2. Suppose S is an ordered set, and E ⇢ S. If there exists a b 2 S such that x  b for
every x 2 E, then we say that E is bounded above, and call b an upper bound of E. Lower bounds

are defined in the same way (with � in place of ).

XcamZ\g g

f 7



1.1. Real Number System Chapter 1. Real Analysis
h [a\ g

Definition 3. A partially ordered set P is said to be a directed set if every pair of elements of P has
an upper bound.

Definition 4. Suppose S is an ordered set, E ⇢ S, and E is bounded above. Moreover, suppose there
exists an a 2 S with the following properties:

• a is an upper bound of E.

• If g < a, then g is not an upper bound of E.

Then a is called the least upper bound or supremum of E, denoted a = sup E. The greatest lower

bound, or infimum, of a set E which is bounded below is defined in the same manner. The statement
a = inf E means that a is a lower bound of E and that no b with b > a is a lower bound of E.

Definition 5. If both sup(a, b) and inf(a, b) exist for every pair (a, b) of a partially ordered set P,
then P is said to be a lattice.

Example 1. a) Consider the sets A and B described above as subsets of the ordered set Q. The set
A is bounded above. In fact, the upper bounds of A are exactly the members of B. Since B contains
no smallest member, A has no least upper bound in Q. Similarly, B is bounded below: the set of all
lower bounds of B consists of A and of all r 2 Q with r  0. Since A has no largest member, B has
no greatest lower bound in Q.

b) If a = sup E exists, then a may or may not be a member of E. For instance, let E1 be the set of
all r 2 Q with r < 0. Let E2 be the set of all r 2 Q with r  0. Then sup E1 = sup E2 = 0 with
0 /2 E1 and 0 2 E2.

c) Let E consist of all numbers 1/n, for n 2 Z+. Then sup E = 1, which is in E, and inf E = 0,
which is not in E. m

An ordered set S is said to have the least upper bound property if the following is true: If
E ⇢ S is not empty, and E is bounded above, then sup E exists in S. (Observe that Q does
not have the least upper bound property.) We now show that every set S with the least
upper bound property also has the greatest lower bound property:

XcamZ\g g
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Theorem 1. Suppose S is an ordered set with the least upper bound property and let B ⇢ S be
nonempty and bounded below. In addition, let L be the set of all lower bounds of B. Then a = sup L
exists in S and a = inf B. In particular, inf B exists in S.

Proof. Since B is bounded below, L is nonempty. Since L consists of exactly those y 2 S
which satisfy the inequality y  x for all x 2 B, we see that every x 2 B is an upper
bound of L. Then L is bounded above. Our hypothesis about S implies therefore that L has
a supremum in S; call it a. If g < a, then g is not an upper bound of L. In particular, there
is some b 2 L such that g < b, implying that g is a lower bound of B. Thus a  x for all
x 2 B. It follows that a 2 L. If a < l, then l /2 L, since a is an upper bound of L. Thus we
have shown that a 2 L but l /2 L if a < l. In other words, a is a lower bound of B but l is
not if l > a. This implies that a = inf B.

Theorem 2 (Existence Theorem). There exists an ordered field R which has the least upper bound
property. Moreover, R contains Q as a subfield.

Proof. See [Rudin, 1964, Chapter 1, Appendix].

We now derive some important properties of the field R:

Axiom 1 (Axiom of Completeness). Every nonempty set of real numbers that is bounded above
has a least upper bound.

Theorem 3. Let x, y 2 R. Then,

a) if x > 0, there is a positive integer n such that nx > y.

b) if x < y, there exists a p 2 Q such that x < p < y.

(Part a) is usually referred to as the Archimedian property of R. Part b) may be stated by saying that
Q is dense in R: Between any two real numbers there is a rational one.)

Proof of a). Set A = {nx | n 2 N}. Now let’s assume that a) is false, so that y is an upper
bound of A, and put a = sup A. We have that x > 0, which implies that a � x < a, and this

XcamZ\g g
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in turn means that a � x is not an upper bound of A. Hence a � x < mx for some positive
integer m. But then a < (m + 1)x 2 A, which contradicts the statement that a = sup A.
Therefore A is not bounded above.

Proof of b). Since x < y, we have y� x > 0. From part a), we conclude that there is an integer
n > 0 such that n(y � x) > 1. Observe that, for some integer m, we have m � 1  nx < m.
Observe also that m  1+ nx < ny. Thus, since nx < m, we have nx < m < ny. In particular,
x < m/n < y. This proves b), with p = m/n.

Now we are ready to prove the existence of nth roots of positive reals, but before doing
so let us recall the binomial theorem:

(x + y)n =
n

Â
k=0

✓
n
k

◆
xkyn�k where

✓
n
k

◆
=

n!
k!(n � k)!

.

Let us illustrate this with two simple examples:

a) (x + y)2 = y2
✓

2
0

◆
+ xy

✓
2
1

◆
+ x2

✓
2
2

◆

= y2 2!
0! 2!

+ xy
2!

1! 1!
+ x2 2!

2! 0!
= y2 + 2xy + x2.

b) (x + y)3 = y3
✓

3
0

◆
+ xy2

✓
3
1

◆
+ x2y

✓
3
2

◆
+ x3

✓
3
3

◆

= y3 3!
0! 3!

+ xy2 3!
1! 2!

+ x2y
3!

2! 1!
+ x3 3!

3! 0!
= y3 + 3xy2 + 3x2y + x3.

Theorem 4. For every real x > 0 and every integer n > 0, there is one and only one real y such
that yn = x.

Proof. One proof is already given in [Rudin, 1964, p. 10]. I offer here an alternate proof,
which relies on the binomial theorem. Let E be defined as in Rudin’s; that is, we let E be

XcamZ\g g
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the set consisting of all positive real numbers t such that tn < x, i.e., E = {t 2 R+ | tn < x},
with x 2 R. Check that E is not empty and that it is bounded (see Rudin’s argument if you
wish). Then set y = sup E. We will show that yn = x by proving that kyn � xk < # for any
# > 0. This will imply that kyn � xk = 0 or yn = x.

Let h > 0. If h < y, then y � h is a positive number that is not an upper bound of E. In
particular, there is some t 2 E such that y � h < t < y and therefore (y � h)n < tn < x,
from which follows that y � h 2 E. Observe now that (y + h)n > x, for if (y + h)n  x,
then (y + h/2)n < (y + h)n  x, implying that y + h/2 2 E, which contradicts the fact
that y is an upper bound of E. It follows that (y � h)n < x < (y + h)n and naturally,
(y � h)n < yn < (y + h)n.

Geometrically, the distance from yn to x, given by kyn � xk, is less than (y+ h)n � (y� h)n.
This can be proven analytically without much difficulty. Thus, we have

kyn � xk < (y + h)n � (y � h)n = 2
b n�1

2 c
Â
i=0

✓
n

2i + 1

◆
yn�2i�1 h2i+1 (|)

< 2h
b n�1

2 c
Â
i=0

✓
n

2i + 1

◆
yn�2i�1.

(Here we use b�c to denote the usual floor function) The expression on the right hand
side of (|) was derived from expanding (y + h)n � (y � h)n with the help of the binomial
theorem. The last inequality was derived from the assumption that h may be selected to be
less than 1.

Now notice that

B = 2
b n�1

2 c
Â
i=0

✓
n

2i + 1

◆
yn�2i�1.

is just a number and hB < # for any # given a sufficiently small h. Thus, kyn � xk < #, as
desired.

Corollary 1. If a and b are positive real numbers and n is a positive integer, then (ab)1/n =
a1/nb1/n.

Proof. Let a = a1/n and b = b1/n, so that

ab = anbn = (ab)n,

XcamZ\g g
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since multiplication is commutative. The uniqueness assertion of Theorem 4 shows that

(ab)1/n = ab = a1/nb1/n.

One approach to describe the elements of R is by using decimals; the following propo-
sitions give some insight. First, however, we must discuss the mathematical concept of a
sequence. You most likely have a fairly accurate intuition of what a sequence is; we can
think of it as a "list" of elements that may or may not have a particular order assigned to
such elements. However, in order for sequences to be useful to us, we need a more precise
mathematical definition:

Definition 6. A sequence {xn} (also usually denoted as (xn)) of points in a set X is a mapping
N ! X by n 7! xn.

Remark: For the most part, we are mainly interested in sequences. However, note that in
some situations you may also encounter mappings that generalize the concept of sequences:
a net {xa}a2D (or just {xa}, or(xa)) is a mapping D ! X by a 7! xa, where D is a directed
set that may be "uncountable" (this is in contrast to sequences, where the domain N of such
mappings is "countable."2

Proposition 2. Fix an integer p � 2 and let {an} be any sequence of integers satisfying 0  an 
p � 1 for all n. Then, Â•

n=1 an/pn converges to a number in [0, 1].

Proof. Since an � 0, the partial sums ÂN
n=1 an/pn are nonnegative and increase with N. Thus,

to show that the series converges to some number in [0, 1], we just need to show that 1 is an
upper bound for the sequence of partial sums:

N

Â
n=1

an

pn 
N

Â
n=1

p � 1
pn  (p � 1)

•

Â
n=1

1
pn = 1.

Consequently, each x in [0, 1] can be so represented:

] t

2 These concepts of "countable" and "uncountable" sets are discussed in the next subsection. You will then see
why it’s important to consider both sequences and nets.

XcamZ\g g
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Proposition 3. Let p 2 Z such that p � 2, and let x 2 [0, 1]. Then there is a sequence of integers
{an} with 0  an  p � 1 for all n such that x = Â•

n=1 an/pn.

Proof. The case x = 0 is trivial (this is a word that mathematicians like to throw around all
the time, although in cases like this it is certainly justified!) so let us suppose that 0 < x  1.
We will then construct {an} by induction. Start by choosing a1 to be the largest integer
satisfying a1/p < x. Since x > 0, it follows that a1 � 0, and since x  1, we have a1 < p.
Now because a1 is an integer, this means that a1  p � 1. Also, since a1 is largest, we must
have

a1

p
< x  a1 + 1

p
.

Next, choose a2 to be the largest integer satisfying

a1

p
+

a2

p2 < x.

Check that 0  a2  p � 1 and that

a1

p
+

a2

p2 < x  a1

p
+

a2 + 1
p2 .

Thus, by induction we get a sequence of integers {an} with 0  an  p � 1 such that

a1

p
+ · · ·+ an

pn < x  a1

p
+ · · ·+ an + 1

pn .

Now it follows that x = Â•
n=1 an/pn, and we are done.

The series Â•
n=1 an/pn is called a base p (or p-adic) decimal expansion for x. It is sometimes

written in the shorter form
x = 0.a1a2a3 . . . (base p).

It does not have to be unique (even for ordinary base-10 decimals: 0.5 = 0.4999 . . . ). One
problem is that our construction is designed to produce nonterminating decimal expansions.
In the particular case where

x =
a1

p
+ · · ·+ an + 1

pn =
q
pn for some integer 0 < q  pn,

XcamZ\g g
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the construction will give us a repeating string of p � 1’s in the decimal expansion for x
since

1
pn =

•

Â
k=n+1

p � 1
pk .

That is, any such x has two distinct base p decimal expansions:

x =
a1

p
+ · · ·+ an + 1

pn =
a1

p
+ · · ·+ an

pn +
•

Â
k=n+1

p � 1
pk .

Notice that if y 2 R, for any n 2 N we have y 2 [n, n + 1]. In particular, there is some
x 2 [0, 1] such that y = n + x. By the work done above, this means that any real number y
is an infinite sum of rational numbers.

h[YnabXcamZ\g

1.2 Finite, Countable, and Uncountable Sets

If A and B are sets and there exists a one-to-one mapping of A onto B (that is, a map from
A to B that is bijective), then we say that A and B can be put in 1 � 1 correspondence, or
that A and B have the same cardinal number (intuitively, the same "number of elements."
We will discuss this at greater length below). It is not hard to show that cardinality yields
an equivalence relation: if A and B have the same cardinal number, we say that A and B are
equivalent, and we write A ⇠ B. This relation clearly has the following properties:

• It is reflexive: A ⇠ A.

• It is symmetric: If A ⇠ B, then B ⇠ A.

• It is transitive: For some other set C, if A ⇠ B and B ⇠ C, then A ⇠ C.

Any relation with these three properties is called an equivalence relation.

Definition 7. For any positive integer n, let N(n) ⇢ N be the set whose elements are the integers
1, 2, . . . , n (N of course represents the set of all natural numbers; it is the extension of N(n) to
infinity). Then, for any set A we say:

XcamZ\g g
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i) A is finite if A ⇠ N(n) for some n (the empty set is also considered to be finite).

ii) A is infinite if A is not finite. (Duh!)

iii) A is countable if A ⇠ N.

iv) A is uncountable if A is neither finite nor countable.

v) A is at most countable if A is finite or countable.

Countable sets are sometimes called enumerable, or denumerable.

For two finite sets A and B, we evidently have A ⇠ B if and only if A and B contain the
same number of elements. For infinite sets however, the idea of "having the same number
of elements" becomes quite vague, whereas the notion of 1 � 1 correspondence retains its
clarity.

Example 2. a) The set of all integers Z is countable. To see this we can define a function f : Z ! N

such that

f (n) =

(
2n if n � 1,
�2n + 1 if n  0.

This function sets up the 1 � 1 correspondence

Z : . . . �3, �2, . . . , 2, 3, . . .
l l l l

N : . . . 7, 5, . . . , 4, 6, . . .

That is, the negative integers in Z are mapped to the odd numbers on N while the positive integers
in Z are mapped to the even numbers in N.

Note that usually there are multiple bijective maps capable of establishing a 1 � 1 correspondence
between two sets. For instance, we could have instead used a map from N to Z, say g : N ! Z

such that

g(n) =

(
n
2 if n is even,
� n�1

2 if n is odd.
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This function sets up the 1 � 1 correspondence

N : . . . 1, 2, 3, 4, . . .
l l l l

Z : . . . 0, 1, �1, 2, . . .

That both f and g are bijective is easy to check. Notice that Z is equivalent to a proper subset of
itself!

You, completely mind-blown.

This is typical of infinite sets whereas it is impossible for finite sets.

b) The set of all cartesian products on N is equivalent to N itself, i.e., N ⇥ N ⇠ N. A quick
proof is supplied by the fundamental theorem of arithmetic: Each positive integer k 2 N can be
uniquely written as k = 2m�1(2n � 1) for some m, n 2 N. Define f : N ⇥ N ! N by f (m, n) =
2m�1(2n � 1). It is obvious that this f is bijective.

c) The set of all real numbers R is equivalent to the interval (�p/2, p/2). To see this, define
f : R ! (�p/2, p/2) by f (x) = tan�1(x). Recall from calculus that f is a strictly increasing
(hence one-to-one) function from R to (�p/2, p/2), and it is also clearly onto. (As a matter of fact,
a generalization of this exercise is that R is in fact equivalent to any interval of real numbers (a, b).
Mind-blowing indeed, isn’t it??) m
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Theorem 5. Every infinite subset of a countable set A is countable.

Proof. Suppose E ⇢ A and E is infinite. Arrange the elements x of A in a sequence {xn} of
distinct elements. Then construct a sequence {nk} as follows: Let n be the smallest positive
integer such that xn1 2 E. Having chosen n1, . . . , nk�1 for k = 2, 3, 4, . . ., let nk be the smallest
integer greater than nk�1 such that xnk 2 E. Now putting f (k) = xnk for k = 1, 2, 3, . . ., we
obtain a 1 � 1 correspondence between E and N.

If A and B are sets, then it is customary to denote the set of all points in A that are not
in B by A r B; that is, A r B = {x 2 A | x /2 B}. That being said, we have the following
theorem:

Theorem 6. Every infinite set has a countable subset.

Proof. Let A be an infinite set. Then A 6= ∆, because ∆ is considered to be finite. Let x1 2 A
be any element of A. Then A r {x1} 6= ∆ (otherwise A = {x1} and A is finite). Pick
x2 2 A r {x1} to be any element of A r {x1}. Having chosen x1, . . . , xn�1, observe that
A r {x1, . . . , xn�1} 6= ∆ (otherwise A = {x1, . . . , xn�1}, making A finite). Hence we are free
to select xn 2 A r {x1, . . . , xn�1}. Let E = {xn} ⇢ A. Then E is countable.

Theorem 6 above shows that a countable infinity is the smallest type of infinity. That is, no
uncountable set can be a subset of a countable set, while every infinite set has a countable
subset. To motivate our next several results, we now present a second proof that N ⇥ N is
equivalent to N.

Theorem 7. N ⇥ N is equivalent to N.

Proof. Arrange N ⇥ N in a matrix as in Figure 1.1. The arrows have been added to show
how we are going to enumerate N ⇥ N. We will count the pairs in the order indicated by
the arrows: (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), and so on, accounting for each upward slanting
diagonal in succession.

Notice that all of the pairs along a given diagonal have the same sum. The entries of
(1, 1) add to 2, the entries of both (2, 1) and (1, 2) add to 3, each pair of entries on the next
diagonal add to 4, and so on. Moreover, for any given n, there are exactly n pairs whose
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Figure 1.1: N ⇥ N arranged as a matrix.

entries sum to n + 1. In other words, there are exactly n pairs on the nth diagonal. These
observations, allow us to construct an explicit formula for this correspondence between
N ⇥ N and N: Let f : N ⇥ N ! N be defined by

f (m, n) =
(m + n � 2)(m + n � 1)

2
+ n.

This is an invertible (i.e., bijective) map from N ⇥ N to N; hence N ⇥ N ⇠ N, and this
proves our theorem.

The above theorem gives us a ton of new information. We can see this materialize in the
following theorem:

Theorem 8. The countable union of countable sets is countable. That is, if Ai is countable for
i = 1, 2, 3, . . ., then [•

i=1Ai is countable.

Proof. Since each Ai is countable, we can arrange their elements collectively in a matrix:

A1 : a11 a12 a13 . .
A2 : a21 a22 a23 . .
A3 : a31 a32 a33 . .

. . . . . .

. . . . . .

So [•
i=1 Ai is the range of some invertible map on N ⇥N (just as the one constructed on the

Theorem 7 above). That is, [•
i=1Ai is equivalent to N ⇥ N and hence to N.
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Note that proof of the above theorem can be used to show that, given any two countable
sets A and B, the set A ⇥ B is also countable.

Corollary 2. Q is countable.

Recall that between any two real numbers there is a rational number (i.e., Q is dense in R).
This means, in fact, that between any two real numbers, there are infinitely many rational
numbers (since R is infinite and we know that (a, b) ⇠ R for all a, b 2 R). Surprisingly, N

is as large as Q even though N ⇢ Q and there are infinitely many rationals between any
two rational numbers.

So far we have shown that N, Z, Q are all countable. Now we show the shocking result
that R is not a countable set.

Theorem 9. R is uncountable.

Proof. To prove that R is uncountable, it is enough to show that some subset in R is un-
countable (since no countable set can have an uncountable subset). Therefore, we can use
the subset (0, 1) and prove that it is uncountable. To accomplish this, we will show that any
countable subset of (0, 1)is proper.

Given any sequence {an} in (0, 1), we construct an element x in (0, 1) with x 6= an for any
n. We begin by listing the decimal expansions of the an; for example:

a1 = 0. 3 1572 . . .

a2 = 0.0 4 268 . . .

a3 = 0.91 5 36 . . .

a4 = 0.759 9 9 . . .
. . . = . . . . . . . . . . . .

(If any an has two representations, just use the infinite one.) Now let x = 0.533353 . . ., where
the nth digit in the expansion for x is taken to be 3, unless an happens to have 3 as its
nth digit, in which case we replace it with 5 (this is why we "boxed" the nth digit in the
expansion of an above. Note that the choices of 3 and 5 are more or less arbitrary, in truth
we just want to avoid the troublesome digits 0 and 9 but any other digits would do).
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Using this procedure, the decimal representation of x is unique because it does not end
in all 0’s or all 9’s, and x 6= an for any n because the decimal expansions for x and an differ
in the nth place. Thus we have shown that {an} is a proper subset of (0, 1), and hence (0, 1)
is uncountable, which in turn implies that R is uncountable.

The proof that we just produced is known as Cantor’s diagonalization method. It gives
insight into the differences between countable and uncountable sets.

Corollary 3. The set of all irrationals R r Q (or simply I), is uncountable.

Proof. We know that R = Q [ I. We also know that the union of countable sets must be
countable. Since Q is countable and R is uncountable, it follows that I must be uncountable,
as desired.

Theorem 10 (Cantor’s Theorem). Let A be a set and P(A) denote its power set (i.e., the collection
of all subsets of A including A itself). Then no map F : A ! P(A) can be onto.

Proof. Let us assume that F : A ! P(A) is an onto function. Then consider SF = {x 2 A :
x /2 F(x)} 2 P(A). Since F is assumed to be onto, there must exists an element y 2 A such
that F(y) = SF. We claim that SF 6= F(y) for any y 2 A. Indeed, if SF = F(y), then we are
faced with the following alternatives:

y 2 F(y) = SF =) y /2 F(y) or y 62 F(y) = SF =) y 2 F(y),

and both lead to contradictions!

Theorem 11 (Bernstein’s Theorem). Let A and B be nonempty sets. If there exist one-to-one
maps f : A ! B and g : B ! A, then there is a map h : A ! B that is both one-to-one and onto.
Informally, this implies that if two cardinalities are both less than or equal to each other, then they
are equal.

Proof. One proof can be found in [Carothers, 2000]. We will present here an alternate proof.
We will call an element b 2 B lonely if there is no element a 2 A such that f (a) = b. We
also say that an element b1 of B is a descendent of an element b0 2 B if there is a natural
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number n (possibly zero) such that b1 = ( f � g)n (b0). We now define the function h : A ! B
as follows:

h(a) =

(
g�1(a) if f (a) is the descendant of a lonely point,
f (a) otherwise.

Note that if f (a) is the descendent of a lonely point, then f (a) = f � g(b)for some b; since g
is injective, the element g�1(a)is well defined. Thus our function h is well defined. We claim
that it is a bijection from A to B.

We first prove that h is surjective. Indeed, if b 2 B is the descendent of a lonely point, then
h(g(b)) = b; and if b is not the descendent of a lonely point, then b is not lonely, so there is
some a 2 A such that f (a) = b; by our definition, then, h(a) = b. Thus it is surjective.

Next, we prove that his injective. We first note that for any a 2 A, the point h(a) is a
descendent of a lonely point if and only if f (a) is a descendent of a lonely point. Now
suppose that we have two elements a1, a2 2 A such that h (a1) = h (a2). We consider two
cases:

• If f (a1)is the descendent of a lonely point, so is f (a2). Then we have

g�1 (a1) = h (a1) = h (a2) = g�1 (a2) .

Since g is a well defined function, it follows that a1 = a2.

• On the other hand, if f (a1) is not a descendent of a lonely point, then neither is f (a2).
It follows that

f (a1) = h (a1) = h (a2) = f (a2) .

Since f is injective, we have a1 = a2, which in turn implies that h is injective as well.

Thus we have shown that h is both surjective and injective, and hence bijective.

To appreciate how incredible Bernstein’s result truly is, consider the following example:

Example 3. Let R• be the set of all real-valued sequences. That is, if x 2 R•, then

x = (x1, x2, . . . , xn, . . . ) , where each xi 2 R.
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Then R• ⇠ (0, 1). To show this, first observe that R• ⇠ (0, 1)•. This observation is justified by
defining a map f : R• ! (0, 1)• by

f (x1, x2, . . . ) =

 
tan�1 (x1) +

p
2

p
,

tan�1 (x2) + p
2

p
, . . .

!
.

Thus, it is enough to show that (0, 1) ⇠ (0, 1)• (Note that (0, 1)• is the set of all sequences {xn}
with xn 2 (0, 1) ). To do this, observe that f : (0, 1) ! (0, 1)• given by f (x) = (x, 0, 0, . . . ) (the
choice of zeroes is arbitrary, what is important is to fix the first element) is an injective map from
(0, 1) into (0, 1)•. Thus,

card(0, 1)  card(0, 1)•

To prove the other direction, let x 2 (0, 1)•. Then x = (x1, . . . , xn, . . . ), where xn 2 (0, 1) for all
n 2 N. Represent each xn by its unique finite decimal expansion

xn = 0.xn1 xn2 xn3 . . . .

In addition, let pn be the nth prime and define g : (0, 1)• ! (0, 1) by g(x) = 0.y1y2y3 . . ., where

yk =

(
xni if k = pi

n,
0 otherwise.

Then g is injective. In particular,

card(0, 1)•  card(0, 1).

Thus it follows, by Bernstein’s theorem, that R• ⇠ (0, 1)• ⇠ (0, 1). m

Theorem 12. The rational numbers Q have measure 0 (i.e. occupy no space) on the real number
line.3

Proof. Since Q is a countable set, we can list all of its elements in a sequence {xn}. We will
show that Q has measure 0 by proving that for any # > 0, there is a collection of open
intervals which cover Q and whose combined length is less than #. To do this, for each
xn 2 Q, define In by

In =
⇣

xn �
#

2n+1 , xn +
#

2n+1

⌘
.

] t

3 We will see more on measure theory on Section §1.9.

XcamZ\g g

f 22



1.2. Finite, Countable, and Uncountable Sets Chapter 1. Real Analysis
h [a\ g

In other words, In is just an interval of length L (In) = #/2n centered at xn. Clearly, it is true
that Q ⇢ [•

n=1 In. Thus we have

L ([•
n=1 In) 

•

Â
n=1

L(In) =
•

Â
n=1

#

2n = #
•

Â
n=1

1
2n = #.

Theorem 12 can be interpreted as saying that the likelihood of selecting a rational number
at random in the set of real numbers is 0. To put it in more colorful terms, having selected
one object, the chance that another randomly selected object can be described in terms of
the first is 0.

Definition 8. A number is said to be algebraic if there exist integers a0, a1, . . . , an 2 Z such that
a0 + a1x + · · ·+ anxn = 0.

Theorem 13. The set of all algebraic numbers is countable.

Proof. Let An be the set of all polynomials of degree n with integer coefficients. The map
a0 + a1x + · · · + anxn 7! (a0, a1, . . . , an) shows that An ⇠ Zn+1, which implies that An is
countable. Now the set of all polynomials with integer coefficients can be written as the
countably infinite union A = [•

n=1An, which must therefore be countable. Thus, each poly-
nomial in A can be assigned a natural number that uniquely identifies it.

Let k 2 N be the unique positive integer corresponding to p(x) = a0 + a1x + · · ·+ anxn.
Observe that this polynomial can have at most n distinct complex roots. We can arrange
these roots in lexicographic (i.e., dictionary) order from smallest to largest and associate
k.1 with the smallest root of p, k.01 with the next smallest root of p, k.001 with the third
smallest root, etc. Clearly, each algebraic number is thus paired with at least one rational
number. This implies that algebraic numbers are countable.

Notice that all countable sets have measure 0 in R (or C). Thus, the probability that a
number is algebraic is 0, which implies that almost all numbers are transcendental! This is
completely crazy talk! Think about how many transcendental numbers you can come up
with off the top of your head....you can probably think of p, e, and a small handful others...,
but according to our recent discovery, there are more of these weirdos than "regular" (i.e.,
algebraic) numbers! Mind-blown again!!
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Your face right now.

h[YnabXcamZ\g

1.3 Metrics and Norms

We will start this section with a discussion of metrics and metric spaces. This is an extremely
important topic that will permeate much of the advanced mathematical machinery that
awaits you in your future studies. The concept of a metric appears ubiquitously in math-
ematics, especially in analysis, topology, and geometry, as you will see on later chapters.

Definition 9. Given a set M, a function d : M ⇥ M ! [0, •) satisfying the following properties is
called a metric on M:

i) d(x, y) = 0 if and only if x = y.

ii) (Symmetry ) d(x, y) = d(y, x) for all pairs x, y 2 M.

iii) (Triangle Inequality ) d(x, y)  d(x, z) + d(z, y) for all x, y, z 2 M.

The couple (M, d), consisting of a set M together with a metric d defined on M, is called a metric

space.
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Example 4. a) Every set M admits at least one metric. For example, for any x, y 2 M, the function
d defined by

d(x, y) =

(
1 if x 6= y,
0 if x = y,

is a metric (check that the properties hold!). This mundane but always available metric is called the
discrete metric on M. A set supplied with its discrete metric is called a discrete space.

b) An important example is the real line R together with its usual metric d(x, y) = |x � y|, where
| · | denotes the usual absolute value. Any time we refer to R without explicitly naming a metric, the
absolute value metric is always understood to be the one that we have in mind.

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on M
and A ✓ M, then d(x, y) is defined for any pair x, y 2 A, i.e., d|A⇥A(x, y) = d(x, y) whenever
x, y 2 A. Thus we will use the same letter d and simply refer to the metric space (A, d) as opposed
to (A, d|A⇥A). Of particular interest in this regard is that N, Z, Q, and R r Q each come already
supplied with a natural metric, namely the restriction of the usual absolute value metric of R. In
each case, we will refer to this restriction as the usual metric. m

Alright, so we have thus far the discrete metric and the good ol’ absolute value at our
disposal. Now how can we enrich our arsenal of metric functions? Let us present a few
options on the following example:

Example 5. a) Suppose that d is a metric on M and j : M ! M is a bijection. Then F : M ⇥ M !
R defined by F(x, y) = d(j(x), j(y)) is also a metric on M, as you can verify.

b) Suppose that y : M ! R is an injective function (not necessarily surjective). Then, Y : M ⇥
M ! R defined by Y(x, y) = |y(x)� y(y)| is a metric on M. This is an example of a pullback

metric; the name comes from the fact that we are defining the metric on the domain space (M in this
case) by "pulling back" the metric from the target space (R in this case). The concept of pullbacks

is extremely important, and you will find it over and over again all across mathematics. Anyhow, to
see that Y is indeed a metric, note that it satisfies all the required properties:

• 0  Y(x, y) < • for all pairs x, y 2 M.

• Y(x, y) = 0 if and only if |y(x)� y(y)| = 0, which is true only if and only if y(x) = y(y).
But this happens only when x = y, since by assumption y is injective.
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• Y(x, y) = |y(x)� y(y)| = |y(y)� y(x)| = Y(y, x).

• The triangle inequality is also satisfied: For all x, y, z 2 M,

Y(x, y) = |y(x)� y(y)| = |y(x)� y(z) + y(z)� y(y)|
 |y(x)� y(z)|+ |y(z)� y(y)|
= Y(x, z) + Y(z, y).

c) Define d1, d2, d3 : R2 ! [0, •) by

d1(x, y) = | tan�1(x)� tan�1(y)|, d2(x, y) = |x3 � y3|, and d3(x, y) = |ex � ey|.

Then, d1, d2, and d3 are all metric functions on R2 (as you should check!).

d) Let M = (0, •) and define d1, d2, d3 : M ⇥ M ! [0, •) by

d1(x, y) = |
p

x �p
y|, d2(x, y) = | log x � log y| =

����log
x
y

���� , and d3(x, y) =
����
1
x
� 1

y

���� .

Then d1, d2, and d3 are all metric functions on M = (0, •) (as you should check!).

e) Note that a function can be a metric on one set and fail to be a metric on another. Take, for
instance, the function d(x, y) = |x2 � y2|. Then d defines a metric on [0, •), but fails to be a metric
on all of R. We can easily see why, as it violates some properties of metric spaces (check the properties
and you’ll see!). m

Now our arsenal of metrics has grown quite a bit, but why should we be satisfied when
we can expand our collection of metrics even further? To do this, we first prove the following
lemma:

Lemma 1. Let f : [0, •) ! [0, •) be any function with the following two properties:

a) f (x) = 0 () x = 0. Otherwise f (x) > 0.

b) f 0 is decreasing, i.e., if x < y, then f 0(x) > f 0(y).

Then, given that f satisfies those two conditions, for any pair x, y 2 [0, •), we have f (x + y) 
f (x) + f (y).
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Proof. we let g(x) = f (x + y) and p(x) = f (x) + f (y), where we regard y as a fixed number.
We wish to show that g(x)  p(x) or, equivalently, that 0  p(x)� g(x). Notice that

d
dx

(p(x)� g(x)) = p0(x)� g0(x) = f 0(x)� f 0(x + y) � 0 by property b) of f .

Thus, by the first derivative test from the glory days of baby calculus, p(x)� g(x) is increas-
ing for all x 2 [0, •), attaining its smallest value when x = 0. Now,

p(0)� g(0) = f (0) + f (y)� f (y) = f (y)� f (y) = 0.

Thus, p(x)� g(x) � 0 for all x, and the desired result follows.

Theorem 14. Let d : M ⇥ M ! [0, •) be a metric function on M and suppose f : [0, •) ! [0, •)
satisfies the two properties discussed in Lemma 1. If f 0(t) > 0 for all t 2 (0, •), then r : M ⇥ M !
[0, •) given by r(x, y) = f (d(x, y)) defines another metric on M.

Proof. We have to check that all the properties of metrics are satisfied. Clearly 0  f (d(x, y)) <
• for all x, y 2 M. Now,

• Suppose r(x, y) = 0, then f (d(x, y)) = 0. By property a) of f (1), this implies that
d(x, y) = 0, or x = y. Obviously r(x, x) = 0.

• The symmetry r(x, y) = r(y, x) for all x, y 2 M is obvious.

• The triangle inequality is also satisfied:

r(x, y) = f (d(x, y))
 f (d(x, z) + d(z, y))
 f (d(x, z)) + f (d(z, y))
= r(x, z) + r(z, y) 8 x, y, z 2 M.

Note that the first inequality comes from the assumption that f is increasing and
d(x, y)  d(x, z) + d(z, y), and the second inequality is a consequence of Lemma 1.

Thus, since r satisfies all the required properties, we conclude that it is a metric function, as
desired.
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Now, since you’re so anxious to work through a few problems on your own, here’s some-
thing for your entertainment and pleasure:

• Let r, s, h : M ! R. Verify that

r(x, y) =
q
|x � y|, s(x, y) =

|x � y|
1 + |x � y| , and h(x, y) = log(|x � y|+ 1),

each define a metric on M.

• If d is any metric on M and, as before, r, s, h : M ! R, verify that

r(x, y) =
q

d(x, y), s(x, y) =
d(x, y)

1 + d(x, y)
, and h(x, y) = log(d(x, y) + 1),

are also metrics on M.

• Let r, s : M ! R.

– Is r(x, y) =
p

log (|x3 � y3|+ 1) a metric function on M?

– How about

s(x, y) =
p

log (|x3 � y3|+ 1)
1 +

p
log (|x3 � y3|+ 1)

?

1.3.1 Normed Vector Spaces

Some of the most important examples of metric spaces in mathematics are the so-called
normed linear spaces (also known as normed vector spaces), which are algebraic structures
that satisfy certain axioms (if you are not familiar with vector spaces, I recommend that
you read this subsection only after some perusal of linear algebra). A particular example
of great importance in analysis is the function space Cp[a, b], which denotes the set of all
continuously differentiable (up to order p) functions over the domain [a, b] (there is some
subtlety with the notion of differentiability at the endpoints a and b, but we will not bother
with those issues at this stage). This set is endowed with some additional algebraic structure
that makes it a normed vector space. Special cases are the set of all smooth (or C•) functions
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C•[a, b], and also the space of all continuous functions C[a, b] (sometimes also denoted as
C0[a, b].

An easy way to build a metric on a vector space is by way of a length function or norm:

Definition 10. A norm on a vector space V is a function k · k : V ! [0, •) satisfying

i) kxk = 0 () x = 0.

ii) kaxk = |a|kxk for any scalar a and any x 2 V.

iii) kx + yk  kxk+ kyk for all x, y 2 V.

A function k · k : V ! [0, •) satisfying all of the above properties except i) is called a pseudo-norm

(or semi-norm); that is, a pseudonorm allows nonzero vectors to have zero length. The pair (V, k · k),
consisting of a vector space V together with a norm on V, is called a normed vector space. It is
easy to see that any norm induces a metric on V by setting d(x, y) = kx � yk (we will refer to this
particular metric as the usual metric on (V, k · k)).

Example 6. a) The absolute value function | · | clearly defines a norm on R.

b) Each of the following defines a norm on Rn. For x = (x1, . . . , xn) 2 Rn,

• kxk1 = Ân
i=1 |xi|.

• kxk2 =
�
Ân

i=1 |xi|2
�1/2.

• As it happens, continuing the process on the previous two examples for 1  p < •, the
expression kxkp = (Ân

i=1 |xi|p)1/p defines a norm on Rn.

• kxk• = max1in |xi|.

The first and last expressions are very easy to check while the second takes a bit more work. The
function k · k2 is often called the Euclidean norm and is generally accepted as the norm of choice in
Rn (no wonder it’s the norm you’ve been seeing since kindergarten math!).

c) Each of the following defines a norm on C[a, b]:
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• k f k1 =
´ b

a | f (t)|dt.

• k f k2 =
⇣´ b

a | f (t)|2 dt
⌘1/2

.

• k f k• = maxatb | f (t)|.

Again, the second expression is the hardest to check. The last expression is generally taken as "the"
norm on C[a, b].

d) If (V, k · k) is a normed vector space, and if W is a linear subspace of V, then W is also normed
by k · k. That is, the restriction of k · k to W defines a norm on W.

e) We now present the sequence space analogues of the "scale" of norms on Rn given in part b)
above. For 1  p < •, we define `p to be the collection of all real sequences x = {xn} for which
Â•

n=1 |xn|p < • (by "real sequences" of course we mean xi 2 R for all i). In the case when p = •,
we define `• to be the collection of all bounded real sequences (the definition is cooked up so that we
use the sup norm on such sequences, as you will see now).

It can be shown that each `p is a vector space under coordinatewise addition and scalar multipli-
cation. Moreover, the expression

kxkp =

(
(Â |xi|p)1/p if 1  p < •,
supn2N |xn| if p = •.

defines a norm on `p. The cases p = 1 and p = • are not hard to check (do it!). We will verify the
other results shortly. m

Lemma 2 (The Cauchy-Schwarz Inequality). For any x, y 2 `2, we have Ân
i=1 |xiyi|  kxk2kyk2.

Proof. To simplify notation, we write hx, yi = Â xiyi. We first consider the case where x, y 2
Rn (that is, xi = 0 = yi for all i > n). In this case, hx, yi is the usual inner product on
Euclidean space, i.e., the dot product). Also notice that we may suppose that x, y 6= 0 (there
is nothing to show if either is 0). Now let t 2 R and consider

0  kx + tyk2
2 = hx + ty, x + tyi = kxk2

2 + 2thx, yi+ t2kyk2
2.

XcamZ\g g

f 30



1.3. Metrics and Norms Chapter 1. Real Analysis
h [a\ g

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive
discriminant. Thus,

(2hx, yi)2 � 4kxk2
2 kyk2

2  0 =) |hx, yi|  kxk2kyk2.

That is, �����

n

Â
i=1

xiyi

�����  kxk2kyk2. (1.2)

This is not exactly what we were looking for, but it actually implies the stronger inequality
in the statement of the lemma. Why? Because the inequality (1.2) must also hold for the
vectors (|x1|, |x2|, . . . , |xn|) and (|y1|, |y2|, . . . , |yn|). That is,

n

Â
i=1

|xiyi|  k (|x1|, . . . , |xn|) k k (|y1|, . . . , |yn|) k = kxk2kyk2.

Finally, let x, y 2 `2. Then, for each n we have

n

Â
i=1

|xiyi| 
 

n

Â
i=1

|xi|2
!1/2 n

Â
i=1

|yi|2
!1/2

 kxk2kyk2.

Thus, Â•
i=1 xiyi must be absolutely convergent and satisfy Ân

i=1 |xiyi|  kxk2kyk2.

Now we are ready to prove the triangle inequality for the `2 norm.

Theorem 15 (Minkowski’s Inequality). If x, y 2 `2, then x + y 2 `2. Moreover, kx + yk2 
kxk2 + kyk2.

Proof. It follows from the Cauchy-Schwarz inequality that, for each n, we have

n

Â
i=1

|xi + yi|2 =
n

Â
i=1

|xi|2 + 2
n

Â
i=1

xiyi +
n

Â
i=1

|yi|2

 kxk2
2 + 2kxk2kyk2 + kyk2

2

= (kxk2 + kyk2)
2 .

Thus, since n is arbitrary, we have x + y 2 `2 and kx + yk2  kxk2 + kyk2.
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We now extend the result of Theorem 15 to general spaces `p for 1 < p < •. Just as in the
case of `2, several facts are trivial. For example, it is clear that kxkp = 0 implies that x = 0,
and it is easy to see that kaxkp = |a|kxkp for any scalar a. Thus we only need to focus our
attention on the triangle inequality. We begin with a few classical inequalities that are of
interest in their own right. The first shows that `p is at least a vector space.

Lemma 3. Let 1 < p < • and let a, b � 0. Then, (a + b)p  2p(ap + bp). Consequently,
x + y 2 `p whenever x, y 2 `p.

Proof. First note that (a + b)p  (2 max{a, b})p = 2p max {ap, bp}  2p (ap + bp). Thus, if
x, y 2 `p, then

•

Â
n=1

|xn + yn|p  2p
•

Â
n=1

|xn|p + 2p
•

Â
n=1

|yn|p < •.

Lemma 4 (Young’s Inequality). Let 1 < p < • and let q be defined by

1
p
+

1
q
= 1.

Then, for any a, b � 0, we have

ab  ap

p
+

bq

q
,

with equality occurring if and only if ap�1 = b.

Proof. Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. Since
1/p + 1/q = 1, we see that

p
✓

1
p
+

1
q

◆
= p =) 1 +

p
q
= p.

In particular, p/q = p � 1. Similarly,

q
✓

1
p
+

1
q

◆
= q =) q

p
= q � 1.

Thus,
1

p � 1
=

1
p/q

=
q
p
= q � 1.
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Also notice that q = 1/(p � 1) + 1, implying that, just like p, q is also in (1, •). Thus, the
functions f (x) = xp�1 and g(x) = xq�1 are inverses for x � 0. The proof of the inequality
follows from a comparison of areas:

The area of the rectangle with sides of lengths a and b is at most the sum of the areas
under the graphs of the functions y = xp�1 for 0  x  a and x = yq�1 for 0  y  b. That
is,

ab 
ˆ a

0
xp�1dx +

ˆ b

0
yq�1dy =

ap

p
+

bq

q
.

Clearly, equality can occur only if ap�1 = b.

When p = q = 2, Young’s inequality reduces to the arithmetic-geometric mean inequality
(although it is usually stated in the form

p
ab  (a + b)/2). Young’s inequality will supply

the extension of the Cauchy-Schwarz inequality that we need.

Lemma 5 (Hölder’s Inequality). Let 1 < p < • and let q be defined by 1/p + 1/q = 1. Given
x 2 `p and y 2 `q, we have

•

Â
i=1

|xiyi|  kxkpkykq.

Proof. We may suppose that kxkp > 0 and kykq > 0 (since otherwise there is nothing to
show!). Now, for n � 1, we use Young’s inequality to estimate:

n

Â
i=1

����
xiyi

kxkpkykq

���� 
1
p

n

Â
i=1

����
xi

kxkp

����
p
+

1
q

n

Â
i=1

����
yi

kykq

����
q
 1

p
+

1
q
= 1.

Thus, we have Ân
i=1 |xiyi|  kxkpkykq for any n � 1, and the result follows.
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Remark: Our proof of the triangle inequality will be made easier if we first isolate one
of the key calculations. Notice that if x 2 `p, then the sequence

�
|xn|p�1 •

n=1 2 `q, because
(p � 1)q = p. Moreover, we have

k(|xn|p�1)kq =

 
•

Â
i=1

|xi|p
!1/q

= kxkp�1
p .

Theorem 16 (Minkowski’s (General) Inequality). Let 1 < p < •. If x, y 2 `p, then x+ y 2 `p.
Moreover, kx + ykp  kxkp + kykp.

Proof. We have already shown in Lemma 3 that x + y 2 `p. To prove the triangle inequality,
we once again let q be such that 1/p + 1/q = 1, and we now use Hölder’s inequality to
estimate:

•

Â
i=1

|xi + yi|p =
•

Â
i=1

|xi + yi| · |xi + yi|p�1


•

Â
i=1

|xi| · |xi + yi|p�1 +
•

Â
i=1

|yi| · |xi + yi|p�1

 kxkp · k(|xn + yn|p�1)kq + kykp · k(|xn + yn|p�1)kq

= kx + ykp�1
p
�
kxkp + kykp

�
.

That is, kx + ykp
p  kx + ykp�1

p
�
kxkp + kykp

�
, and the triangle inequality follows.

1.3.2 Limits in Metric Spaces

Now that we have generalized the notion of distance, we are ready to define the notion of
limits in abstract metric spaces. Throughout this subsection, unless otherwise specified, we
will assume that we are always dealing with a generic metric space (M, d).

Definition 11. Given x 2 M and r > 0, the set Br(x) = {y 2 M | d(x, y) < r} is called the
open ball about x of radius r. (If we want to specify that we are using a given metric d, then we
write Bd

r (x).) We may occasionally refer to the set Br(x) = {y 2 M | d(x, y)  r} as the closed

ball about x of radius r.
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Example 7. a) In R we have Br(x) = (x� r, x+ r), the open interval of radius r about x. Similarly,
Br(x) = [x � r, x + r] is the closed interval of radius r about x.

b) In R2 the set Br(x) is the open disk of radius r centered at x. The appeareance of Br(x) in fact
depends on the metric at hand, as we now illustrate.

• If d is generated by the norm k · k1, then Br(x) will look like a square of diameter 2r centered
at x (see Figure 1.2, where the boundary of Br(x) is the "circle" labeled 1).

• If d is generated by the norm k · k2, then Br(x) will look like a disk of radius r centered at x
(see Figure 1.2, where the boundary of Br(x) is the (true!) circle labeled 2).

• If d is generated by the norm k · kp, with 1 < p < •, then Br(x) will look like a brick with
rounded corners. As p gets larger, the brick will assume the appearance of a regular square.
That is, if d is generated by the sup norm k · k•, then (Br(x) will look like a square with
diameter 2

p
2r centered at x (see Figure 1.2, where the boundary of Br(x) is the "circle"

labeled •).

Figure 1.2: The shape of the "circle" varies according to the metric used.

c) In a discrete space (M, d), we have Bd
1(x) = {x} and Bd

2(x) = M.

d) In a normed vector space (V, k · k), the balls centered at 0 play a special role. In this setting,
Br(x) = x + Br(0) = {x + y : kyk < r} and Br(0) = rB1(0) = {rx : kxk < 1} (for your pure
entertainment and pleasure, I leave it to you to check that these statements hold!). m
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A subset A of M is said to be bounded if it is contained in some ball, that is, if A ⇢ Br(x)
for some x 2 M and some r > 0. As it turns out, a subset A ✓ M is bounded if and only if
for any x 2 M, we have supa2A d(x, a) < •. Related to this is the diameter of A, which we
define as diam A = sup{d(a, b) | a, b 2 A}.

A neighborhood of x is any set containing an open ball about x (intuitively, we should
think of a neighborhood of x as a "thick" set of points near x). We say that a sequence of
points {xn} in M converges to a point x 2 M if d (xn, x) ! 0. Now, since this definition
is stated in terms of the sequence of real numbers {d(xn, x)}•

n=1, we can easily derive the
following equivalent reformulations:

(
{xn} converges to x if and only if, given any # > 0, there is
an integer N � 1 such that d(xn, x) < # whenever n � N,

or (
{xn} converges to x if and only if, given any # > 0, there is
an integer N � 1 such that {xn | n � N ⇢ B#(x).

If we have that {xn | n � N} ⇢ A for some N, we say that the sequence {xn} is eventually

in A. Thus, our last formulation can be written

(
{xn} converges to x if and only if, given any # > 0,
the sequence {xn} is eventually in B#(x)

or, equally, (
{xn} converges to x if and only if it is
eventually in every neighborhood of x.

You can use any of the above expressions to describe the phenomenon of convergence of
a series; which formulation you use is a matter of taste, although in some cases one version
is better than the others. For instance, note that on the very final version, there is no mention
whatsoever of N’s and #’s. Anyhow, just as with real sequences, we usually settle for the
shorthand xn ! x in place of the phrase "{xn} converges to x." On occasion we will want to
display the set M, or the metric d (or both); to this end we may occasionally write xn

d! x.
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Definition 12. A sequence {xn} is said to be a Cauchy sequence (also, clustering sequence) in
(M, d) if, given any # > 0, there is an integer N � 1 such that d(xm, xn) < # whenever m, n � N.
Alternatively, we can say that {xn} is Cauchy if and only if, given # > 0, there is an integer N � 1
such that diam{xn | n � N} < #.

Definition 13. Let (M, d) be a metric space. A sequence {xn}•
n=1 ⇢ M is said to converge in M if

there is some x 2 M such that, for every # > 0, there is an integer N > 0 that satisfies d(xn, x) < #
whenever n � N.

We will show shortly that every convergent sequence is Cauchy (cf., Proposition 5). The
converse however, is not in general true, i.e., Cauchy sequences need not necessarily con-
verge. For a quick example, consider the sequence {1/n} living in the space M = (0, 1]
under its usual absolute value metric. Then {1/n} is indeed Cauchy, but it does not con-
verge to any point in M (notice that it converges to 0 but 0 62 M; see Example 8 below).
Notice too that {1/n} is a bounded sequence with no convergent subsequence. We will see
later on that a Cauchy sequence that has a convergent subsequence does converge.

Example 8. a) Let M = [0, •) be endowed with its usual absolute value metric | · |, and let
sn = {1/n}•

n=1 be a sequence in M. Now we deduce the following:

• The sequence sn is convergent. Recall that vaguely familiar expression from baby-calculus:
limn!• 1/n = 0. We show now that sn does indeed converge to 0. Since R is an ordered field,
we have that ����

1
n
� 0
���� =

1
n
< # () n >

1
#

.

It follows from the Archimidean property of R that n > 1/# can be achieved for some suffi-
ciently large integer N. Thus, if n � N, it follows that 1/n < #, as desired.

• The sequence sn is Cauchy. For # > 0, let N be a positive integer such that if n � N, we have
|1/n � 0|  #/2. Then for m, n � N,

����
1
m

� 1
n

���� 
����
1
n
� 0
����+
����

1
m

� 0
���� <

#

2
+

#

2
= #.

b) Consider the same sequence sn as in part a), but this time in M = (0, •). Then sn is still Cauchy
under the usual absolute value metric inherited by M from R. Notice however, that limn!• 1/n =
0 62 (0, •) = M. Thus sn does not converge in M. m
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As we saw in this example, the matter of convergence depended entirely on the space
where we were operating. Now we show that this is not always the case; there are instances
where convergence and/or the Cauchy criterion depend on the metric function instead:

Example 9. a) Let (M, d) be the metric space [0, •) endowed with he discrete metric

d(x, y) =

(
1 if x 6= y,
0 if x = y.

Then the sequence sn = {1/n}•
n=1 does not converge, since for any x 2 M, Bd

1(x) = {y 2 M |
d(x, y) < 1} = {x}. In other words, sn fails to cluster around x.

b) Let M = (0, •) with metric d defined by d(x, y) = |1/x � 1/y|. Then our good old friend
sn = {1/n}•

n=1 is not Cauchy, since d(1/n, 1/m) = |n � m| � 1 for m 6= n. m

Now we present a very important result. The following proposition is reassuring; it tells
us that when we go somewhere, we will arrive to one place and one place only. It would
have been rather confusing if we had arrived at different places at once, don’t you think?!

Proposition 4. Limits are unique. That is, if xn
d! x and xn

d! y, then x = y.

Proof. We will show that d(x, y) = 0 by proving that the distance between any two points
x and y become arbitrarily small; i.e., d(x, y) < # for any given # > 0. Since xn

d! y, there
is some N > 0 such that d(xn, y) < #/2 whenever n � N. Similarly, since xn

d! x, there is
some M > 0 such that d(xn, x) < #/2 whenever n � M. Letting k = max{M, N}, we see
that

d(x, y)  d(x, xn) + d(xn, y) <
#

2
+

#

2
= # whenever n � k.

As promised in the comments preceding Example 8, we now show that every conver-
gent sequence is also Cauchy. In addition, we also show that Cauchy sequences are always
bounded:

Proposition 5. Consider the sequence Cn = {xn | n � 1}.
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a) If Cn is convergent, it is Cauchy.

b) If Cn is Cauchy, it is bounded.

Proof of a). Suppose Cn converges to a limit x, i.e., xn
d! x. Then, for any # > 0, there is a

positive integer N such that d(xn, x) < #/2 whenever n � N. Now,

d(xn, xm)  d(xn, x) + d(x, xm) <
#

2
+

#

2
= # whenever n, m � N.

Thus, Cn is Cauchy, as desired.

Proof of b). Now we assume that Cn is Cauchy in (M, d) and we want to show boundedness,
i.e., we want to find y 2 M and r 2 R such that d(xn, y)  r 8n � 1. Let # > 0. Then, by
the assumption that Cn is Cauchy, we have that for some N > 0, d(xn, xm) < # whenever
n, m � N. Now, for indexing purposes, we let y = xN so that we may set

r =
N�1

Â
i=1

d(xi, xN) + #.

Observe that d(xn, xN) < # whenever n � N and d(xn, xN)  ÂN�1
i=1 d(xi, xN) for n  N � 1.

Thus, d(xn, xN) < r 8n � 1, which means that Cn is Cauchy, as desired.

Remark: Note that although every Cauchy sequence is bounded, not every bounded
sequence is, in turn, Cauchy. For an easy example, consider {n}•

n=1 ⇢ R under the discrete
metric. This sequence is definitely bounded, but it is not Cauchy. As another example,
notice that the sequence {(�1)n}•

n=1 ⇢ R is bounded in any metric, as it has a finite range.
However this is not a Cauchy sequence either.

h[YnabXcamZ\g
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1.4 Sequences and Series

You know from the glory days of kindergarten calculus that monotone bounded sequences
converge, and that any convergent sequence is necessarily bounded. These two facts to-
gether raise the question: Does every bounded sequence converge? "Well, of course not!"
–yells the angry mathematician. But just how far from convergent is a typical bounded se-
quence? To answer this, we want to broaden our definition of limits. Let us start by making
the following observation:

Let {an}•
n=1 be a bounded sequence of real numbers, and consider the sequences:

tn = inf {an, an+1, an+2, ...} and Tn = sup {an, an+1, an+2, ...} .

Then the sequence {tn} increases, {Tn} decreases, and supk2N ak  tn  Tn  supk2N ak for
all n (make sure that you understand this assessment!). Thus we may speak of limn!• tn as
the "lower limit" and limn!• Tn as the "upper limit" of our original sequence {an}.

These same considerations are meaningful even if we start with an unbounded sequence
{an}, although in that case we will have to allow the values ±• for at least some of the
tn’s and/or Tn’s. That is, if we allow comparisons to ±•, then the tn’s will increase and
the Tn’s will decrease. Of course we will want to use supn2N tn and infn2N Tn in place of
limn!• tn and limn!• Tn, since "sup" and "inf" have more or less obvious extensions to
subsets of the extended real number system [�•, •], whereas "lim" does not. Even so, we
are sure to get caught saying something like "{tn} converges to +•." But we will pay a
stiff penalty for too much rigor here; even a simple fact could have a tedious, unnecessarily
long description. Therefore, for the remainder of this section we will interpret words such
as "limit" and "converges" in this looser sense.

Definition 14. Given any sequence of real numbers {an}, we define

lim inf
n!•

an = lim
n!•

an = sup
n2N

inf
k�n

ak = sup
n�1

{inf {an, an+1, an+2, . . . }}

and
lim sup

n!•
an = lim

n!•
an = inf

n2N
sup
k�n

ak = inf
n�1

{sup {an, an+1, an+2, . . . }} .

That is,
lim inf

n!•
an = sup

n2N

tn

⇣
= lim

n!•
tn if {an} is bounded from below

⌘
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and
lim sup

n!•
an = inf

n2N
Tn

⇣
= lim

n!•
Tn if {an} is bounded from above

⌘
.

The name "lim inf" is short for limit inferior (or limit infimum) while "lim sup" is short for limit

superior or limit supremum.

Example 10. a) Let an = 1/n, so that tn = infk�n ak = 0 and Tn = supk�n ak = 1/n. Clearly,
limn!• tn = limn!•(0) = 0 and limn!• Tn = 0; thus lim infn!• an = lim supn!• an = 0.

b) Let {an}•
n=1 be the sequence {1,�1, 2,�2, 3,�3, . . . }. Then lim infn!• an = �• < • =

lim supn!• an.

c) Let an = (�1)n

1+ 1
n

. Then lim infn!• an = �1 while lim supn!• an = 1.

d) Let

an =

(
1 if n is even,
�1/n if n is odd.

Then lim supn!• an = 1 while lim infn!• an = 0. m

Note that a sequence {an} has a limit if and only if lim supn!• = lim infn!• (and both
are finite). We use analogous definitions when we take a limit along the real numbers. For
example, lim supy!x f (y) = infd>0 supky�xk<d f (y).

We shall now compute the limits of some sequences which occur frequently. We will use
the binomial theorem, which was briefly discussed on Section §1.1 in our remarks prior to
Theorem 4. We will also need the following fact: If 0  xn  sn for some n � N (where N
is a fixed number), and if sn ! 0, then it is always true that xn ! 0.

Theorem 17. We have the following results of some special sequences:

a) If p > 0, then limn!•
1

np = 0.

b) If p > 0, then limn!• n
pp = 1.

c) limn!•
n
p

n = 1.
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d) If p > 0 and a 2 R, then limn!•
na

(1+p)n = 0.

e) If kxk < 1, then limn!• xn = 0.

Proof of a). Simply consider n >
� 1

#

�1/p. (Note that the Archimedian property of R is used
here).

Proof of b). If p > 1, put xn = n
pp � 1. Then xn > 0 and by the binomial theorem we have

1 + nxn  (1 + xn)
n = p =) 0 < xn  p � 1

n
,

so that xn ! 0. If p = 1, b) is trivial, and if 0 < p < 1, the result is obtained by taking
reciprocals.

Proof of c). Put xn = n
p

n � 1. Then xn � 0 and by the binomial theorem we have

n = (1 + xn)
n � n(n � 1)

2
x2

n =) 0  xn 
r

2
n � 1

(for n � 2).

Proof of d). Let k > a and k > 0. For n > 2k, observe that

n � k + 1 � n
2
=

n
2
� k + 1 > k � k + 1 = 1 > 0 so that n � k + 1 >

n
2

.

Now note that

(1 + p)n >

✓
n
k

◆
pk =

n(n � 1) · · · (n � k + 1)
k!

pk >
nk

2kk!
pk. (you check that this holds!)

Hence we have

0 <
na

(1 + p)n <
2kk!
pk na�k (for n > 2k).

Since a � k < 0, it follows that na�k ! 0 by a), and we are done.

Proof of e). Simply take a = 0 in d), and the desired result follows.
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For the remainder of this section, all sequences and series under consideration will be
complex-valued, unless the contrary is explicitly stated. We now proceed with a very im-
portant result. The Cauchy criterion (i.e., that every convergent sequence is Cauchy) can be
restated in the following form:

Theorem 18. The sum Â an converges if and only if for every # > 0, there is an integer N such
that kÂm

k=n akk  # if m � n � N. (In particular, by taking m = n, the above expression becomes
kank  #. Also notice that if n = N and m ! •, the expression becomes kÂ•

n=N ank  #.)

Proof. In R and in C every Cauchy sequence converges (this is due to the fact that both R

and C are examples of what it’s known as complete spaces. We will discuss this property in
detail on Subsection §??). Thus the sequence sn of partial sums is convergent if and only if
it is Cauchy (this is always the case in complete spaces, although not in general, as we have
previously seen when we discussed Cauchy sequences earlier). Now, sn is Cauchy if for any
# > 0 there is some N such that n, m � N implies ksn � smk < #. If m � n, we have

ksn � smk = ksm � snk =

�����

m

Â
k=1

ak �
n

Â
k=1

ak

����� =

�����

m

Â
k=n+1

ak

����� .

Corollary 4. If Â an converges, then limn!• an = 0.

The condition an ! 0 is not, however, sufficient to ensure convergence of Â an. For in-
stance the series Â•

n=1 1/n diverges(!), as we will demonstrate later.

Corollary 5. A series of nonnegative terms converges if and only if its partial sums form a bounded
sequence.

We now turn to a convergence test of a different nature, the so-called comparison test

from the glory days of baby-calculus:

Theorem 19. a) If kank  cn for n � N0 (where N0 is some fixed integer), and if Â cn converges,
then Â an converges.
b) If an � dn � 0 for n � N0, and if Â dn diverges, then Â an diverges. (Note that this part b)
applies only to series of nonnegative terms an.)
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Proof. Given # > 0, there exists N � N0 such that m � n � N implies Âm
k=n ck  # by the

Cauchy criterion. Hence �����

m

Â
k=n

ak

����� 
m

Â
k=n

kakk 
m

Â
k=n

ck  #,

and thus a) follows. Next, b) follows from a), for if Â an converges, so must Â dn.

The comparison test is a very useful one. To use it efficiently however, we should become
more familiar with a number of series of nonnegative terms whose convergence or diver-
gence is known. We start this discussion with the the geometric series, which is perhaps the
simplest (or at least the one you are more familiar with) of all:

Theorem 20. If 0  x < 1, then Â•
n=0 xn = 1

1�x . If x � 1, the series diverges.

Proof. If x 6= 1, then we have

sn =
n

Â
k=0

xk =
1 � xn+1

1 � x
.

The result then follows immediately by letting n ! •. In the case when x = 1 on the hand,
we get 1 + 1 + · · ·+ 1, which evidently diverges.

In many cases which occur in applications, the terms of the series decrease monotonically.
The following theorem of Cauchy is therefore of particular interest. The striking feature of
the theorem is that a rather "thin" subsequence of {an} determines the convergence or
divergence of Â an.

Theorem 21. Suppose a1 � a2 � · · · � 0 (i.e., {an} is a nonnegative monotonically decreasing
sequence). Then the series Â•

n=1 an converges if and only if the series Â•
k=0 2ka2k converges.

Proof. Since the series under consideration has nonnegative terms, it suffices to consider
boundedness of the partial sums. Let sn = a1 + a2 + · · ·+ an and tk = a1 + 2a2 + · · ·+ 2ka2k .
Then, for n < 2k, we have

sn  a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1�1)

 a1 + 2a2 + · · ·+ 2ka2k

= tk,
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so that
sn  tk. (†)

On the other hand, for n > 2k we have

sn � a1 + a2 + (a3 + a4) + · · ·+ (a2k�1+1 + · · ·+ a2k)

� 1
2

a1 + a2 + 2a4 + · · ·+ 2k�1a2k

=
1
2

tk,

so that
2sn � tk. (††)

Then by (†) and (††), the sequences {sn} and {tk} are either both bounded or both un-
bounded.

Corollary 6. The sum Â 1
np converges if p > 1 and diverges if p  1.

Proof. Consider the case when p  0. In this situation we have limn!• 1/np = limn!• n�p =
• and the series diverges. Now, when p > 0 the sequence 1/np decreases in which case
Theorem 21 applies and we are led to the series

•

Â
k=0

2k 1
2kp =

•

Â
k=0

2(1�p)k.

Now, 21�p < 1 if and only if 1 � p < 0, and the result follows by comparison with the
geometric series Â xk, where x = 21�p.

Corollary 7. If p > 1, the sum Â 1
n(log n)p converges. If p  1, the series diverges.

Proof. The monotonicity of the logarithmic function implies that the sequence {log n} in-
creases, which in turn implies that the sequence {1/(n log n)} decreases, so that we can
apply Theorem 21. This leads us to the series

•

Â
k=1

2k 1
2k (log 2k)p =

•

Â
k=1

1
(k log 2)p =

1
(log 2)p

•

Â
k=1

1
kp ,

and the conclusion follows.
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Note that the procedure presented above may evidently be continued. For instance,

•

Â
n=3

1
n log n · log(log n)

diverges,

whereas
•

Â
n=3

1
n log n · (log(log n))2 converges.

Let us now recall the natural base e, which is given by the series e = Â•
n=0 1/n!. Note that

since

sn = 1 + 1 +
1

1 · 2
+

1
1 · 2 · 3

+ · · ·+ 1
1 · 2 · · · n

< 1 + 1 +
1
2
+

1
22 + · · ·+ 1

2n�1

< 3,

the series converges and thus e is well defined. In fact, the series converges very rapidly and
allows us to compute e with great accuracy. It is of interest to note that e can also be defined
by means of another limit process; the proof provides a good illustration of operations with
limits:

Theorem 22. The natural base e is also given by the limit limn!•
�
1 + 1

n
�n.

Proof. Let sn = Ân
k=0 1/k! and tn = (1 + 1/n)n. Clearly the sequence sn is monotonically

increasing. To see that tn is also monotonically increasing, observe that by the binomial
theorem we have

tn =

✓
1 +

1
n

◆n
>

✓
1 + n

1
n

◆
= 2.
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In fact, if we take a 2 R such that a > �1 and a 6= 0, then (1 + a)n > 1 + na. Now we get

tn+1

tn
=

�
1 + 1

n+1
�n+1

�
1 + 1

n
�n

=

✓
1 +

1
n

◆ 1 + 1
n+1

1 + 1
n

!n+1

=

✓
1 +

1
n

◆✓
n2 + 2n
(n + 1)2

◆n+1

=

✓
1 +

1
n

◆✓
1 � 1

(n + 1)2

◆n+1

>

✓
1 +

1
n

◆✓
1 � 1

n + 1

◆
= 1.

Thus tn+1 > tn and tn is increasing, as desired. Now by the binomial theorem,

tn = 1 + 1 +
1
2!

✓
1 � 1

n

◆
+

1
3!

✓
1 � 1

n

◆✓
1 � 2

n

◆
+ · · ·

· · ·+ 1
n!

✓
1 � 1

n

◆✓
1 � 2

n

◆
· · ·
✓

1 � n � 1
n

◆

 sn < e.

Thus, {tn}•
n=1 is also a bounded sequence, and we have

lim
n!•

tn = a  e. (‡)

Next, if n � m, we get

tn = 1 + 1 +
1
2!

✓
1 � 1

n

◆
+ · · ·+ 1

m!

✓
1 � 1

n

◆✓
1 � 2

n

◆
· · ·
✓

1 � m � 1
n

◆
+ · · ·

· · ·+ 1
n!

✓
1 � 1

n

◆
· · ·
✓

1 � n � 1
n

◆

� 1 + 1 +
1
2!

✓
1 � 1

n

◆
+ · · ·+ 1

m!

✓
1 � 1

n

◆
· · ·
✓

1 � m � 1
n

◆
.

Thus,

a > tn � 1 + 1 +
1
2!

✓
1 � 1

n

◆
+ · · ·+ 1

m!

✓
1 � 1

n

◆
· · ·
✓

1 � m � 1
n

◆
.
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Now let n ! •, keeping m fixed, so that

a > 1 + 1 +
1
2!

+ · · ·+ 1
m!

= sm.

This means that
a � lim

n!•
sm = e. (‡‡)

Thus, combining (‡) and (‡‡), we have that a = e, and we are done.

In case you are wondering how fast the series Â•
n=1

1
n! converges, we can estimate that as

follows: Let sn be the same partial sum we defined above (i.e., sn = Ân
k=0 1/k!). Then we

have

e � sn =
1

(n + 1)!
+

1
(n + 2)!

+
1

(n + 3)!
+ · · ·

<
1

(n + 1)!

✓
1 +

1
(n + 1)

+
1

(n + 1)2 + · · ·
◆

=
1

n! n
,

so that
0 < e � sn <

1
n!n

. (1.3)

To illustrate this result, consider s10, for instance. Note that s10 approximates e with an error
less than 10�7. The inequality (1.3) is of theoretical interest as well, since it enables us to
prove the irrationality of e, which is presented next.

Theorem 23. The natural base e is an irrational number.

Proof. Suppose, to the contrary, that e is rational. Then e = p/q, where p and q are positive
integers. By inequality (1.3), we have

0 < q!
�
e � sq

�
<

1
q

. (1.4)

By our assumption, q! e is an integer. Moreover, since

q! sq = q!
✓

1 + 1 +
1
2!

+ · · ·+ 1
q!

◆
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is also an integer, we see that q!
�
e � sq

�
is an integer as well. But then since q � 1, in-

equality (1.4) implies the existence of an integer between 0 and 1, which is obviously not
possible. Thus we have reached a contradiction and therefore we conclude that e must be
irrational.

We now present some important convergence/divergence tests that you have already
seen from calculus. This time however, since you are already on your path to becoming a
badass mathematician and you are no longer satisfied by hand-waving, we are going to
prove these results rigorously.

Theorem 24 (Root Test). Given Â an, put a = lim supn!•
n
p
kank. Then,

a) if a < 1, Â an converges.

b) if a > 1, Â an diverges.

c) if a = 1, the test gives no information.

Proof of a). If a < 1, we can choose b so that a < b < 1, and an integer N such that
n
p
kank < b for n � N. That is, n � N implies kank < bn. Since 0 < b < 1, the sum Â bn

converges. Convergence of Â an follows now from the comparison test.

Proof of b). If a > 1, there is a sequence {nk} such that nk
p
kankk ! a. Hence kank > 1

for infinitely many values of n, so that the condition an ! 0, which is necessary for the
convergence of Â an, does not hold.

Proof of c). Consider the series Â 1/n and Â 1/n2. We can see that n
p

1/n ! 1 and n
p

1/n2 !
1 as well, but the former series diverges while the latter converges. Thus a = 1 gives no
information whatsoever.

Theorem 25 (Ratio Test). The series Â an

a) converges if lim supn!•

��� an+1
an

��� < 1.

b) diverges if
��� an+1

an

��� � 1 for all n � n0, where n0 is some fixed integer.
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Proof of a). If condition a) holds, we can find b < 1, and an integer N such that kan+1/ank <
b for n � N. In particular,

kaN+1k < b kaN+1k,
kaN+2k < b kaN+1k < b2 kaNk,

. . . . . . . . . . . . . . . . . . . . .
kaN+pk < bp kaNk.

That is, kank < kaNkb�N bn for n � N, and a) follows from the comparison test, since Â bn

converges.

Proof of b). If kan+1k � kank for n � n0, it is easy to see that the condition an ! 0 does not
hold, and b) follows.

Remark: Note that knowing that limn!• an+1/an = 1 implies nothing about the conver-
gence of Â an, as the series Â 1/n and Â 1/n2 have demonstrated before.

Example 11. a) Consider the series

1
2
+

1
3
+

1
22 +

1
32 +

1
23 +

1
33 +

1
24 +

1
34 + · · · ,

for which

lim inf
n!•

an+1

an
= lim

n!•

✓
2
3

◆n
= 0

lim inf
n!•

n
p

an = lim
n!•

2n

r
1
3n =

1p
3

lim sup
n!•

n
p

an = lim
n!•

2n

r
1
2n =

1p
2

lim sup
n!•

an+1

an
= lim

n!•

1
2

✓
3
2

◆n
= •.

The root test indicates convergence whereas the ratio test does not apply.

b) The same is true for the series

1
2
+ 1 +

1
8
+

1
4
+

1
32

+
1
16

+
1

128
+

1
64

+ · · · ,

XcamZ\g g

f 50



1.5. Open and Closed Sets Chapter 1. Real Analysis
h [a\ g

where

lim inf
n!•

an+1

an
=

1
8

lim sup
n!•

an+1

an
= 2,

but
lim inf

n!•
n
p

an =
1
2

.

m

Theorem 26. For any sequence {cn} of positive numbers, we have

lim inf
n!•

cn+1

cn
 lim inf

n!•
n
p

cn,

lim sup
n!•

n
p

cn  lim sup
n!•

cn+1

cn
.

Proof. The proof may be found on [Rudin, 1964, p. 68-69].

h[YnabXcamZ\g

1.5 Open and Closed Sets

Before we start our discussion of open and closed sets, let us probe a bit deeper into our
discussion of convergent and Cauchy sequences and answer some of the questions that we
left lingering in the previous sections.

Definition 15. Given a sequence {xn}•
n=1, consider a sequence {nk}•

k=1 of positive integers, such
that the ni’s are strictly increasing, i.e., n1 < n2 < n3 < . . . . Then the sequence {xnk}•

k=1 is called
a subsequence of {xn}•

n=1.
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Notation: Up until this point we have interchangeably used {xn}, {xn}•
n=1, and also {xn |

n � 1}. Since we mean the exact same thing by all three, let us from now on simply write
{xn} to simplify notation. However, we will make an exception when two indices are in
the same expression in order to avoid any confusion. For instance, we write {xnk}k to mean
{xnk}•

k=1, which is telling us that the n is fixed and we are letting k vary from 1 all the way
to •.

Example 12. Let {xn} = {1/n}. We now show some examples of subsequences of {xn}:

a) Suppose {nk}k = {2k + 1}. Then the subsequence {xnk}k is given by

{xnk}k = {x2k+1} =

⇢
1

2k + 1

�
=

⇢
1
3

,
1
5

,
1
7

, . . .
�

.

b) Suppose {nk}k = {2k}. Then the subsequence {xnk}k is given by

{xnk}k = {x2k} =

⇢
1
2k

�
=

⇢
1
2

,
1
4

,
1
8

, . . .
�

.

c) Suppose {nk}k = {2, 1, 3, 4, 5, 6, . . . }. Then {xnk}k is given by

{xnk}k =

⇢
1
2

, 1,
1
3

,
1
4

, . . .
�

.

Note that {xnk}k does not match the order of {xn} and therefore fails to be a subsequence
of {xn}. Notice that the ni’s in this case are not strictly increasing, as was demanded on our
definition of a subsequence. For instance, note that n1 = 2 > 1 = n2.

d) Suppose {nk}k = {4, 2, 8, 6, 12, 10, . . . }. Then {xnk}k is given by

{xnk}k =

⇢
1
4

,
1
2

,
1
8

,
1
6

,
1
12

,
1

10
, . . .

�
.

Note that {xnk}k does not match the order of {xn} either and therefore fails to be a subsequence
of {xn}. Notice that also in this case {nk}k is not strictly increasing. m

Subsequences are useful tools that will later help us to describe key concepts such as
completeness and compactness (cf., Subsection §1.8.3). For now however, let us settle down for
some simple analysis of the relationship between subsequences, convergence, and Cauchy
sequences.
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Proposition 6. If xn
d! x, then xnk

d! x for any subsequence {xnk}k of {xn}.

Proof. We must show that for any # > 0, there exists K > 0 such that d(xnk , x) < # whenever
k � K. Since xn

d! x, we know that d(xn, x) < # whenever n � N, where N is some fixed
large enough number. Now setting K = N, notice that nk � K. Thus, when k � N, we have
d(xnk , x) < #, as desired.

Now we prove an important result, as was promised in Subsection §1.3.2:

Proposition 7. A Cauchy sequence with a convergent subsequence converges.

Proof. We let {xn} be Cauchy and suppose that {xnk}k is a convergent subsequence with
xnk

d! x. We must show that xn
d! x. For # > 0, let N1 be such that d(xn, xm) < #/2

whenever n, m � N1. Similarly, let N2 be such that d(xnk , x) < #/2 whenever k � N2. Now
we let N = max{N1, N2}. If n, m > N, then

d(xn, xnm)  d(xn, xm) <
#

2
and d(xnm , x) <

#

2
.

Thus,

d(xn, x)  d(xn, xnm) + d(xnm , x)
 d(xn, xm) + d(xnm , x)

<
#

2
+

#

2
= #.

Proposition 8. Every subsequence of a Cauchy sequence is itself a Cauchy sequence.

Proof. Let {xn} be Cauchy and suppose that {xnk}k is any subsequence. For # > 0, there is
some N > 0 such that d(xn, xm) < # whenever n, m �). Notice that nn � n and nm � m.
Hence d(xnn , xnm) < #.

Proposition 9. If every subsequence of {xn} has a further subsequence that converges to a certain
point x, then {xn} converges to x as well.

XcamZ\g g

f 53



1.5. Open and Closed Sets Chapter 1. Real Analysis
h [a\ g

Proof. Assume, to the contrary, that every subsequence of {xn} has a further subsequence
which converges to x, but {xn} itself does not converge to x. If xn 6! x (i.e. if {xn} does
not converge to x), then infinitely many elements of {xn} are further from x than some
# > 0. That is, the set A = {xn | d(xn, x) � #} is infinite if # is small enough. Notice that
the elements of A form a subsequence {xnk}k of {xn}. Our assumption dictates that any
sub-subsequence {xnkt

}t must converge to x. But all the elements of {xnkt
}t are elements of

A. In other words, d(xnkt
, x) � # for all t 2 N, implying that xnkt

6! x, which brings us to a
contradiction.

1.5.1 Equivalent Metrics

We have already seen that the metric at hand often determines which sequences are Cauchy
and which sequences converge. Later we will see that the convergent sequences in (M, d)
in turn determine the open and closed sets of (M, d) and therefore the continuous functions
on (M, d). Given any other metric function r, we have generally no reason to expect the
metric spaces (M, d) and (M, r) to have the same convergent sequences. In this subsection
we would like to say a few words about metric functions that generate the same convergent
sequences.

Definition 16. Two metrics d and r on a set M are said to be equivalent metrics if they generate
the same convergent sequences: that is, d(xn, x) ! 0 () r(xn, x) ! 0.

It might be comforting to know that most metric functions that we consider on R (or
[0, •)) are equivalent metrics. The following proposition explains why.

Proposition 10. Let d be a metric on M and suppose that r is defined by r(x, y) = f (d(x, y)),
where f : [0, •) ! [0, •) satisfies the following three properties:

i) f (t) � 0 with equality if and only if t = 0.

ii) f 0(t) > 0 for t 2 (0, •).

iii) f 00(t) < 0 for t 2 (0, •).

Then d and r are equivalent.
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Proof. Notice that f is continuous and invertible (cf., Section §1.7). Since f 0(t) > 0, we may
state that f�1 is differentiable and therefore continuous. Let U be an open interval in R,
and then we observe that if g : U ⇢ R ! R is continuous at 0, then for any sequence
{tn} ⇢ U with tn ! 0, we have g(tn) ! g(0) (this will be discussed later on when we
consider continuous functions and identify their properties). Now suppose that {xn} ⇢ M
with xn

d! x. Then d(xn, x) ! 0. Since f is continuous, we see that f (d(xn, x)) ! f (0) = 0
by setting tn = d(xn, x). Thus,

d(xn, x) ! 0 =) f (d(xn, x)) = r(xn, x) ! 0.

On the other hand, if r(xn, x) ! 0, then d(xn, x) = f�1(r(xn, x)) ! 0 because f�1 is also
continuous at 0. We have thus established that d(xn, x) ! 0 if and only if r(xn, x) ! 0.
Hence d and r are equivalent, as desired.

The following are all equivalent metrics on R:

• d(x, y) = |x � y|,

• r(x, y) =
p
|x � y|,

• h(x, y) = |x�y|
1+|x�y| ,

• z(x, y) = log(|x � y|+ 1),

• x(x, y) =
p

log(|x�y|+1)

1+
p

log(|x�y|+1)
.

Note that equivalent metrics preserve convergent sequences. Must they also have the
same Cauchy sequences? The answer is NOoooo!!, as we can verify in the following example.

Example 13. a) Let M = (0, •). Then d(x, y) = |x � y| and r(x, y) = |1/x � 1/y| are equivalent
metrics on M that do not generate the same Cauchy sequences:

• First, we check that d and r are indeed equivalent. Observe that the function f (t) = 1/t is
continuous on (0, •). Notice also that f�1(t) = f (t); that is, f is its own inverse. Now, if

XcamZ\g g

f 55



1.5. Open and Closed Sets Chapter 1. Real Analysis
h [a\ g

xn
d! x, then f (xn) ! f (x); in other words, | f (xn)� f (x)| ! 0. Hence xn

d! x implies
that |1/xn � 1/x| ! 0, or xn

r! x.

On the other hand, xn
r! x implies that f�1(xn) ! f�1(x). That is,

xn
r! x =) | f�1(xn)� f�1(x)| =

����
1
xn

� 1
x

����! 0.

This in turn implies that
���� f
✓

1
xn

◆
� f

✓
1
x

◆���� = |xn � x| ! 0.

Thus we have shown that d and r are equivalent, as desired.

• Now to see that d and r fail to generate the same Cauchy sequences, notice that {1/n} is a
Cauchy sequence when it is considered under the metric d(x, y) = |x � y|. Under the metric
r however, r(1/n, 1/m) = |n � m| � 1 if m 6= n. Thus {1/n} is not Cauchy under r.

b) Let M = Rn. Then

d1(x, y) = kx � yk1, d2(x, y) = kx � yk2, and d•(x, y) = kx � yk•

are all equivalent metrics on Rn, because

kx � yk•  kx � yk2  kx � yk1

while
kx � yk1  nkx � yk• and kx � yk1 

p
n kx � yk2.

You should verify that all three metrics d1, d2, d• do generate the same Cauchy sequences on Rn. m

Given two metric spaces (M, d) and (N, r), we can define a metric on the product M ⇥ N
in a variety of ways. Our only requirement is that a sequence of pairs (an, xn) in M ⇥
N should converge precisely when both coordinate sequences {an} and {xn} converge in
(M, d) and (N, r), respectively. I will leave it to you as a quick-and-dirty exercise to show
that each of the following define metrics on M ⇥ N enjoy this property and that, moreover,
they are equivalent:
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• d1((a, x), (b, y)) = d(a, b) + r(x, y).

• d2((a, x), (b, y)) = (d(a, b)2 + r(x, y)2)1/2.

• d•((a, x), (b, y)) = max{d(a, b), r(x, y)}.

From now on we will refer to any of d1, d2, d• as "the" metric on M ⇥ N, which we call the
product metric. The fact that any one of them will serve equally well is because they are
equivalent metrics (as I told you to check!).

1.5.2 Open Sets

Definition 17. A set U in a metric space (M, d) is called an open set if U contains a neighborhood
of each of its points. In other words, U is an open set if, given x 2 U , there is some # > 0 such that
B#(x) ⇢ U .

Remark: Note that this definition of an open set is suitable only for metric spaces, since
otherwise "the ball of radius # around x (i.e., B#(x))" wouldn’t mean jack. This is the for-
mulation that we will use at this stage since metric spaces is what we have been studying
extensively up to this point. The more general definition of openness will be studied when
we get to the subject of topology in Chapter 2.

Example 14. a) In any metric space, the whole space M is an open set. The empty set ∆ is also open
(by default).

b) In R, any open interval is an open set. Indeed, given x 2 (a, b), let # = min{x � a, b � x}.
Then # > 0 and (x � #, x + #) ⇢ (a, b). The cases (a, •) and (�•, b) are similar. While we’re at
it, notice that the interval [0, 1), for example, is not open in R because it does not contain an entire
neighborhood of 0. (Warning! When we talk about open sets in a general setting, we need to mention
the "topology" of the set in question. For instance, in this case we would say that R has the "usual
topology" so that its open sets are the open intervals. We could have instead chosen R equipped
with the so called "lower limit topology," in which the open intervals are still open sets, but so are
half-open intervals such as [0, 1). If this is confusing the sh*t out of you, don’t freak out just yet; this
is something that will be discussed at length in Chapter 3. For now, I just wanted to bring this up so
that you are conscious that we are not dealing with the more general setting yet. I will make no more
remarks regarding this matter until we get to cover this material in-depth later on.)
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c) In a discrete space, B1(x) = {x} is an open set for any x. It follows that every subset of a
discrete space is open. m

Following up on the very last example
above, we see that in a discrete space an
open ball is always open. Let us take this
up a notch and show that open balls are
open sets on any metric space. Hey, I know
what you’re thinking..."Bruuuuh... of course
an OPEN ball has to be open..." Well, not so
fast cowboy, we need to prove it!

Proposition 11. For any x 2 M and any # > 0,
the open ball B#(x) is an open set.

Proof. We will use Figure 1.3 to follow the argument of the proof. Let y 2 B#(x). Then

Figure 1.3: Open balls are open.

d(x, y) < # and thus d = # � d(x, y) > 0. We will show that Bd(y) ⇢ B#(x). Indeed, if
d(y, z) < d, then, by the triangle inequality, we have

d(x, z)  d(x, y) + d(y, z)
< d(x, y) + d

= d(x, y) + # � d(x, y)
= #.
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Thus we have shown that, as expected, every open ball is open. What’s more, if you follow
the definition of open sets carefully, you will come to the very wise conclusion that that an
open set must actually be a union of open balls: if U is open, then U =

S{B#(x) | B#(x) ⇢
U}. Moreover, any arbitrary union of open balls is again an open set, as the next theorem
suggests:

Theorem 27. An arbitrary union of open sets is again open. That is, for any given index A, if
{Ua}a2A is any collection of open sets, then V =

S
a2A Ua is open.

Proof. If x 2 V, then x 2 Ua for some a 2 A. But then, since Ua is open, it follows that
B#(x) ⇢ Ua ⇢ V for some # > 0. Since this holds for any given x 2 V, we are done.

So we have shown that open sets behave as nicely as we could possibly want when it
comes to unions of such sets. Intersections on the other hand are not so generous; it turns
out that we are only allowed to take finitely many of these:

Theorem 28. A finite intersection of open sets is open. That is, if each of U1, . . . ,Un is open, then
so is W = U1 \ · · · \ Un .

Proof. If x 2 W, then x 2 Ui for all i = 1, . . . , n. Thus, for each i there is an # i > 0 such
that B#i ⇢ Ui. But then, setting # = min{#1, . . . , #n} > 0, we have that B#(x) ⇢ Tn

i=1 Ui = W.
Since this holds for any given x 2 W, we are done.

Remark: We have shown in this theorem that we may take any number of intersections (as
long as that number is finite) without a problem. If we try to extend this result to infinitely
many intersections then, in general, we won’t be as lucky. For example, we know that in
R, open intervals are open sets; hence (�1/n, 1/n) is open in R for any n 2 Z+. HoweverT•

n=1(�1/n, 1/n) = {0}, but {0} is not open in R.

The following theorem shows a crucial characteristic of R: every open set in R can be
written as a union of disjoint open intervals. We will see later on that R does not share this
property with its higher-dimensional cousins, i.e., not every open set in Rn, for n > 1, can
be written as a union of disjoint open balls.
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Theorem 29. If U is an open subset of R, then U may be written as a countable union of disjoint open
intervals. That is, U =

S•
n=1 In , where In = (an, bn) (these may be unbounded) and In

T
Im = ∆

for n 6= m.

Proof. We know that U can be written as a union of open intervals (because each x 2 U is
in some open interval I with I ⇢ U ). What we need to show is that U is a union of disjoint
open intervals (I’ll leave it to you as a quick exercise to check that such a union must be
countable). We first claim that each x 2 U is contained in a maximal open interval Ix ⇢ U in
the sense that if x 2 I ⇢ U , where I is an open interval, then we must have I ⇢ Ix. Indeed,
given x 2 U , let

ax = inf{a | (a, x] ⇢ U} and bx = sup{b | [x, b) ⇢ U}.

Then, Ix = (ax, bx) satisfies x 2 Ix ⇢ U , and Ix is clearly maximal (check this!). Next, notice
that for any x, y 2 U we have either Ix \ Iy = ∆ or Ix = Iy. Why? Because if Ix \ Iy 6= ∆,
then Ix [ Iy is an open interval containing both Ix and Iy; by maximality we would then have
Ix = Iy. It thus follows that U is the union of disjoint (maximal) intervals: U = [x2U Ix.

Now we establish crucial relation between open sets and sequences

Theorem 30. A set U in (M, d) is open if and only if, whenever a sequence {xn}•
n=1 in M converges

to a point x 2 U , we have xn 2 U for all but finitely many n.

Proof. ()) Let U be an open set containing x. We recall that xn ! x is equivalent to saying
that {xn} is eventually in B#(x) for any # > 0 (c.f. Section 1.3). But then since B#(x) ✓ U ,
we have that {xn} is eventually in U , which is the same as saying that xn 2 U for all but
finitely many n.

(() We prove this direction by a contrapositive argument, i.e., instead of showing "{xn}
is eventually in U =) U is open," we show that " U not open =) {xn} is not eventually
in U ." Thus we start by assuming that U is not open. Then there is an x 2 U such that
B#(x) \ U c 6= ∆ for all # > 0. In particular , for each n there is some xn 2 B1/n(x) \ U c. But
then {xn}•

n=1 ⇢ U c and xn ! x, which means that xn 62 U for all but finitely many n.
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1.5.3 Closed Sets

Definition 18. A set F in a metric space (M, d) is said to be a closed set if its complement
Fc = M r F is open.

Well, this definition may not be very enlightening since it depends on the knowledge of
open sets, but as we will see below there are intrinsic formulations that do not depend on
open sets at all and are actually equivalent to our definition (see Theorem 31 below). In the
mean time, let us draw some conclusions about closed sets:

• The entire space M and the empty space ∆ are always closed. Since, as we saw earlier,
M and ∆ are also both open, this means that it is possible for a set to be both open
and closed simultaneously!4 What the frack??!!

Batman’s face when he found out that
sets could be both open and closed.

• An arbitrary intersection of closed sets is closed. A finite union of closed sets is closed.
(Note that this is the opposite of open sets, which allow arbitrary unions but only
finite intersections. This follows by the fact that (\U )c = [U c.)

• Any finite set is closed. Indeed, it is enough to show that a singleton {x} is always
closed, since any finite set is then given by finite unions of singletons, and finite

] t

4 Such sets that are both open and closed are hilariously called clopen sets.
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unions of closed sets are closed. So, let us show that {x} is indeed closed: given any
y 2 M r {x}, note that # = d(x, y) > 0, and hence B#(y) ⇢ M r {x}. Thus, since
{x}c = M r {x} is open, it follows that {x} is closed, as desired.

• In R, each of the intervals [a, b], [a, •), and (�•, b] is closed.

• In a discrete space, every subset is closed. Since, as we previously saw, they are also
open, we have that in a discrete space, every subset is clopen!.

• As we have seen above, sets can be open, closed, or both (clopen). We are not done
with this lunacy yet: sets can also be neither closed nor open! For instance, (0, 1] is
neither open nor closed in R!

If your brain is about to explode at this point, don’t you worry, you’re not alone. As
I warned you at the beginning of this chapter, you were in for quite a ride! Just take a
coffee break at this point and enjoy watching Hitler struggle with the same stuff that you’re
struggling with right now: check out this hilarious video of Hitler learning basic topology.

Now that you’re done laughing at Hitler, let us proceed with our serious business by
making an important observation. Let A be a subset of M. A point x 2 M is called a limit

point of A if every neighborhood of x contains a point y 2 A such that y 6= x, that is, if
(B#(x)r {x})\ A 6= ∆ for any # > 0. It is not hard to show that a set F is a closed set if and
only if it contains all of its limits points.

Notice that the characterization of closed sets in terms of limit points can readily be
translated into a sequential description. To see why, suppose x is a limit point of some set F.
Then, by definition, B#(x)\ F 6= ∆ for every # > 0. But this means that for each 1/n, we can
find some xn 2 B1/n(x)\ F. Thus, the sequence {xn}•

n=1 ⇢ F converges to x. In other words,
any limit point of F is necessarily a point of convergence of some sequence of elements of F.
This means that F is closed if and only if every sequence {xn}•

n=1 that consists of elements
of F and converges in M � F, must actually converge to an element of F.

We summarize our results in the following theorem:

Theorem 31. Given a set F in (M, d), the following are equivalent:

a) F is closed; that is, Fc = M r F is open.
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b) If B#(x) \ F 6= ∆ for every # > 0, then x 2 F.

c) If a sequence {xn}•
n=1 ⇢ F converges to some point x 2 M, then x 2 F.5

Proof. (a) () b)) This is clear from our observations above and the definition of an open
set.

(b) =) c)) Suppose that {xn}•
n=1 ⇢ F and xn ! x 2 M . Then B#(x) contains infinitely

many xn for any # > 0, and hence B#(x) \ F 6= ∆ for any # > 0. Thus, x 2 F by b).

(c) =) b)) If B#(x) \ F 6= ∆ for all # > 0, then for each n there is an xn 2 B1/n(x) \ F.
The sequence {xn}•

n=1 satisfies {xn}•
n=1 ⇢ F and xn ! x. Hence, x 2 F by c).

As we have seen, some sets are neither open nor closed. However, it is possible to describe
the "open part" and the "closure" of a set. We present these concepts briefly here; there will
be a more in-depth discussion in Chapter 3.

Definition 19. Given a set A in (M, d), we define the interior of A, written Int A or Å, to be the
largest open set contained in A. That is,

Å =
[

{U | U is open and U ✓ A}
=
[

{B#(x) | B#(x) ✓ A for some x 2 A and # > 0}
= {x 2 A | B#(x) ✓ A for some # > 0} .

On the other hand the closure of A, usually denoted Ā, is defined to be the smallest closed set
containing A. That is,

Ā =
\

{F | F is closed and A ✓ F} .

Yet other related definitions are the concept of the exterior of A, denoted by Ext A and given by
Ext A = M r Ā, and that of the boundary of A, denoted by ∂A and given by ∂A = M r
(Int A [ Ext A).

Proposition 12. Given a set A, for every # > 0, we have that x 2 Ā if and only if B#(x) \ A 6= ∆.
] t

5 Note that most authors take this to be the definition of a closed set. That is, a closed set is usually defined to
be a set that contains all of its limit points.
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Proof. ()) Let x 2 Ā and assume, to the contrary, that B#(x) \ A = ∆. Then we have that
A is a subset of (B#(x))c, which is a closed set. Thus, Ā ⇢ (B#(x))c, since Ā is the smallest
closed set containing A. But this is a contradiction, because x 2 Ā by assumption while
x /2 (B#(x))c.

(() If we assume now that B#(x) \ A 6= ∆, then B#(x) \ Ā 6= ∆ (since A ⇢ Ā), and
hence x 2 Ā (since closed sets contain their limit points).

h[YnabXcamZ\g

1.6 Perfect Sets & Cantor Set

Before we start our discussion of perfect sets, let’s present a very important theorem, called
The Nested Interval Theorem, which is an essential tool that we will be using in the next few
topics. Yet before introducing this theorem let’s make the following observation:

Theorem 32. A monotone, bounded sequence of real numbers converges in R.

Proof. Let {xn} ⇢ R be monotone and bounded. We first suppose that {xn} is increas-
ing (that is, xm  xn whenever m < n). Now, since {xn} is bounded, we may set x =
supn2N{xn} (a real number). We will show that x = limn!• xn. Let # > 0. Since x � # <
x = supn2N{xn}, we must have xN > x � # for some large enough N. But then, for any
n � N, we have x � # < xN  xn  x. That is, |x � xn| < # for all n � N. Consequently,
{xn} converges and x = supn2N{xn} = limn!•{xn}.

Finally, if {xn} is decreasing, consider the increasing sequence {�xn}. From the first part
of the proof, {�xn} converges to supn2N{�xn} = � infn2N{xn}. It then follows that {xn}
converges to infn2N{xn}.

Theorem 33 (The Nested Interval Theorem). If {In} is a sequence of closed, bounded, nonempty
intervals in R that is decreasing, that is,

I1 ◆ I2 ◆ I3 ◆ . . . ,
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Then \•
n=1 In 6= ∆. If, in addition, the length of the intervals In shrink to 0 (which we denote by

length(In) ! 0), then \•
n=1 In contains precisely one single point.

Proof. Put In = [an, bn]. Then In � In+1 means that an  an+1  bn+1  bn for all n. Then we
have that

a = lim
n!•

an = sup
n2N

an and b = lim
n!•

bn = inf
n2N

bn

both exist (as finite real numbers) and satisfy a  b. Thus, we must have \•
n=1 In = [a, b].

Indeed, if x 2 In for all n, then an  x  bn for all n, and hence a  x  b. Conversely, if a 
x  b, then an  x  bn for all n. That is, x 2 In for all n. Finally, if bn � an = length(In) ! 0,
then a = b and so \•

n=1 In = {a}.

Example 15. a) Note that it is essential that the intervals used in the Nested Interval Theorem be
both closed and bounded. Otherwise, for instance, \•

n=1[n, •) = ∆ and \•
n=1(0, 1, n] = ∆.

b) Suppose that {In} is a sequence of closed intervals with In � In+1 for all n and with length(In) !
0 as n ! •. If \•

n=1 In = {x}, then any sequence of points {xn}, with xn 2 In for all n, must
converge to x. m

1.6.1 Perfect Sets

Definition 20. A set P is said to be a perfect set if it is a closed set and every point of P is a limit
point of P. (The empty set ∆ is declared perfect by default.)

Example 16. a) The sets R, (�•, a], and [a, •), as well as any closed and bounded intervals [a, b]
(with a < b), are all perfect sets.

b) The sets (a, b), [a, b] [ {c} (where b < c), Q, and R rQ are not perfect sets: Note that the sets
(a, b), Q, and R rQ fail to be closed, even though every point in each of these sets is a limit point of
the set. The set [a, b] [ {c} on the other hand, fails to be a perfect set because c is not a limit point of
[a, b] [ {c}.

c) Let {xn} be convergent in (M, d), that is, xn
d! x in M. Then the set {xn}[ {x} is not perfect:

Although the set is closed, only x is a limit point. m
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Notice that in all of the above listed examples of perfect subsets of R, the perfect sets
turned out to be uncountable sets. The next theorem shows that this must always be the
case:

Theorem 34. Let P be a perfect subset of R. Then P is uncountable.

Proof. Suppose to the contrary that P = {x1, . . . , xn, . . . } is countable. Let I1 be any closed
interval centered at x1 of length  1. Then, since x1 2 P and P is perfect, it follows that x1
is a limit point of P. In particular, (I1 r {x1}) \ P 6= ∆.

Now let n2 be the smallest integer for which xn2 2 (I1 r {x1})\ P and let I2 be any closed
interval centered at xn2 of length  1/2 such that I2 ⇢ I1 and x1 /2 I2. Observe that by the
minimality of n2, xk /2 I2 for any k < n2. Since xn2 2 P, it is a limit point of P and therefore
(I2 r {xn2}) \ P 6= ∆.

Now let n3 be the smallest integer for which xn3 2 (I2 r {xn2})\ P. Set I3 to be any closed
interval centered at xn3 of length  1/3 such that I3 ⇢ I2 and xn2 /2 I3.

Continuing in this fashion, we obtain a nested sequence of closed intervals I1 � I2 � I3 �
. . . such that length(In) ! 0 as n ! • and xk 2 Im for all k < nm. By the Nested Interval
Theorem, \•

n=1 In = {x} for some x 2 R. Notice, however, that x is a limit point of P because
it is the limit point of the center points of the intervals In. Thus, as P is closed, we must
have x 2 P. This is a contradiction: x cannot be any of the xm, since m  nm and xm /2 Im+1.
Thus P must be uncountable, as desired.

Example 17. a) Although we are still lacking the means to prove it, it can be shown that if P
is a nonempty perfect subset of (M, d) in which every Cauchy sequence converges, P must be an
uncountable set.

b) Let (M, d) be a discrete metric space. Suppose P ⇢ M is not empty. Then P is not perfect:
B1(x) = {x} for any x 2 P. Hence x cannot be a limit point of P. What went wrong? Every
Cauchy sequence in (M, d) must converge in (M, d). Why don’t we have perfect sets other than ∆?

c) Let M = Q under the usual metric of R. Then P = [0, 1] \ Q is perfect in Q. Notice, however,
that P ⇢ Q and must therefore be countable. Does this contradict a)? Absolutely not! Lots of Cauchy
sequences of elements of Q fail to converge in Q. m
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Given these results, it appears that nonempty perfect subsets are rather large. One would
expect these sets to occupy a somewhat substantial space on the real number line, for in-
stance. However, reality is stronger than intuition. It seems that perfect subsets of R can be
so constructed as to include almost all of R and yet be so thin that they fail to contain even
a single interval, no matter how small this interval may be. We will see shortly how this
materializes when we present the Cantor set below, but before we can present our argument,
a few definitions will prove useful.

Definition 21. Let A be a subset of a metric space (M, d). If x 2 A and x is not a limit point of A,
then x is called an isolated point of A. (Note that with this definition, we say that a set is perfect if
it is closed and has no isolated points.)

Definition 22. A set A is said to be dense in (M.d) (or, as some authors say, everywhere dense)
if Ā = M. That is, every point of M is either in A or is a limit point of A if A is dense in M.
Alternatively, we can say that A ⇢ M is dense in M if A meets every nonempty open subset
W ⇢ M, i.e., A \ W 6= ∆. On the other hand, a set A is said to be nowhere dense in (M, d) if
Int Ā = ∆.

Note that the intersection of two dense sets need not be dense; it can be empty, as it’s the
case with Q and Qc = R rQ = I. On the other hand if U, V are open dense sets in M, then
U \ V is open dense in M. For if W is any nonempty open subset of M then U \ W is a
nonempty open subset of M as well, and by denseness of V, it is true that V meets U \ W,
i.e., U \ V \ W is nonempty and U \ V meets W.

Definition 23. A set [space] X is said to be separable if it has a countable dense subset [subspace].

A simple example of a separable space is Rn: Note that Qn is a countable dense subset of
Rn; thus Rn is indeed separable.

Definition 24. The countable intersection G = \Gn of open dense sets is called a thick subset of
M. Extending our vocabulary in a natural way we say that the complement of a thick set is a thin

subset (or a meager subset).

Remark: Note that a subset H of M is meager if and only if it is a countable union of
nowhere dense closed sets, H = [Hn. Thickness and thinness are "topological" properties.
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A thin set is the topological analogue of a zero set (a set whose "outer measure" is zero).
These terms in quotation probably don’t mean anything to you at this point, but you will
see their meaning soon; just hang in there champ!

Theorem 35 (Baire’s Theorem). Every thick subset of a complete metric space M is dense in M.
A nonempty, complete metric space is not thin: if M is the union of countably many closed sets, then
at least one has nonempty interior.

Example 18. a) The sets Q and R r Q are dense subsets of R.

b) Let A = {1/n}. Then A is nowhere dense in R, because Ā = A [ {0} and Int Ā = ∆.

c) Let (M, d) be discrete. If A ✓ M, then A is both a closed and an open subset of M. Thus,
A = Ā and A = Int A. Thus, if A is nonempty, we have that A = Ā = Int Ā 6= ∆. Hence, A is
not nowhere dense in M. Notice, however, that the statement "not nowhere dense" is not equivalent
to the phrase "dense" (by now you’re probably not even a bit surprised with all this weird stuff,
right?). In fact, the only dense subset of M is M itself. Every point of a discrete space is an isolated
point.

d) Let’s elaborate a little bit on the statement mentioned in part c): In general, "not nowhere dense"
6= "dense." For instance, in R, the set A = (0, 1) is not dense because Ā = [0, 1] 6= R. However,
A is not nowhere dense, as Int Ā = A = (0, 1) 6= ∆. The term "nowhere dense" is an unfortunate
choice of language that is sadly too common in the literature to avoid. We should think of nowhere
dense sets as "thin" sets or sets that are far from having even a single neighborhood.

e) While R is everywhere dense in itself, it is nowhere dense when it is considered as a subset of
R2 (make sure that you understand why this is true). m

Now we are finally ready to present the argument that we alluded to previous to the
above definitions:

Lemma 6. Let E be a closed subset of (M, d) and Eiso be the set of all isolated points of E. Then
E r Eiso is a closed subset of (M, d).

Proof. Let {xn} ⇢ E r Eiso be a sequence that converges to x 2 M. To show that E r Eiso is
closed, we must prove that x 2 Er Eiso. Notice, however, that since E is closed, xn 7! x =)
x 2 E. Furthermore, this means that x is a limit point of E so x is not an isolated point, i.e.,
x /2 Eiso. Thus it follows that x 2 E r Eiso, as desired.
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Lemma 7. Let E be a closed subset of R. Then the set of all isolated points of E (denoted Eiso as
above) is at most countable.

Proof. Every isolated point of E is contained in an open interval that has no other points
of E. In other words, if x 2 Eiso, then x 2 Ix such that Ix \ E = {x} and Ix is open. Thus
Eiso ⇢ [x2Eiso Ix, where Ix \ Iy = ∆ if x 6= y. Since each interval contains a rational, this
union is countable. This indicates that Eiso is also countable as each Ix contains only one
point of Eiso.

Theorem 36. There exist perfect subsets of R that contain nearly all of R and yet fail to have even
a single rational number. Such sets must be nowhere dense.

Proof. Let # > 0. List all the rational numbers in a sequence {rn} and put each rn at the
center of an open interval In of length #/2n. If G = [•

n=1 In, then G is open and

length(G) 
•

Â
n=1

length(In) =
•

Â
n=1

#

2n = #.

Setting E = Gc, we see that E is a closed set whose size must be infinite. That is, length(E) =
•. Thus, E must be uncountable. Then by Lemma 6, E r Eiso is also a closed set and, by
Lemma 7, Er Eiso must be uncountable (because we delete at most countably many points).
Finally, observe that P = E r Eiso is a perfect subset of R.

1.6.2 The Cantor Set

Consider the process of successively removing "middle thirds" from the interval [0, 1].

We continue this process inductively. At the nth stage we construct In from In�1 by re-
moving 2n�1 disjoint, open, "middle thirds" from In�1, each of length 3�n; we will call this
discarded set Jn. Thus, In is the union of 2n closed subintervals of In�1, and the complement
of In in [0, 1] is J1 [ · · · [ Jn. The Cantor set, which we denote by D, is defined as the set of
points that still remain at the end of this process; more precisely, D = \•

n=1 In.
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It follows from the Nested Interval Theorem that D 6= ∆, but notice that it is at least
countably infinite (in fact we’ll show that it’s uncountable!). The endpoints of each In are in
D:

0, 1,
1
3

,
2
3

,
1
9

,
2
9

, · · · 2 D.

We will refer to these points, which all have the form a/3n for some integers a and n, as the
endpoints of D.

Your face when you were
told that the Cantor set is

uncountable.

As we just alluded to, and as we will demonstrate shortly,
D turns out to be uncountable! This is another one of those
mindblowing results that we have come across thus far. I
mean, how on Earth can the Cantor set possibly have the
same size as the entire real line??

In what follows we will see two proofs that D is uncount-
able, the first being somewhat combinatorial. Notice that
each subinterval of In�1 results in two subintervals of In
(after discarding a middle third). We label these two new
intervals L and R (for left and right) :
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As we progress down through the levels of the diagram toward the Cantor set (some-
where far below), imagine that we "step down" from one level to the next by repeatedly
choosing either a step to the left (landing on an L interval in the next level below) or a step
to the right (landing on an R interval). At each stage we are only allowed to step down to a
subinterval of the interval we are presently on –jumping across "gaps" is not allowed! Thus,
each string of choices, LRLRRLLRLLLR. . . describes a unique "path" from the top level I0
down to the bottom level D.

The Cantor set then is quite literally the "dust at the end of the trail." Said another way,
each such LRRLLLR. . . "path" determines a unique sequence of nested subintervals, one
from each level, whose intersection is a single point of D. Conversely, each point x 2 D
lies at the end of exactly one such path, because at any given level there is only one pos-
sible subinterval of In on our diagram, call it eIn, that contains x. The resulting sequence of
intervals is clearly nested.

Thus, the Cantor set D is in one-to-one correspondence with the set of all paths, that is,
the set of all sequences of L’s and R’s. Of course, any two choices would have done just as
well, so we might also say that D is equivalent to the set of all sequences of 0’s and 1’s –a
set we already know to be uncountable. Here is what this means:

card(D) = 2@0 = card([0, 1]) = card(R).

Absolutely amazing! The Cantor set is just as "big" as [0, 1] (or R) and yet it consists of such
a sparse set of points! Unbelievable stuff really. . .

Before we give our second proof that D is uncountable, let’s see why D is also "small"
(in a different sense). We will show that D has "measure zero;" that is, the "measure" or
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"total length" of all of the intervals in its complement [0, 1]r D is 1.6 In other words, D is
not contributing any length whatsoever to the interval [0, 1], even though it is composed of
uncountably many points!!

Here’s the reason for this incredible fact: By induction, the total length of the 2n�1 disjoint
intervals comprising Jn (the set we discard at the nth stage) is 2n�1/3n. So the total length
of [0, 1]r D must be

•

Â
n=1

2n�1

3n =
1
3

•

Â
n=1

✓
2
3

◆n�1
=

1
3

1
1 � 2

3
= 1.

We have discarded everything!? And left uncountably many points behind!? How bizarre!
This simultaneous "bigness" and "smallness" is precisely what makes the Cantor set so
intriguing.

Our second proof that D is uncountable is based on an equivalent characterization of D
in terms of ternary (base 3) decimals. Recall that each x in [0, 1] can be written, in possibly
more than one way, as x = 0.a1a2a3 · · · (base 3), where each an = 0, 1, or 2. This three-way
choice for decimal digits (base 3) corresponds to the three-way splitting of intervals that we
saw earlier. To see this, let us consider a few specific examples. For instance, the three cases
a1 = 0, 1, or 2 correspond to the three intervals [0, 1/3], (1/3, 2/3), and [2/3, 1]:

Notice that there is some ambiguity at these endpoints:

1
3
= 0.1 (base 3) = 0.0222 . . . (base 3),

2
3
= 0.2 (base 3) = 0.1222 . . . (base 3),

1 = 1.0 (base 3) = 0.2222 . . . (base 3),

but each of these ambiguous cases has at least one representation with a1 in the proper
range. Now we show the situation for I2 (but this time ignoring the discarded intervals):

] t

6 This concept of "measure" is the main topic of Section 1.9. This is merely a glimpse of what’s coming ©.
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Again, some confusion is possible at the endpoints:

1
9
= 0.01 (base 3) = 0.00222 . . . (base 3),

8
9
= 0.22 (base 3) = 0.21222 . . . (base 3).

These examples demonstrate the validity of the following theorem:

Theorem 37. An element x is in the Cantor set if and only if x can be written as Â•
n=1 an/3n, where

each an is either 0 or 2.

Thus the Cantor set D consists of those points in [0, 1] having some base 3 decimal repre-
sentation that excludes the digit 1. Knowing this, we can list all sorts of elements of D. For
example, 1/4 2 D, because 1/4 = 0.020202 . . . (base 3).

h[YnabXcamZ\g

1.7 Continuity

We start off this section by discussing limits and continuity for real-valued functions. We
will then gradually generalize this crucial concept, extending it to more abstract metric
spaces. Finally in Chapter 3, we will see continuity in all its glory, when discussed in general
(not necessarily metric) topological spaces.

To begin, we let f be a real-valued function defined (at least) for all points in some open
interval containing the point a 2 R, except possibly at a itself. We will normally refer to such

XcamZ\g g

f 73



1.7. Continuity Chapter 1. Real Analysis
h [a\ g

a set as a punctured neighborhood of a. Given a number L 2 R, we write limx!a f (x) = L
to mean:

(
for every # > 0, there exists some d > 0 such that | f (x)� L| < #

whenever x satisfies 0 < |x � a| < d.

We then say that limx!a f (x) exists if there is some number L 2 R that satisfies these
requirements.

Theorem 38. Let f be a real-valued function defined in some punctured neighborhood of a 2 R.
Then, the following are equivalent:

i) There exists a number L such that limx!a f (x) = L (by the # � d definition described above).

ii) There exists a number L such that f (xn) ! L whenever xn ! a, where xn 6= a for all n.

iii) { f (xn)} converges (to something) whenever xn ! a, where xn 6= a for all n.

Remark: The point to item iii) is that if limn!• f (xn) always exists, then it must actually
be independent of the choice of {xn}. Indeed, if xn ! a and yn ! a as well, then the
sequence x1, y1, x2, y2, . . . also converges to a. This particular phrasing is interesting because
it does not refer to L. That is, we can test for the existence of a limit without knowing its
actual value.

Now suppose that f is defined in a neighborhood of a, this time including the point a
itself. We say that f is continuous at a if limx!a f (x) = f (a). That is, if:

(
for every # > 0, there exists some d > 0 (that depends on f , a, and #)
such that | f (x)� f (a)| < # whenever x satisfies |x � a| < d.

Notice that we replaced L by f (a) and we dropped the requirement that x 6= a. You should
be already somewhat familiar with this # � d definition of continuity from your days of
kindergarten-calculus, although in those dreadful days all you probably cared about was
doing the computations and all the beautiful underlying theory didn’t matter much to you.
Thankfully you’re a grown up person by now and you are dying to learn everything there
is to know about continuity and all its ramifications!

Anyhow, now we can naturally extend Theorem 38 in the obvious way:
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Theorem 39. Let f be a real-valued function defined in some neighborhood of a 2 R. Then, the
following are equivalent:

i) f is continuous at a (by the # � d definition).

ii) f (xn) ! f (a) whenever xn ! a.

iii) { f (xn)} converges (to something) whenever xn ! a.

Notice that we dropped the requirement that xn 6= a; thus if limn!• f (xn) always exists,
then it must equal f (a). You might also recall from baby-calculus that there is a standard
notation for left and right-hand limits and left and right continuity. So, if we define

f (a�) = lim
x!a�

f (x) and f (a+) = lim
x!a+

f (x)

(provided that these limits exist, of course), then a requirement of continuity of f is that
both f (a�) and f (a+) exist, and are both equal to f (a).

This concept of one-sided limits works like a charm on functions defined on R, thanks to
the well defined order of R.

However, these one-sided limit do not generalize very well to other spaces, although they
are instrumental in allowing us to catalogue different types of discontinuities. For instance,
we say that f is right-continuous at a if f (a+) exists and equals f (a), and similarly we
say that f is left-continuous at a if f (a�) exists and equals f (a). We also say that f has a
jump discontinuity at a if f (a�) and f (a+) both exist but at least one is different from f (a).
A function having only jump discontinuities is not that terrible. In particular, monotone
functions are rather well behaved:

Proposition 13. Let f : (a, b) ! R be monotone and let a < c < b. Then, f (c�) and f (c+) both
exist, and so f can have only jump discontinuities.

Proof. We might as well suppose that f is increasing (otherwise, we consider � f ). In that
case, f (c) is an upper bound for { f (t) | a < t < c} and a lower bound for { f (t) | c < t < b}.
All that remains is to check that

sup{ f (t) | a < t < c} = lim
x!c�

f (x) and inf{ f (t) | c < t < b} = lim
x!c+

f (x).
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We will now sketch the proof of the first of these; I leave it to you as an exercise to check
the inf statement:

Given # > 0, there is some x0 with a < x0 < c such that supt<c f (t) � # < f (x0) 
supt<c f (t). Now let d = c � x0 > 0. Then, if c � d < x < c, we get x0 < x < c, and so
f (x0)  f (x)  supt<c f (t). Thus, | f (x)� supt<c f (t)| < #.

Theorem 40. If f : (a, b) ! R is monotone, then f has at most countably many points of disconti-
nuity in (a, b), all of which are jump discontinuities.

Proof. That f has only jump discontinuities follows from Proposition 13. Now we just
need to count the points of discontinuity. Let’s reflect on the situation. If f : (a, b) ! R

is, say, increasing, and if c 2 (a, b), then the left and right-hand limits of f at c satisfy
f (c�)  f (c)  f (c+). In particular, f is discontinuous at c if and only if f (c�) < f (c+).
Consequently, if c and d are two different points of discontinuity for f , then the intervals
( f (c�), f (c+)) and ( f (d�), f (d+)) are nonempty and disjoint. Thus,

{( f (c�), f (c+)) | c is a point of discontinuity for f }

is a collection of nonempty, disjoint open intervals in R, and as we know any such collection
must be countable.

Corollary 8. If f : [a, b] ! [c, d] is both monotone and onto, then f is continuous.

We can put this corollary to good use. Recall that the Cantor function f : D ! [0, 1] is
monotone and onto. Indeed, if x 2 D, then x = 0.2a12a2 . . . (base 3), where each ai = 0 or 1
and f (x) = Â•

i=1 ai/2i. Since {an} can be any sequence of 0’s and 1’s, f is clearly onto.

Now we can extend this definition of the Cantor function f to all of [0, 1] in an obvious
way: We take f to be an appropriate constant on each of the open intervals that make up
[0, 1]r D. For example, we would set

f (x) =

(
f (1/3) = 1/2 for each x 2 (1/3, 2/3),
f (1/9) = 1/4 for each x 2 (1/9, 2/9).

Formally, we define

f (x) = sup{ f (y) | y 2 D, y  x} for each x 2 [0, 1]r D.
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The new function f : [0, 1] ! [0, 1] is still increasing and is actually continuous (because
it is onto)!! It is called a singular function because f 0 = 0 at almost every point in [0, 1].
That is f 0 = 0 on [0, 1]r D, which is a set of measure 1. We will see more on this so called
Cantor-Lebesgue function on Subsection §1.11.4.

Theorem 40 has a converse. Given any countable set D in R, we can construct an increas-
ing function f : R ! R that is discontinuous precisely at the points of D. Here is a brief
sketch:

Let D = {x1, x2, . . . } and let {#n} be a sequence of positive numbers with Â•
n=1 #n < •.

We define f (x) = Âxnx #n, where the sum is over the set {n | xn  x} and where f (x) = 0
if the set is empty (notice that 0  f (x)  Â•

n=1 #n < • in any case).

Now, if x < y, we have

f (y) = Â
xny

#n = Â
xnx

#n + Â
x<xny

#n

= f (x) + Â
x<xny

#n

� f (x).

Thus, f is increasing.

Next we consider this formula in each of the cases x = xk and y = xk.

Case 1 We have
x = xk < y =) f (y) = f (xk) + Â

xk<xny
#n.

We claim that f (xk+) = f (xk):

lim
y!x+k

Â
xk<xny

#n = 0 because
•

Â
n=N

#n ! 0 as N ! •.

Case 2 We have
x < xk = y =) f (xk) = f (x) + Â

x<xnxk

#n � f (x) + #k.

We claim that f (xk�) = f (xk)� #k; that is,

lim
y!x�k

Â
x<xnxk

#n = #k.
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Putting this all together, we have

f (xk�) + #k = f (xk) = f (xk+) and f (xk+)� f (xk�) = #k.

The proof that f is continuous at each x 2 R rD is similar to this procedure.

1.7.1 Continuity on Abstract Metric Spaces

Given a mapping f : (M, d) ! (N, r) (where M, N are arbitrary metric spaces), and given
a point x 2 M, we have at least two plausible definitions for the continuity of f at x. Each
definition is derived from its obvious counterpart for real-valued functions by replacing
absolute values with an appropriate metric. For example, we might say that f is continu-

ous at x if r( f (xn), f (x)) ! 0 whenever d(xn, x) ! 0. That is, f should send sequences
converging to x into sequences converging to f (x). This says that f "commutes" with limits:
f (limn!•(xn)) = limn!• f (xn).

Another alternative is to use the familiar # � d definition from kindergarten-calculus. In
this case we would say that f is continuous at x if, given any # > 0, there always exists
a d > 0 such that r( f (x), f (y)) < # whenever d(x, y) < d. Written in slightly different
terms, this definition requires that f (Bd

d(x)) ⇢ B
r
# ( f (x)). That is, f maps a sufficiently

small neighborhood of x into a given neighborhood of f (x).

We will rewrite this last def-
inition once more, but this
time we will use an inverse
image. (Use the figure on
the right for guidance.) Re-
call that the inverse image of
a set A ✓ Y, under a func-
tion f : X ! Y, is defined to
be the set {x 2 X | f (x) 2
A} and it is usually written
f�1(A) (note that while in-
verse functions are not always
defined, the inverse image of
any set under any function al-
ways makes sense). Stated in terms of an inverse image, our condition reads: Bd

d(x) ⇢
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f�1(Br
# ( f (x))). This condition tells us that the inverse image of an open set containing f (x)

must still be open near x.

Lastly, if f is continuous at every point of M, we simply say that f is continuous on M,
or simply that f is continuous. If f has an inverse f�1 that is also continuous, then we say
that f is a homeomorphism. We will postpone any further discussion on this concept until
we get to Chapter 3. Homeomorphisms are the key ingredient in topology, as those are the
maps that decide which spaces are "equivalent" (topologically speaking). That is, if you can
define a homeomorphism between two "topological spaces" M and N, then M and N are
said to be homeomorphic or topologically equivalent. That’s all you get for now, but there’s
plenty of entertainment awaiting you in topology so don’t fret!

It is crystal clear that all these statements concerning arbitrary open balls can be easily
translated into statements concerning arbitrary open sets. Hence, there is a characterization
of continuity available that may be stated exclusively in terms of open sets. Of course, any
statement concerning open sets probably has a counterpart using closed sets. Moreover,
recall that we also characterized open sets and closed set in terms of convergent sequences,
and as such we would expect to find a characterization of continuity in terms of convergent
sequences as well. Anyhow, it is time to present an extension of Theorem 39 to abstract
metric spaces:

Theorem 41. Given f : (M, d) ! (N, r), the following are equivalent:

i) f is continuous on M (by the # � d definition).

ii) For any x 2 M, if xn ! x in M, then f (xn) ! f (x) in N.

iii) If E is closed in N, then f�1(E) is closed in M.

iv) If V is open in N, then f�1(V) is open in M.

Proof. (i) () ii)) Suppose that xn
d! x . Given # > 0, let d > 0 be such that f

�
Bd

d (x)
�
⇢

Br
# ( f (x)) . Then, since xn

d! x, we have that {xn} is eventually in Bd
d (x). But this implies

that { f (xn)} is eventually in Br
# ( f (x)) . Since # is arbitrary, this means that f (xn)

r! f (x).
(Compare the result discussed here with the case f : R ! R that was treated on part i) of
Theorem 39.)
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(ii) () iii)) Let E be closed in (N, r). Given {xn} ⇢ f�1(E) such that xn
d! x 2 M,

we need to show that x 2 f�1(E). But {xn} ⇢ f�1(E) implies that { f (xn)} ⇢ (E), while
xn

d! x 2 M tells us that f (xn)
r! f (x) from ii). Thus, since E is closed, we have that

f (x) 2 E or x 2 f�1(E).

(iii) () iv)) This part is rather obvious, since f�1 (Ac) =
�

f�1(A)
�c.

(iv) () i)) Given x 2 M and # > 0, the set Br
# ( f (x)) is open in (N, r) and so, by iv),

the set f�1 �Br
# ( f (x))

�
is open in (M, d). But then Bd

d (x) ⇢ f�1 �Br
# ( f (x))

�
, for some d > 0,

because x 2 f�1 �Br
# ( f (x))

�
.

Example 19. a) Consider the characteristic function of Q, cQ : R ! R, which is given by

cQ(x) =

(
1 if x 2 Q,
0 if x 62 Q.

Then c�1
Q (B1/3(1)) = Q and c�1

Q (B1/3(0)) = R rQ. Thus cQ cannot be continuous at any point
of R because neither Q nor R rQ contains an interval. (Warning!! Since the concept of continuity
is strongly linked to openness and closure (by definition), you need to be extremely careful when
discussing continuity of a function on a given space. For instance, in this case we have that cQ has
no points of continuity relative to R, but the restriction of cQ to Q is everywhere continuous relative
to Q itself! This is because for any given space M, the whole space M is always open. It may be the
case that M is contained in an ambient space eM and that M is closed relative to eM, but M will
always be open (and closed!) relative to itself.)

b) A function f : M ! N between metric spaces M and N is called an isometry if f preserves
distances, that is, if r( f (x), f (y)) = d(x, y) for all x, y 2 M. Obviously, an isometry is continuous.
The natural inclusions from R into R2 (i.e., x 7! (x, 0)) and from R2 into R3 (i.e., (x, y) 7!
(x, y, 0)) are examples of injective isometries.

c) Let f : N ! R be any function. Then f is always continuous! Why? Because {n} is an open
ball in N. Specifically, {n} = B1/2(n) ⇢ f�1(B#( f (n))) for any # > 0. (This example is topological
in nature: all maps from spaces that are endowed with a discrete topology are always continuous,
because they have "too many open sets." This is what in topology is called a fine topology. Discrete
topologies are the finest of them all, i.e., they have more open sets than any other possible topology.
These words may not mean much to you now, but it will all start to make sense when we get to cover
the beautiful subject of topology on Chapter 3.)
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d) f : R ! N is continuous if and only if f is constant! Why? [Hint: Recall that R has no
nontrivial clopen sets.] Note that this case is the complete opposite of the situation described in c):
While every map from a discrete space is always continuous, very few maps (i.e., only the constant-
valued ones) to a discrete space are continuous.

e) If y is any fixed element of (M, d), then the real-valued function f (x) = d(x, y) is continuous
on M. m

Definition 25. Given a nonempty set A and a point x 2 M, we define the distance from x to A by
d(x, A) = inf{d(x, a) | a 2 A}.

Clearly, 0  d(x, A) < • for any x and any A, but it is not necessarily true that d(x, A) >
0 when x /2 A. For instance, d(x, Q) = 0 for any x 2 R.

Proposition 14. The distance from any point x to a set A is 0, i.e., d(x, A) = 0, if and only if
x 2 Ā.

Proof. The proof is quite short. Simply notice that d(x, A) = 0 if and only if there is a
sequence of points {an} in A such that d(x, an) ! 0. But this in turn means that an ! x
and, thus x 2 Ā, as desired.

Note that this proposition has given us another connection between limits in M and limits
in R. Loosely speaking, the statement shows that 0 is a limit point of {d(x, a) | a 2 A} if
and only if x is a limit point of A. We can even squeeze more juice out of this observation
by checking that the map x 7! d(x, A) is actually continuous. For this, it suffices to establish
the inequality of the following proposition.

Proposition 15. For any points x, y and any set A, we have that |d(x, A)� d(y, A)|  d(x, y).

Proof. It is true by the triangle inequality that d(x, a)  d(x, y) + d(y, a) for any a 2 A. But
d(x, A) is a lower bound for d(x, a); hence d(x, A)  d(x, y) + d(y, a). Now, by taking the
infimum over a 2 A, we get d(x, A)  d(x, y) + d(y, A). Since d is symmetric, the roles of x
and y are interchangeable and so we are done.
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To appreciate what this has done for us, let’s make two simple observations. First, if
f : M ! R is a continuous function, then the set E = {x 2 M | f (x) = 0} is closed, since
{0} is closed in R and so its inverse image E must be closed as well by continuity of f .
Conversely, if E is a closed set in M, then E is the zero set of some continuous real-valued
function on M; in particular, E = {x 2 M | d(x, E) = 0}. Thus a set E is closed if and only
if E = f�1({0}) for some continuous function f : M ! R. The moral of this story is that if
you know all of the open (and hence closed) sets in a metric space M, then you know all of
the continuous real-valued functions on M, and vice versa.

h[YnabXcamZ\g

1.8 Connectedness, Completeness, & Compactness

1.8.1 Connected Sets

Recall from your glory days of kindergarten calculus the well known Intermediate Value
Theorem, which is the formal statement of the informal notion that the graph of a continuous
function is "unbroken." In this subsection we are going to analyze a generalization of this
result that extends to metric spaces (in fact, it also applies to the even more general case of
topological spaces, which you will study on Chapter 3).

Definition 26. If A is a subspace of an ambient space M so that A ( M (this notation means that
A is contained in M, but it is not equal to the entire space M),7 then we say that A is a proper

subspace of M. If, moreover, A is nonempty, then we say that A is a nontrivial subspace of M.8

Definition 27. We say that a metric space M is disconnected if M can be split into the disjoint
union of two nontrivial open sets, that is, if there are nonempty open sets U and V in M with
U \ V = ∆ and U [ V = M (note that such a disjoint union is usually denoted in the literature

] t

7 Normally, the notation "A ⇢ M" suffices, since it’s technically the same as "A ( M," but nonetheless you may
encounter the latter quite often when we want to emphasize that the subset/subspace is properly contained.

8 Be aware that some authors require that a proper subspace be nonempty by definition.
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as U q V or U t V). The open sets U and V are called the connected components (or just the
components) of M, and the pair (U, V) is referred to as the disconnection of M; we say that M is
connected (duh!) if no such disconnection can be found. Note also that a disconnection doesn’t have
to be just a pair; a space can be composed of the disjoint union of many (in fact, even uncountably
many!) components (see Figure 1.4 for an example of a space N with three components).

Figure 1.4: Illustration of a connected set (M) and a disconnected one (N).

Remark: Note that Definition 27 could be just as easily formulated in terms of closed sets
instead. After all, if a disconnection (U, V) exists, then the disconnecting sets U and V are
also closed: U = Vc and V = Uc. In other words, U and V are clopen sets. Conversely, if M
contains a nontrivial clopen subset U (i.e. a clopen set other than ∆ or M), then (U, Uc) is a
disconnection for M. This gives us another way to present connectedness; in fact, it is this
formulation the one that we often use in proofs: M is connected if and only if it contains no
nontrivial clopen sets.

Example 20. a) Any interval [a, b] is connected; in fact the entire real line R is connected. (We can
show that R contains no nontrivial clopen sets by showing that if U is a nontrivial open subset of R,
then U ) U.)

b) A discrete space containing two or more points is disconnected.

c) Both the empty set ∆ and any one-point space are always connected (by default).

d) The Cantor set D is (very!) disconnected. Indeed, for any with x < y there is a z /2 D such that
x < z < y. Thus, D is disconnected by the (relatively) open sets U = [0, z) \ D and V = (z, 1] \ D.
The Cantor set is an example of a totally disconnected space; in the more general setting of
topology, which we will discuss in Chapter 3, a topological space X is said to be totally disconnected

if the connected components in X are the one-point sets. m

XcamZ\g g

f 83



1.8. Connectedness, Completeness, & Compactness Chapter 1. Real Analysis
h [a\ g

Theorem 42. If M is connected and the mapping j : M ! N is continuous and onto, then N is
connected as well. In particular (even when j is not onto), the continuous image of a connected space
is connected.

Proof. If U is a clopen nontrivial subset of N, according to the open and closed set conditions
for continuity, the inverse image j�1(U) must also be clopen in M. Since j is onto and
U 6= ∆, it follows that j�1(U) is also nonempty. Similarly, j�1(Uc) 6= ∆. Therefore j�1(U)
is a nontrivial clopen subset of M, contrary to our assumption that M is connected. Thus
we have reached a contradiction, from which follows that the existence of such a clopen set
U in N is impossible; hence N is connected just like M.

Corollary 9. If M is homeomorphic to N and M is connected, then N is also connected.9

Proof. Since N is the continuous image of M under the isomorphism, the result follows
immediately from Theorem 42.

Corollary 10 (Generalized Intermediate Value Theorem). Let M be connected. Then every
continuous real-valued function f : M ! R has the intermediate value property.

Proof. If f assumes values a, b 2 R such that a < b, but it fails to assume some value x
between a and b (i.e., a < x < b), then we have that

U = {x 2 M | f (x) < x} and V = {x 2 M | f (x) > x}

separate M, i.e., M = U q V. But this contradicts our assumption that M is connected.

Theorem 43. The union of connected sets sharing a common point is connected.

Proof. Let S = [Sa, where each Sa is connected and they have a common pint p 2 \Sa. If
the union S were disconnected, it would have a separation (U, Uc), where U and Uc are
both nontrivial and clopen. One of them contains p; say, WLOG, that it is U. Then U \ Sa

is a nonempty clopen subset of Sa. But since Sa is connected by assumption, we then must

] t

9 As you will see in Chapter 3, connectedness is a "topological property," i.e., it is a property that is "invariant"
(i.e., preserved) by homeomorphisms.
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have U \ Sa = Sa for each a, and U = S. This in turn implies that Uc = ∆, contrary to our
assumption that Uc is nontrivial.

Definition 28. Given a metric space M and points p, q 2 M, a path joining p to q is a continuous
map g : [a, b] ⇢ R ! M such that g(a) = p and g(b) = q. (Note that we may also consider the
reversed path g : [a, b] ⇢ R ! M that satisfies g(a) = q and g(b) = p; in other words, g has the
same image in M as g, but it has the reversed orientation.) If each pair of points in M can be joined
by a path in M, then we say that M is path-connected (see Figure 1.5).

Figure 1.5: A path f : [a, b] ! M joining p and q.

Theorem 44. Path connectedness implies connectedness.

Proof. Let M be a path-connected space and assume, to the contrary, that M is not connected.
Then M = U qUc for some clopen nontrivial subset U ( M. Now choose p 2 U and q 2 Uc;
by the assumption that M is path-connected, here exists a path g : [a, b] ⇢ R ! M joining p
to q. But then the inverse images g�1(U) and g�1(Uc) contradict the connectedness of the
interval [a, b].

Note however, that the converse of Theorem 44 does not hold in general:
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Example 21 (The Topologist’s Sine Curve). The topologist’s sine curve (shown in Figure 1.6),
is a compact (a concept to be described later in this section) and connected set that is not path-
connected. It is a metric space (M, d) with d being the usual Euclidean distance and M given by the
union M = G q Y, where

G =
�
(x, y) 2 R2 | y = sin 1/x, 0 < x  1/p

 
,

Y =
�
(0, y) 2 R2 | �1 < yx  1

 
.

Take another look at Figure 1.6. Does M seem connected to you? You bet your sorry a** it is! How

Figure 1.6: The topologist’s sine curve.

do we prove this? Note that the graph G is connected and M is its closure. Now, since the closure of a
connected space is connected10 (this is not so trivial; prove it!), it follows that M must be connected,
as desired. m

1.8.2 Totally Bounded Sets

Definition 29. A subset A in a metric space (M, d) is said to be totally bounded if, given any
# > 0, there exist finitely many points x1, . . . , xn 2 M such that A ⇢ [n

i=1B#(xi) (when A is
contained in such union, we often say that A is covered by finitely many #-balls). Loosely speaking,
each point x 2 A is within a distance of # from some other point xi. For this reason, we often refer to
the set {x1, . . . , xn} as being #-dense in A (you may also find in the literature that {x1, . . . , xn} is
called an #-net for A).

] t

10 In fact, more generally, if S and eS are any two sets such that S ⇢ eS ⇢ S, and S is connected, then so is eS.
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Lemma 8. A subset A in a metric space (M, d) is totally bounded if and only if, given # > 0, there
are finitely many sets A1, . . . , An ⇢ A, with diam Ai < # for all i, such that A ⇢ [n

i=1Ai.

Proof. ()) First we suppose that A is totally bounded. Given # > 0, we may choose
x1, . . . , xn 2 M such that A ⇢ [n

i=1B#(xi). Then A is covered by the sets Ai = A\B#(xi) ⇢ A
and diam Ai  diam B#(xi)  2# for each i.

(() Conversely, given # > 0, suppose that there are finitely many sets A1, . . . , An ⇢ A,
with diam Ai < # for all i, such that A ⇢ [n

i=1Ai. Given xi 2 Ai, we have Ai ⇢ B2#(xi)
for each i and thus, A ⇢ [n

i=1 Ai ⇢ [n
i=1B2#(xi) . Since # is arbitrary in either case, we are

done.

Example 22. a) By the triangle inequality, a totally bounded set is necessarily bounded (make sure
you understand why this is true). Note also that any subset of a totally bounded set is again totally
bounded.

b) A finite set is always totally bounded. In a discrete space, a set is totally bounded if and only if
it is finite. Thus, for instance N and Z are not totally bounded, but Zn

11 (for any n 2 N) is totally
bounded.

c) Any given subset of R is totally bounded if and only if it is bounded: in particular, if I is
a closed and bounded interval in R and # > 0, then I can be covered by finitely many closed
subintervals J1, . . . , Jn, each of length at most # (prove this!). Thus we have that total boundedness
is not a topological property (in fact, total boundedness depends intimately on the metric at hand):
as we briefly discussed on Subsection 1.7.1, topological properties are those properties of a space that
are preserved by bicontinuous mappings called "homeomorphisms." Now, R is homeomorphic to the
interval (0, 1), and the former is not bounded whereas the latter is. Thus, since a subset of R is
totally bounded if and only if it is bounded, it follows that total boundedness is not preserved by
homeomorphisms and thus it is not a topological property.

d) This feature of R that we presented on part c) does not in general hold for arbitrary spaces.
We will now show that not every bounded set is totally bounded; the discrete metric gives us a
clue as to how we might construct such a set: Recall the sequence {e(n)} 2 `1 in which e(j) =
(0, . . . , 0, 1, 0, . . . ), where the single nonzero entry is in the jth place. Then, {e(n)} is a bounded set
in `1 (since ke(j)k1 = 1 for all j), but it is not totally bounded. Why? Because ke(j) � e(i)k1 = 2 for
] t

11 This is the set of all integers modulus n; if you’re not already familiar with these algebraic constructions don’t
worry, you’ll learn about them in the next chapter.
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j 6= i; thus, {e(n)} cannot be covered by finitely many balls of radius < 2. In fact, {e(n)} is discrete
in its relative (i.e., subspace) metric. m

Now we give a sequential criterion for total boundedness:

Lemma 9. Let {xn} be a sequence in (M, d), and let A ⇢ M be the range of this sequence.

a) If {xn} is Cauchy, then A is totally bounded.

b) If A is totally bounded, then {xn} has a Cauchy subsequence.

Proof of a). Let # > 0. Then, since {xn} is assumed to be Cauchy, there is some index N � 1
such that diam {xn | n � N} < #. Thus,

A = {x1} [ · · · [ {xN�1} [ {xn | n � N}| {z }
N sets of diameter < #

.

Proof of b). If we let A be finite, the result is trivial. Thus, assume that A is an infinite totally
bounded set. Then A can be covered by finitely many sets of diameter < 1, where at least
one of these sets must contain infinitely many points of A. Call this set A1. But then A1 is
also totally bounded, and so it can be covered by finitely many sets of diameter < 1/2. One
of these, call it A2, contains infinitely many points of A1. . .
Continuing this process, we find a decreasing sequence of sets A � A1 � A2 � . . ., where
each Ak contains infinitely many xn and where diam Ak < 1/k. In particular, we may choose
a subsequence {xnk}k with xnk 2 Ak for all k. The fact that {xnk}k is Cauchy is now clear
since diam {xnj | j � k}  diam Ak < 1/k.

Example 23. a) The sequence given by xn = (�1)n in R shows that a Cauchy subsequence is the
best that we can hope for in part ii) of Lemma 9.

b) Note that the sequence {e(n)} 2 `1 that we have previously discussed has no Cauchy subse-
quence. m

Now we are truly ready for our sequential characterization of total boundedness:
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Theorem 45. A set A is totally bounded if and only if every sequence in A has a Cauchy subse-
quence.

Proof. ()) This is crystal clear from Lemma 9.

(() Suppose, to the contrary, that A is not totally bounded. Then, there is some # > 0
such that A cannot be covered by finitely many #-balls. Thus, by induction, we can find a
sequence {xn} in A such that d(xn, xm) � # whenever m 6= n. But then, {xn} has no Cauchy
subsequence, which contradicts our assumption.

Corollary 11 (The Bolzano-Weierstrass Theorem). 12 Every bounded infinite subset of R has a
limit point in R.

Proof. Let A be a bounded infinite subset of R. Then, in particular, there is a sequence {xn}
of distinct points in A. Since A is totally bounded, there is a Cauchy subsequence {xnk}k of
{xn}. But Cauchy sequences in R converge, and so {xnk}k converges to some x 2 R. Thus,
x is a limit point of A.

1.8.3 Complete & Compact Metric Spaces

We are almost ready to discuss compact sets, but first we need a few results about complete-
ness.

Definition 30. A metric space M is said to be complete if every Cauchy sequence in M converges
to a point in M.

Example 24. a) R is complete. This is a consequence of the least upper bound axiom; in fact, as we
will see, the completeness of R is actually equivalent to the least upper bound axiom.

b) Rn is complete (because R is).

c) Any discrete space is complete (trivially).

] t

12 There are other incarnations of this theorem; for instance, another formulation says that every bounded
sequence of real numbers has a convergent subsequence.
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d) (0, 1) is not complete; hence, completeness is not preserved by homeomorphisms. (recall that
(0, 1) ⇠= R)

e) `1, `2, `p and `• are all complete. We will sketch the proof for `2 below (the rest of the proofs
are all very similar). m

The proof that `2 is complete is based on a few simple principles that will generalize to all
sorts of different settings. This generality will become all the more apparent if we introduce
a slight change in our notation. Since a sequence is just another name for a function on N,
let’s agree to write an element f 2 `2 as f = { f (k)}, in which case

k f k2 =

 
•

Â
k=1

| f (k)|2
!1/2

.

For example, the vectors e(n) will now be written as en, where en(k) = dn,k. In case you’re
not familiar with dn,k, it is known as Kronecker’s delta, which is defined by

dn,k =

(
1 if n = k,
0 otherwise.

Now let { fn} be a sequence in `2, where now we write fn = { fn(k)}k, and suppose that
{ fn} is Cauchy in `2. That is, suppose that for each # > 0 there exists an n0 such that
k fn � fmk2 < # whenever m, n � n0. Of course, we want to show that { fn} converges, in the
metric of `2, to some f 2 `2. We will break the proof into three steps:

Step 1 f (k) = limn!• fn(k) exists in R for each k.
To see why, note that | fn(k) � fm(k)|  k fn � fmk2 for any k, and hence { fn(k)}k is
Cauchy in R for each k. Thus, f is the obvious candidate for the limit of { fn}, but we
still have to show that the convergence takes place in the metric space `2; that is, we
need to show that f 2 `2 and that k fn � f k2 ! 0 (as n ! •).

Step 2 f 2 `2; that is, k f k2 < •.
We know that { fn} is bounded in `2 (why?); say k fnk2  B for all n. Thus, for any
fixed N < •, we have:

N

Â
k=1

| f (k)|2 = lim
n!•

N

Â
k=1

| fn(k)|2  B2.

Since this holds for any N, we get that k f k2  B.
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Step 3 Now we repeat Step 2 (more or less) to show that fn ! f in `2.
Given # > 0, choose n0 so that k fn � fmk2 < # whenever m, n � n0. Then, for any N
and any n � n0,

N

Â
k=1

| f (k)� fn(k)|2 = lim
m!•

N

Â
k=1

| fm(k)� fn(k)|2  #2.

Since this holds for any N, we have k f � fnk2  # for all n � n0. That is, fn ! f in `2,
as desired. ⌅

Example 25. a) Just having a candidate for a limit is not enough. Consider the sequence { fn} in `•
defined by fn = (1, . . . , 1, 0, . . . ), where the first n entries are 1 and the rest are 0. The "obvious"
limit is f = (1, 1, . . . ) (all 1’s), but k f � fnk• = 1 for all n (what’s wrong?).

b) Worse still, sometimes the "obvious" limit is not even in the space. Consider the same sequence
as in part a) and note that each fn is actually an element of c0. This time, the natural candidate f is
not in c0 (again, what’s wrong?). m

As you can see, there can be a lot of details to check in a proof of completeness, and it
would be handy to have at least a few easy cases available. For example: when is a subset
of a complete space complete? The answer is given in the following theorem.

Theorem 46. Let (M, d) be a complete metric space and let A be a subset of M. Then, (A, d) is
complete if and only if A is closed in M.

Proof. ()) First suppose that (A, d) is complete, and let {xn} be a sequence in A that
converges to some point x 2 M. Then {xn} is Cauchy in (A, d) and so it converges to some
point of A. That is, we must have x 2 A and, hence, A is closed.

(() Next suppose that {xn} is a Cauchy sequence in (A, d). Then {xn} is also Cauchy
in (M, d). Hence, we have that {xn} converges to some point x 2 M. But A is closed and so,
in fact, x 2 A. Thus, (A, d) is complete.

Example 26. a) [0, 1], [0, •), N, and the Cantor set D are all complete.

b) It follows from Theorem 46 that if a metric space (M, d) is both complete and totally bounded,
then every sequence in M has a convergent subsequence. In particular, any closed, bounded subset of
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R is both complete and totally bounded. Thus, for example, every sequence in [a, b] has a convergent
subsequence. As you can easily imagine, the interval [a, b] is a great place to do analysis! We will
pursue the consequences of this felicitous combination of properties when we explore compact sets. m

Our next result underlines the fact that complete spaces have a lot in common with R.

Theorem 47. For any metric space (M, d), the following statements are equivalent:

i) (M, d) is complete.

ii) (The Nested Set Theorem ) Let F1 � F2 � . . . be a decreasing sequence of nonempty
closed sets in M with diam(Fn) ! 0. Then,

T•
n=1 Fn 6= ∆ (in fact, it contains exactly one

point).

iii) (The Bolzano -Weierstrass Theorem ) Every infinite, totally bounded subset of M
has a limit point in M.

Proof. (i) =) ii)) Given {Fn} as in ii), choose xn 2 Fn for each n. Then, since the Fn
decrease, {xk | k � n} ⇢ Fn for each n, and hence diam{xk | k � n} ! 0 as n ! •. That
is, {xn} is Cauchy. Since M is complete, we have xn ! x for some x 2 M. But the Fn are
closed, and so we must have x 2 Fn for all n. Thus,

T•
n=1 Fn 6= ∆.

(ii) =) iii)) Let A be an infinite, totally bounded subset of M. Recall that we have
shown that A contains a Cauchy sequence {xn} comprised of distinct points (xn 6= xm for
n 6= m). Now, setting An = {xk | k � n}, we get A � A1 � A2 � . . ., each An is nonempty
(even infinite), and diam (An) ! 0. That is, ii) almost applies, but clearly, An � An+1 6= ∆ for
each n, and diam

�
An
�
= diam (An) ! 0 as n ! •. Thus there exists an x 2 T•

n=1 An 6= ∆.
Now xn 2 An implies that d (xn, x)  diam

�
An
�
! 0. That is, xn ! x and thus x is a limit

point of A.

(iii) =) i)) Let {xn} be Cauchy in (M, d). We just need to show that {xn} has a
convergent subsequence. Now, the set A = {xn | n � 1} is totally bounded (prove it!). If A
happens to be finite, we are done (why?). Otherwise, iii) tells us that A has a limit point
x 2 M. It follows that some subsequence of {xn} converges to x.

We are finally ready to study compact metric spaces.
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Definition 31. A metric space (M, d) is said to be compact if it is both complete and totally
bounded.

Example 27. a) A subset K of R is compact if and only if K is closed and bounded. This fact is
usually referred to as the Heine-Borel theorem. Hence, a closed bounded interval [a, b] is compact.
Also, the Cantor set D is compact. The interval (0, 1), on the other hand, is not compact.

b) A subset K of Rn is compact if and only if K is closed and bounded.

c) It is important that we not confuse the first two examples with the general case. Recall that the
set {en | n � 1} is closed and bounded in `• but not totally bounded –hence not compact. Taking
this a step further, notice that the closed ball {x | kxk•  1} in `• is not compact, whereas any
closed ball in Rn is compact.

d) A subset of a discrete space is compact if and only if it is finite. (why?) m

Just as with completeness and total boundedness, we will want to give several equiv-
alent characterizations of compactness. In particular, since neither completeness nor total
boundedness is preserved by homeomorphisms, our newest definition does not appear to
be describing a topological property. Let’s remedy this immediately by giving a sequential
characterization of compactness that will turn out to be invariant under homeomorphisms:

Theorem 48. (M, d) is (sequentially) compact if and only if every sequence in M has a subse-
quence that converges to a point in M.

Proof. The proof follows immediately from the fact that a space M is totally bounded and
complete (hence compact) if and only if every sequence in M has a Cauchy subsequence
(that converges to a point in M).

Compactness is quite a valuable property to have available on a space, as convergent
sequences are easy to come by in a compact space. In the case that you are dealing with
a non-convergent sequence, simply extract a subsequence that does converge and use that
one instead. That’s the best that one could hope for! Given a compact space, it is easy to
decide which of its subsets are compact: Every bounded infinite subset of R has a limit
point in R.
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Corollary 12. Let A be a subset of a metric space M. If A is compact, then A is closed in M. If M
is compact and A is closed, then A is compact.

Proof. Suppose that A is compact, and let {xn} be a sequence in A that converges to a point
x 2 M. Then, from the above theorem, {xn} has a subsequence that converges in A, and
hence we must have x 2 A. Thus, A is closed.
Next, suppose that M is compact and that A is closed in M. Given an arbitrary sequence
{xn} in A, Theorem 48 supplies a subsequence of {xn} that converges to a point x 2 M. But
since A is closed, we must have x 2 A. Thus, A is compact.

To show that compactness is indeed a topological property, let us show that the continu-
ous image of a compact set is again compact:

Theorem 49. Let f : (M, d) ! (N, r) be continuous. If K is compact in M, then f (K) is compact
in N.

Proof. Let {yn} be a sequence in f (K). Then, yn = f (xn) for some sequence {xn} in K. But,
since K is compact, {xn} has a convergent subsequence, say, xnk ! x 2 K. Then, since f is
continuous, ynk = f (xnk) ! f (x) 2 f (K). Thus, f (K) is compact.

The theorem above gives us a wealth of useful information. In particular, it tells us that
real-valued continuous functions on compact spaces are quite well behaved:

Corollary 13. Let (M, d) be compact. If f : M ! R is continuous, then f is bounded. Moreover, f
attains its maximum and minimum values.

Proof. The image f (M) is compact in R; hence it is closed and bounded. Moreover, sup f (M)
and inf f (M) are actually elements of f (M). That is, there exist x, y 2 M such that f (x) 
f (t)  f (y) for all t 2 M. (In this case we would write f (x) = mint2M f (t) and f (y) =
maxt2M f (t)).

Corollary 14. If f : [a, b] ! R is continuous, then the range of f is a compact interval [c, d] for
some c, d 2 R.
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Corollary 15. If M is a compact metric space, then k f k• = maxt2M | f (t)| defines a norm on
C0(M), the vector space of continuous real-valued functions on M.

It appears that compactness is the analogue of "finite." To better appreciate this, we will
need a slightly more esoteric characterization of compactness. A bit of preliminary detail-
checking will ease the transition.

Lemma 10. In a metric space M, the following are equivalent:

i) If G is any collection of open sets in M with
S{G | G 2 G} � M, then there are finitely

many sets G1, . . . , Gn 2 G with
Sn

i=1 Gi � M.

ii) If F is any collection of closed sets in M such that
Tn

i=1 Fi 6= ∆ for all choices of finitely many
sets F1, . . . , Fn 2 F , then

T{F | F 2 F} 6= ∆.

The first condition is the precise mathematical expression of the phrase every open cover

has a finite subcover, which is often used as the definition of compactness. The second
condition is abbreviated by saying every collection of closed sets with the finite intersection

property has nonempty intersection. These may at first seem to be unwieldy statements to
work with, but each is worth the trouble. Here is why we care:

• Condition i) implies that M is totally bounded because, for any # > 0, the collection
G = {B#(x) | x 2 M} is an open cover for M.

• Condition ii) implies that M is complete because it easily implies the nested set theo-
rem (if F1 � F2 � . . . are nonempty, then

Tn
i=1 Fi = Fn 6= ∆).

Putting these two conditions together we have our new characterization of compactness:

Theorem 50. M is compact if and only if it satisfies either (hence both, since they are equivalent)
conditions i) and ii) in Lemma 10.

Proof. (() As noted above, conditions i) and ii) imply that M is totally bounded and
complete, hence compact.

()) We need to show that compactness will imply, say, i) (there is no loss of generality
here, since both conditions i) and i)) are equivalent). To this end, suppose that M is compact,
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and suppose that G is an open cover for M that admits no finite subcover. We will work
toward a contradiction:

M is totally bounded, so M can be covered by finitely many closed sets of diameter at
most 1. It follows that at least one of these, call it A1, cannot be covered by finitely many
sets from G. Certainly A1 6= ∆ (since the empty set is easy to cover!). Note that A1 must be
infinite.

Next, A1 is totally bounded, so A1 can be covered by finitely many closed sets of diameter
at most 1/2. At least one of these, call it A2, cannot be covered by finitely many sets from G.
Continuing, we get a decreasing sequence A1 � A2 � · · · � An � . . ., where An is closed,
nonempty (infinite, actually), has diam (An  1/n), and cannot be covered by finitely many
sets from G.

Now here is the problem! Let x 2 T•
n=1 An ( 6= ∆ because M is complete). Then, x 2 G 2 G

for some G (since G is an open cover) and so, since G is open, x 2 B#(x) ⇢ G for some # > 0 .
But for any n with 1/n < # we would then have x 2 An ⇢ B#(x) ⇢ G. That is, An is covered
by a single set from G. This is the contradiction that we were looking for.

Just look at the tidy form that the nested set theorem takes on in a compact space:

Corollary 16. M is compact if and only if every decreasing sequence of nonempty closed sets has
nonempty intersection; that is, if and only if, whenever F1 � F2 � . . . is a sequence of nonempty
closed sets in M, we have

T•
n=1 Fn 6= ∆.

Proof. ()) The forward implication is clear from Theorem 50.

(() Suppose that every nested sequence of nonempty closed sets in M has nonempty
intersection, and let {xn} be a sequence in M. Then there is some point x in the nonempty
set

T•
n=1 {xk | k � n} (make sure you see why). It then follows that some subsequence of

{xn} must converge to x.

Note that we no longer need to assume that the diameters of the sets Fn tend to zero;
hence,

T•
n=1 Fn may contain more than one point.

Corollary 17. M is compact if and only if every countable open cover admits a finite subcover.
(why?)
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1.9 Basics of Measure Theory

We start off this section with an onslaught of definitions. We will need the language pre-
sented here as we move forward into the theory of measures.

Definition 32. The symmetric difference between two sets E and F (denoted E4F) consists of
those points that belong to only one of the two sets E or F; that is, E4F = (E r F) [ (F r E).

Definition 33. A nonempty collection of sets R is called a ring of sets if A4B 2 R and A\ B 2 R
whenever A, B 2 R. Since

A [ B = (A4B)4 (A \ B) and A \ B = A4 (A \ B) ,

we also have A [ B 2 R and A r B 2 R whenever A, B 2 R.

Thus, a ring of sets is a system closed under the operations of taking unions, intersec-
tions, differences, and symmetric differences. Clearly, a ring of sets is also closed under the
operations of taking finite unions and intersections:

n[

k=1
Ak and

n[

k=1
Ak.

Note that a ring of sets must also contain the empty set, since A r A = ∆.

Definition 34. A set E is called the unit of a system of sets S if E 2 S and A\ E = A for every set
A 2 S . Clearly E is unique. Thus the unit of S is just the maximal set of S , i.e. the set containing
all other sets of S . A ring of sets with a unit is called an algebra of sets.

A ring of sets is called a s-ring if it contains the union
S•

k=1 Ak whenever it contains
the sets A1, A2, . . . , Ak, . . .. Furthermore, a s-ring with a unit is called a s-algebra. In other
words:
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Definition 35. Let X be a set. An algebra is a collection A of subsets of X such that:

i) ∆ 2 A and X 2 A;

ii) if A 2 A, then Ac 2 A;

iii) if A1, . . . , An 2 A, then
Sn

i=1 Ai and
Tn

i=1 Ai are in A.

We say that the algebra A is a s-algebra if in addition:

iv) whenever A1, A2, · · · 2 A, then
S•

i=1 Ai and
T•

i=1 Ai are in A (both the union and intersec-
tion must be countable).

In other words, a s-algebra is an algebra of sets, completed to include countably infinite
operations; that is, a s-algebra of sets is a collection of subsets that is closed under countable
unions, countable intersections, and complements.

Example 28. a) If X is any set, P(X) and {∆, X} are s-algebras.

b) If X is uncountable, then

A = {E ⇢ X | E is countable or Ec is countable}

is a s-algebra, called the s-algebra of countable or co-countable sets. (The point here
is that if {Ej} ⇢ A, then

S•
j=1 Ej is countable if all Ej are countable and is co-countable

otherwise.) m

Definition 36. Let X be equipped with a s-algebra A. A measure on A (or on (X,A), or simply
on X if A is understood) is a function µ : A ! [0, •] such that:

i) µ(∆) = 0;

ii) If {Ej} is a sequence of disjoint sets in A, then µ
⇣S•

j=1 Ej

⌘
= Â•

j=1 µ
�
Ej
�
.

iii) Property ii), called countable additivity, implies finite additivity: if E1, . . . , En are disjoint
sets in A, then µ

⇣Sn
j=1 Ej

⌘
= Ân

j=1 µ
�
Ej
�

(because one can take Ej = ∆ for j > n).
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A function µ that satisfies i) and iii) but not necessarily ii) is called a finitely additive

measure. A measure is obviously also a finitely additive measure, but the converse is not
true (a finitely additive measure doesn’t satisfy all three properties; hence it’s not a measure).

Definition 37. The pair (X,A) is called a measurable space and the sets in A are called measur-

able sets, i.e., a set A is measurable (or A-measurable) if A 2 A. If µ is a measure on (X,A),
then (X,A, µ) is called a measure space.

Definition 38. A measure space X is said to be s-finite if X can be written as the union of countably
many measurable sets of finite measure; that is, if X =

S
i Xi and m(Xi) < • for all i, each Xi being

measurable.

1.9.1 Exterior Measure

Definition 39. If E is any subset of Rd, the exterior measure (also known as outer measure) of
E, denoted m⇤(E), is given by

m⇤(E) = inf
•

Â
n=1

|Qn| ,

where the infimum is taken over all countable coverings E ⇢ S•
n=1 Qn by closed cubes.

The exterior measure is always non-negative but could be infinite, so that in general we
have 0  m⇤(E)  •, and therefore takes values in the extended positive numbers. It
follows immediately from the definition of m⇤ that for every # > 0, there exists a covering
E ⇢ S•

n=1 Qn with
•

Â
n=1

m⇤ (Qn)  m⇤(E) + #.

The relevant properties of exterior measure are now listed in a series of observations:

• Observation 1: (Monotonicity ) If E1 ⇢ E2, then m⇤ (E1)  m⇤ (E2).

• Observation 2: (Countable sub -additivity ) If E =
S•

n=1 En, then

m⇤(E) 
•

Â
n=1

m⇤ (En) .
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• Observation 3: If E ⇢ Rd, then m⇤(E) = inf m⇤(O), where the infimum is taken over all
open sets O containing E.

• Observation 4: If E = E1 [ E2 and d (E1, E2) > 0, then m⇤(E) = m⇤ (E1) + m⇤ (E2).

• Observation 5: If a set E is the countable union of almost disjoint cubes E =
S•

n=1 Qn,
then m⇤(E) = Â•

n=1 |Qn|.

Theorem 51 (Carathéodory ’s Theorem). If m⇤ is an outer measure on X, the collection
A of m⇤-measurable sets is a s-algebra, and the restriction of m⇤ to A is a complete measure.

Proof. See [Folland, 2007, p. 29] for a detailed proof.

1.9.2 Borel Sets & Lebesgue Measure

Definition 40. A subset E ⇢ R is said to have measure zero if for every # > 0, there exists a
countable family of open intervals {Ik} such that

i) E ⇢ S•
k=1 Ik;

ii) Â•
k=1 |Ik| < #, where |Ik| denotes the length of the interval Ik.

The first condition says that the union of the intervals covers E, and the second that this
union is arbitrarily small. It follows from this that any finite set of points has measure 0.
As a matter of fact, it is true that a countable set of points has measure 0, even though the
proof of this argument requires a more subtle treatment.

Definition 41. A subset E of Rd is said to be Lebesgue measurable (or simply measurable), if
for any # > 0 there exists an open set O with E ⇢ O that satisfies m⇤(Or E)  #. (Alternatively,
we can say that a set E is measurable if for all # > 0, there exists a closed set F, such that F ⇢ E and
m⇤(E r F)  #.)

Here’s yet another way to define a measurable set (this is actually a more widely used
definition):
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Definition 42. A set E is measurable if for all A ⇢ Rd, we have

m⇤(A) = m⇤(E \ A) + m⇤ (Ec \ A) .

Definition 43. If E is measurable, we define its Lebesgue measure (or simply measure) by m(E) =
m⇤(E). That is, if E is measurable, then its measure is the same as its outer measure.

Clearly, the Lebesgue measure inherits all the features contained in Observations 1 � 5 of
the exterior measure. Immediately from the definition we find the following six properties:

Property 1: Every open set in Rd is measurable.

Property 2: If m⇤(E) = 0, then E is measurable. In particular, if F is a subset of a set of exterior
measure 0, then F is measurable.

Property 3: A countable union of measurable sets is measurable.

Property 4: Closed sets are measurable.

Property 5: The complement of a measurable set is measurable.

Property 6: A countable intersection of measurable sets is measurable.

Theorem 52. If E1, E2, . . . are disjoint measurable sets, and E =
S•

j=1 Ej, then m(E) = Â•
j=1 m

�
Ej
�
.

Proof. First, we assume further that each Ej is bounded. Then, for each j, by applying the
definition of measurability to Ec

j , we can choose a closed subset Fj ⇢ Ej with m⇤
�
Ej r Fj

�


#/2j. For each fixed N, the sets F1, . . . , FN are compact and disjoint, so that m
⇣SN

j=1 Fj

⌘
=

ÂN
j=1 m

�
Fj
�
. Since

SN
j=1 Fj ⇢ E, we must have

m(E) �
N

Â
j=1

m
�

Fj
�
�

N

Â
j=1

m
�
Ej
�
� #.

Letting N tend to infinity, since # was arbitrary, we find that

m(E) �
•

Â
j=1

m
�
Ej
�

.
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Since the reverse inequality always holds (by sub-additivity in Observation 2 above), this
concludes the proof when each Ej is bounded.

Now in the general case, we select any sequence of cubes {Qk} that increases to Rd, in
the sense that Qk ⇢ Qk+1 for all k � 1 and

S•
k=1 Qk = Rd. We then let S1 = Q1 and

Sk = Qk � Qk�1 for k � 2. If we define measurable sets by Ej,k = Ej \ Sk, then E = [j,kEj,k.
This union is disjoint and every Ej,k is bounded. Moreover Ej =

S•
k=1 Ej,k and this union

is also disjoint. Putting these facts together, and using what has already been proved, we
obtain

m(E) = Â
j,k

m
�
Ej,k
�
= Â

j
Â

k
m
�
Ej,k
�
= Â

j
m
�
Ej
�

,

as claimed.

With this theorem, the countable additivity of the Lebesgue measure on measurable sets
has been established. This result provides the necessary connection between the following:

• our primitive notion of volume given by the exterior measure;

• the more refined idea of measurable sets;

• the countably infinite operations allowed on these sets.

Theorem 53. Suppose E is a measurable subset of Rd. Then, for every # > 0,

i) there exists an open set O with E ⇢ O and m(Or E)  #;

ii) there exists a closed set F with F ⇢ E and m(E r F)  #;

iii) if m(E) is finite, there exists a compact set K with K ⇢ E and m(E r K)  #;

iv) if m(E) is finite, there exists a finite union F =
SN

n=1 Qn of closed cubes such that m(E4F) 
#.

Here are some invariance properties of Lebesgue measure:

• A crucial property of Lebesgue measure in Rd is its translation-invariance, which can
be stated as follows: if E is a measurable set and h 2 Rd, then the set Eh = E + h =
{x + h | x 2 E} is also measurable, and m(E + h) = m(E).
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• Similarly, we have the relative dilation-invariance of Lebesgue measure: suppose d >
0, and denote by dE the set {dx | x 2 E}. We can then assert that dE is measurable
whenever E is, and m(dE) = ddm(E) (where d is the dimension of Rd � E).

• One can also easily see that the Lebesgue measure is reflection-invariant. That is,
whenever E is measurable, so is �E = {�x | x 2 E} and m(�E) = m(E).

The collection of all subsets of Rd is of course a s-algebra. A more interesting and relevant
example consists of all measurable sets in Rd, which also forms a s-algebra. Another s-
algebra, which plays a vital role in analysis, is the Borel s-algebra in Rd, denoted by BRd ,
which by definition is the smallest s-algebra that contains all open sets. Elements of this
s-algebra are called Borel sets. Here the term "smallest" means that if S is any s-algebra
that contains all open sets in Rd, then necessarily BRd ⇢ S. Since we observe that any
intersection (not necessarily countable) of s-algebras is again a s-algebra, we may define
BRd as the intersection of all s-algebras that contain the open sets. This shows the existence
and uniqueness of the Borel s-algebra.

More generally:

Definition 44. If X is any topological space (c.f. Chapter 2), the s-algebra generated by the family
of open sets in X (or equivalently, by the closed sets in X) is called the Borel s-algebra, denoted
BX.

Let’s try to list the Borel sets in order of their complexity:

• We start with the open and closed sets, which are the simplest Borel sets.

• Next in order would come countable intersections of open sets; such sets are called
Gd sets. Alternatively, one could consider their complements, the countable union of
closed sets, called the Fs sets.

• We can then consider a countable union of Gd sets (called a Gds set); a countable
intersection of Fs sets (called an Fsd set); and so forth. . .

Since open sets and closed sets are measurable, we conclude that the Borel s-algebra
is contained in the s-algebra of measurable sets. Naturally, we may ask if this inclusion is
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strict: do there exist Lebesgue measurable sets which are not Borel sets? The answer is "yes."
To see why we need to define what a complete measure is:

Definition 45. A complete measure is a measure whose domain includes all subsets of null sets.

In other words, from the point of view of the Borel sets, the Lebesgue sets arise as the
completion of the s-algebra of Borel sets, that is, by adjoining all subsets of Borel sets of
measure zero. This is an immediate consequence of the corollary below.

Corollary 18. A subset E of Rd is measurable

• if and only if E differs from a Gd by a set of measure zero;

• if and only if E differs from an Fs by a set of measure zero.

Now this is the theorem that justifies our discussion of complete measures:

Theorem 54. Suppose (X,A, µ) is a measure space. Let

N = {N 2 A | µ(N) = 0} and (Ā = {E [ F | E 2 A and F ⇢ N for some N 2 N}.

Then Ā is a s-algebra, and there is a unique extension µ of µ to a complete measure on Ā.

Proof. See [Folland, 2007, p. 27] for a detailed proof.

Now it is clear what was meant by "completion" before; the measure µ is the completion
of µ, and Ā is the completion of A with respect to µ.

Definition 46. Let {Xa}a2A be an indexed collection of nonempty sets, X = ’a2A Xa, and
pa : X ! Xa the coordinate maps. If Ma is a s-algebra on Xa for each a, then the product s-

algebra on X is the s-algebra generated by
n

p�1
a (Ea) | Ea 2 Ma, a 2 A

o
.

We denote this s-algebra by
L

a2A Ma. (If A = {1, . . . , n} we also write
Ln

k=1 Mk or M1 � · · ·�
Mn.)
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Proposition 16. If A is countable, then
L

a2A Ma is the s-algebra generated by {’a2A Ea | Ea 2 Ma}.

Proposition 17. Suppose that Ma is generated by Ea, a 2 A. Then
L

a2A Ma is generated by
F1 =

�
p�1

a (Ea) | Ea 2 Ea, a 2 A
 

. If A is countable and Xa 2 Ea for all a, then
L

a2A Ma is
generated by F2 = {’a2A Ea : Ea 2 Ea}.

Proposition 18. Let X1, . . . , Xn be metric spaces and let X = ’n
k=1 Xk, equipped with the product

metric. Then
Ln

k=1 BXk ⇢ BX. If the Xk’s are separable, then
Ln

k=1 BXk = BX.

Corollary 19. BRd =
Ln

k=1 BR.

1.9.3 Construction of a Non-Measurable Set

The construction of a non-measurable (Vitali) set N uses the axiom of choice, and rests on
a simple equivalence relation among real numbers in [0, 1]:

We write x ⇠ y whenever x � y 2 Q.

Note that this is an equivalence relation since it satisfies the reflexive, symmetric, and tran-
sitive properties. Since equivalence classes partition a set into distinct cells, we know that
two equivalence classes either are disjoint or coincide; thus the interval [0, 1] is the disjoint
union of all equivalence classes that live in this interval, that is

[0, 1] =
[

a

Ea,

where each Ea represents a unique equivalence class.

Now we construct the (Vitali) set N by choosing exactly one element xa from each Ea (this
is justified by using the axiom of choice), and setting N = {xa}. Here’s the important result:

Theorem 55. The Vitali set N constructed above is not measurable.

XcamZ\g g

f 105



1.9. Basics of Measure Theory Chapter 1. Real Analysis
h [a\ g

Proof. Assume, to the contrary, that N is measurable. Let {rk} be an enumeration of all the
rationals in [�1, 1], and consider the translates

Nk = N + rk.

Note that the sets Nk are disjoint. To see why this is true, suppose that the intersection
Nk \ Nk0 is nonempty. Then there exist rationals rk 6= rk0 and a and b with

xa + rk = xb + rk0

which implies that
xa � xb = rk0 � rk.

But this means that a 6= b and xa � xb is rational, which in turn implies that xa ⇠ xb. This
contradicts the fact that N contains only one representative of each equivalence class.

We also claim that

[0, 1] ⇢
•[

k=1
Nk ⇢ [�1, 2]. (1.5)

To see why, notice that if x 2 [0, 1], then x ⇠ xa for some a, and therefore x � xa = rk for
some k. Hence x 2 Nk for some k and the first inclusion holds. The second inclusion above
is straightforward since each Nk is contained in [�1, 2] by construction.

Now we may conclude the proof of the theorem. If N were measurable, then so would be
Nk for all k, and since the union

S•
k=1 Nk is disjoint, the inclusions in (1.5) yield

1 
•

Â
k=1

m (Nk)  3.

Since Nk is a translate of N, we must have m (Nk) = m(N) for all k. Consequently,

1 
•

Â
k=1

m(N)  3.

This is the desired contradiction, since neither m(N) = 0 nor m(N) > 0 is possible. In other
words, m(N) = 0is not possible by the above inequality, and m(N) > 0 is not possible either
because we are trying to find the measure of a countable set, which would have measure
zero if any.
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1.9.4 Measurable Functions

Our starting point is the notion of a characteristic function of a set E, which is defined by

cE(x) =

(
1 if x 2 E,
0 if x 62 E.

The next step is to pass to the functions that are the building blocks of integration theory.
For the Riemann integral it is in effect the class of step functions, with each given as a finite
sum

f =
N

Â
k=1

akcRk ,

where each Rk is a rectangle, and the ak are constants. However, for the Lebesgue integral
we need a more general notion, as we shall see later on.

Definition 47. A simple function is a finite sum

f =
N

Â
k=1

akcEk ,

where each Ek is a measurable set of finite measure, and the akare constants.

Definition 48. A function f defined on a measurable subset E of Rd is said to be a measurable

function, if for all a 2 R, the set

f�1 ([�•, a)) = {x 2 E | f (x) < a}

is measurable. (To simplify our notation, we shall often denote the set {x 2 E | f (x) < a} simply
by { f < a} whenever no confusion is possible.)

In the same way, one can show that if f is finite-valued, then it is measurable if and
only if the sets {a < f < b} are measurable for every a, b 2 R. Similar conclusions hold
for whichever combination of strict or weak inequalities one chooses. For example, if f is
finite-valued, then it is measurable if and only if {a  f  b} is measurable for all a, b 2 R.
By the same arguments one sees the following:
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• Property 1: The finite-valued function f is measurable if and only if f�1(O) is measur-
able for every open set O, and if and only if f�1(F) is measurable for every closed set
F. (Remark: Note that this property also applies to extended-valued functions, if we
make the additional hypothesis that both f�1(�•) and f�1(•) are measurable sets.)

• Property 2: If f is continuous on Rd, then f is measurable. If f is measurable and
finite-valued, and F is continuous, then F � f is measurable. (Remark: In fact, F is
continuous, so F�1(�•, a) is an open set O, and hence (F � f )�1((�•, a)) = f�1(O)
is measurable. It should be noted, however, that in general it is not true that f � F is
measurable whenever f is measurable and F is continuous.)

• Property 3: Suppose { fn} is a sequence of measurable functions. Then

sup
n

fn(x), inf
n

fn(x), lim sup
n!•

fn(x), and lim inf
n!•

fn(x)

are measurable. (Remark: Proving that supn fn is measurable requires noting that
{supn fn > a} =

S
n { fn > a}. This also yields the result for infn fn, since this quan-

tity equals � supn (� fn(x)). The result for the lim sup and lim inf also follows from
the two observations

lim sup
n!•

fn = inf
k

(
sup
n�k

fn

)
and lim inf

n!•
fn = sup

k

⇢
inf
n�k

fn

�
.

• Property 4: If { fn} is a collection of measurable functions, and limn!• fn(x) = f (x),
then f is measurable. (Remark: Since f (x) = lim supn!• fn(x) = lim infn!• fn(x),
this property is a consequence of property 3.)

• Property 5: If f and g are measurable, then

i) The integer powers f k, for k � 1 are measurable.

ii) f + g and fg are measurable if both f and g are finite-valued.

Remark: For i) we simply note that if k is odd, then
�

f k > a
 
=
�

f > a1/k , and if k
is even and a � 0, then

n
f k > a

o
=
n

f > a1/k
o[n

f > �a1/k
o

.
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For ii), we first see that f + g is measurable because

{ f + g > a} =
[

r2Q

{ f > a � r}
\
{g > r}.

Finally, f g is measurable because of the previous results and the fact that

f g =
1
4
⇥
( f + g)2 � ( f � g)2⇤ .

Definition 49. We shall say that two functions f and g defined on a set E are equal almost

everywhere, and write
f (x) = g(x) a.e. x 2 E

if the set {x 2 E | f (x) 6= g(x)} has measure zero (we sometimes abbreviate this by saying that
f = g a.e.). More generally, a property or statement is said to hold almost everywhere (a.e.) if it is
true except on a set of measure zero.

One sees easily that if f is measurable and f = g a.e., then g is measurable. This follows
at once from the fact that { f < a} and {g < a} differ by a set of measure zero. Moreover,
all the properties stated above this definition can be relaxed to conditions holding almost
everywhere. For instance, if { fn}is a collection of measurable functions, and limn!• fn(x) =
f (x) a.e., then f is measurable.This observation gives us a sixth property of measurable
functions:

• Property 6: Suppose f is measurable, and f (x) = g(x) for a.e. x. Then g is also mea-
surable.

1.9.5 Approximation By Simple or Step Functions

The theorems in this section are all of the same nature and provide further insight in the
structure of measurable functions. We begin by approximating pointwise, non-negative mea-
surable functions by simple functions:

Theorem 56. Suppose f is a non-negative measurable function on Rd. Then there exists an increas-
ing sequence of non-negative simple functions {jk} that converges pointwise to f , namely,

jk(x)  jk+1(x) and lim
k!•

jk(x) = f (x) for all x.
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Proof. We begin first with a truncation. For N � 1, let QN denote the cube centered at the
origin and of side length N. Then we define

FN(x) =

8
>><

>>:

f (x) if x 2 QN and f (x)  N,
N if x 2 QN and f (x) > N,
0 otherwise.

Then, FN(x) ! f (x) as N tends to infinity for all x. Now, we partition the range of FN ,
namely [0, N], as follows. For fixed N, M � 1, we define

E`,M =

⇢
x 2 QN :

`
M

< FN(x)  `+ 1
M

�
for 0  ` < NM.

Then we may form

FN,M(x) = Ầ `
M

cE`,M(x).

Each FN,M is a simple function that satisfies 0  FN(x) � FN,M(x)  1/M for all x. If
we now choose N = M = 2k with k  1 integral, and let jk = F2k ,2k , then we see that
0  FM(x)� jk(x)  1/2k for all x, {jk} is increasing, and this sequence satisfies all the
desired properties.

Note that the result holds for non-negative functions that are extended-valued, if the
limit +• is allowed. We now drop the assumption that f is nonnegative, and also allow the
extended limit �•:

Theorem 57. Suppose f is measurable on Rd. Then there exists a sequence of simple functions {jk}
that satisfies

|jk(x)|  |jk+1(x)| and lim
k!•

jk(x) = f (x) for all x.

In particular, we have |jk(x)|  | f (x)| for all x and k.

Proof. We decompose the function f as f (x) = f+(x)� f�(x), where

f+(x) = max( f (x), 0) and f�1(x) = max(� f (x), 0).
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Since both f+ and f�1 are non-negative, Theorem 56 yields two increasing sequences of
nonnegative simple functions

n
j(1)

k (x)
o

and
n

j(2)
k (x)

o
which converge pointwise to f+

and f�1, respectively. Then, if we let

jk(x) = j(1)
k (x)� j(2)

k (x),

we see that jk(x) converges to f (x) for all x. Finally, the sequence {|jk|} is increasing
because the definition of f+, f� and the properties of j(1)

k and j(2)
k imply that

|jk(x)| = j(1)
k (x) + j(2)

k (x).

We may now go one step further, and approximate by step functions. Here, in general,
the convergence may hold only almost everywhere:

Theorem 58. Suppose f is measurable on Rd. Then there exists a sequence of step functions {yk}
that converges pointwise to f (x) for almost every x.

Proof. By the previous result, it suffices to show that if E is a measurable set with finite
measure, then f = cE can be approximated by step functions. To this end, we recall that for
every # there exist cubes Q1, . . . , QN such that

m

0

@E4
N[

j=1
Qj

1

A  #.

By considering the grid formed by extending the sides of these cubes, we see that there
exist almost disjoint rectangles eR1, . . . , eRM such that

N[

j=1
Qj =

M[

j=1

eRj.

By taking rectangles Rj contained in eRj, and slightly smaller in size, we find a collection of
disjoint rectangles that satisfy

m

0

@E4
M[

j=1
Rj

1

A  2#.
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Therefore

f (x) =
M

Â
j=1

cRj(x),

except possibly on a set of measure  2#. Consequently, for every k � 1, there exists a step
function yk(x) such that if

Ek = {x | f (x) 6= yk(x)} ,

then m (Ek)  2�k. If we let Fk =
S•

j=K+1 Ej and F =
T•

K=1 FK, then m(F) = 0 since m (FK) 
2�K, and yk(x) ! f (x) for all x in the complement of F, which is the desired result.

Although the notions of measurable sets and measurable functions represent new tools,
we should not overlook their relation to the older concepts they replaced. The British mathe-
matician John Edensor Littlewood aptly summarized these connections in the form of three
principles that provide a useful intuitive guide in the initial study of the theory. Here are
the famous Littlewood’s three principles:

L1) Every set is nearly a finite union of intervals.

L2) Every function is nearly continuous.

L3) Every convergent sequence is nearly uniformly convergent.

The sets and functions referred to above are of course assumed to be measurable. The
catch is in the word "nearly," which has to be understood appropriately in each context.

Theorem 59 (Egorov ’s Theorem). Suppose { fk} is a sequence of measurable functions defined
on a measurable set E with m(E) < •, and assume that fk ! f a.e on E. Given # > 0, we can find
a closed set A# ⇢ E such that m (E r A#)  # and fk ! f uniformly on A#.

Proof. We may assume WLOG that fk(x) ! f (x) for every x 2 E. For each pair of nonnega-
tive integers n and k, let

En
k =

�
x 2 E :

�� f j(x)� f (x)
�� < 1/n, for all j > k

 
.

Now fix n and note that En
k ⇢ En

k+1, and En
k % E as k tends to infinity. By a previous

corollary, we find that there exists kn such that m(Er En
kn
) < 1/2n. By construction, we then

have �� f j(x)� f (x)
�� < 1/n whenever j > kn and x 2 En

kn
.
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We choose N so that Â•
n=N 2�n < #/2, and let

eA# =
\

n�N
En

kn
.

We first observe that

m
⇣

E r eA#

⌘


•

Â
n=N

m
�
E r En

kn

�
<

#

2
.

Next, if d > 0, we choose n � N such that 1/n < d, and note that x 2 eA# implies x 2 En
kn

.
We see therefore that

�� f j(x)� f (x)
�� < d whenever j > kn. Hence fk converges uniformly

to f on eA#. Finally, by a previous theorem we can choose a closed subset A# ⇢ eA# with
m
⇣
eA# r A#

⌘
< #/2. As a result, we have m (E r A#) < # and the theorem is proved.

The next theorem attests to the validity of the second of Littlewood’s principles:

Theorem 60 (Lusin ’s Theorem). Suppose f is measurable and finite valued on a set E of finite
measure. Then for every # > 0 there exists a closed set F#, with

F# ⇢ E and m (E r F#)  #

and such that f |F# is continuous.

Proof. Let fn be a sequence of step functions so that fn ! f a.e. Then we may find sets En
so that m (En) < 1/2n and fn is continuous outside En. By Egorov’s theorem, we may find
a set A#/3 on which fn ! f uniformly and m (E r A#/3)  #/3. Then we consider

F0 = A#/3 \
[

n�N
En

for N so large that Ân�N 1/2n < #/3. Now for every n � N the function fn is continuous
on F0; thus f (being the uniform limit of { fn} by Egorov’s theorem) is also continuous on
F0. Now to finish the proof we merely need to approximate the set F0 by a closed set F# ⇢ F0

such that m (F0 r F#) < #/3.

Remark: The conclusion of the theorem states that if f is viewed as a function defined
only on F#, then f is continuous. However, the theorem does not make the stronger assertion
that the function f defined on E is continuous at the points of F#.
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h[YnabXcamZ\g

1.10 Lebesgue Integration

The general notion of the Lebesgue integral on Rd will be defined in a step-by-step fashion,
proceeding successively to increasingly larger families of functions. At each stage we shall
see that the integral satisfies elementary properties such as linearity and monotonicity, and
we show appropriate convergence theorems that amount to interchanging the integral with
limits. At the end of the process we shall have achieved a general theory of integration that
will be decisive in the study of further problems. We emphasize from the onset that all
functions are assumed to be measurable.

1.10.1 Stage One: Simple Functions

Recall that a simple function j is a finite sum

j(x) =
N

Â
k=1

akcEk(x), (1.6)

where the Ek are measurable sets of finite measure and the ak are constants. A complica-
tion that arises from this definition is that a simple function can be written in a multitude
of ways as such finite linear combinations; for example, 0 = cE � cE for any measurable set
E of finite measure. Fortunately, there is an unambiguous choice for the representation of a
simple function, which is natural and useful in applications: The canonical form of j is the
unique decomposition as in (1.6), where the numbers ak are distinct and nonzero, and the
sets Ek are disjoint.

Finding the canonical form of j is straightforward: Since j can take only finitely many
distinct and non-zero values, say c1, . . . , cM, we may set

Fk = {x | j(x) = ck} ,
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and note that the sets Fk are disjoint. Therefore

j =
M

Â
k=1

ckcFk

is the desired canonical form of j.

Definition 50. If j is a simple function with canonical form j = ÂM
k=1 ckcFk , then we define the

Lebesgue integral of j by
ˆ

Rd
j(x)dx =

ˆ
Rd

M

Â
k=1

ckcFk(x)dx =
M

Â
k=1

ckm(Fk).

If E is a measurable subset of Rd with finite measure, then j(x)cE(x) is also a simple function, and
we define ˆ

E
j(x)dx =

ˆ
j(x)cE(x)dx.

Remark: To emphasize the choice of the Lebesgue measure m in the definition of the
integral, one sometimes writes

´
Rd j(x)dm(x) for the Lebesgue integral of j. However, as

a matter of convenience, we shall often write
´

j(x)dx or simply
´

j for the integral of j
over Rd.

Proposition 19. The integral of simple functions defined above satisfies the following properties:

i) (Independence of Representation ) If j = ÂN
k=1 akcEk is any representation of j,

then ˆ
j =

N

Â
k=1

akm(Ek).

ii) (L inearity ) If j and y are simple, and a, b 2 R, then
ˆ
(aj + by) = a

ˆ
j + b

ˆ
y.

iii) (Additivity ) If E and F are disjoint subsets of Rd with finite measure, then
ˆ

E[F
j =
ˆ

E
j +
ˆ

F
j.
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iv) (Monotonicity ) If j  y are simple, then
ˆ

j 
ˆ

y.

v) (Triangle inequality ) If j is a simple function, then so is |j|, and
����
ˆ

j

���� 
ˆ

|j| .

A proof of this proposition can be found on [Stein, 2005, Pg. 51].

1.10.2 Stage Two: Bounded Functions Supported on a Set of Finite Measure

Recall that the support of a measurable function f is defined to be the set of all points where
f does not vanish; that is,

supp f = {x | f (x) 6= 0}.

We shall also say that f is supported on a set E, if f (x) = 0 whenever x 62 E. It follows that,
since f is measurable, so is the set supp f . We shall next be interested in those bounded
measurable functions that have m(supp f ) < •.

An important result is that if f is a function bounded by M and supported on a set E,
then there exists a sequence {jn} of simple functions, with each jn bounded by M and
supported on E, and such that

jn(x) ! f (x) 8x.

The key lemma that follows allows us to define the integral for the class of bounded func-
tions supported on sets of finite measure:

Lemma 11. Let f be a bounded function supported on a set E of finite measure. If {jn}•
n=1 is any

sequence of simple functions bounded by M, supported on E, and with jn(x) ! f (x) for a.e. x,
then:

i) limn!•
´

jn exists.

ii) if f = 0 a.e., then limn!•
´

jn = 0.
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Proof. The assertions of the lemma would be nearly obvious if we had that jn converges
to f uniformly on E. Instead, we recall one of Littlewood’s principles, which states that
the convergence of a sequence of measurable functions is "nearly" uniform. The precise
statement lying behind this principle is Egorov’s theorem, which we apply here.

For part i), since the measure of E is finite, given # > 0 Egorov’s theorem guarantees the
existence of a (closed) measurable subset A# ⇢ E such that m (E r A#)  #, and jn ! f
uniformly on A#. Therefore, setting In =

´
jn we have that

|In � Im| 
ˆ

E
|jn(x)� jm(x)|dx

=
ˆ

A#

|jn(x)� jm(x)|dx +
ˆ

ErA#

|jn(x)� jm(x)|dx


ˆ

A#

|jn(x)� jm(x)|dx + 2Mm (E r A#)


ˆ

A#

|jn(x)� jm(x)|dx + 2M#.

By the uniform convergence, one has, for all x 2 A# and all large n and m, the estimate
|jn(x)� jm(x)| < #, so we deduce that

|In � Im|  m(E)# + 2M# for all large n and m.

Since # is arbitrary and m(E) < •, this proves that {In} is a Cauchy sequence and hence
converges, as desired.

To show part ii), we note that if f = 0, we may repeat the argument above to find that
|In|  m(E)# + M#, which yields limn!• In = 0, as was to be shown.

Using the above lemma we can now turn to the integration of bounded functions that are
supported on sets of finite measure. For such a function f we define its Lebesgue integral

by ˆ
f (x)dx = lim

n!•

ˆ
jn(x)dx,

where {jn} is any sequence of simple functions satisfying:

i) |jn|  M.
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ii) each jn is supported on the support of f .

iii) jn(x) ! f (x) for a.e. x as n tends to infinity (we know by Lemma 11 above that this
limit exists).

Next, we must first show that
´

f is independent of the limiting sequence {jn} used, in
order for the integral to be well defined. Therefore, suppose that {yn} is another sequence
of simple functions that is bounded by M, supported on supp f , and such that yn(x) ! f (x)
for a.e. x as n tends to infinity. Then, if hn = jn � yn, the sequence {hn} consists of simple
functions bounded by 2M, supported on a set of finite measure, and such that hn ! 0 a.e.
as n tends to infinity. We may therefore conclude, by the second part of Lemma 11, that´

hn ! 0 as n tends to infinity. Consequently, the two limits

lim
n!•

ˆ
jn(x)dx and lim

n!•

ˆ
yn(x)dx

(which exist by the lemma) are indeed equal.

Now, if E is a subset of Rd with finite measure, and f is bounded with m(supp f ) < •,
then it is natural to define ˆ

E
f (x)dx =

ˆ
f (x)cE(x)dx.

Clearly, if f is itself simple, then
´

f as defined above coincides with the integral of simple
functions presented earlier. This extension of the definition of integration also satisfies all
the basic properties of the integral of simple functions:

Proposition 20. Suppose f and g are bounded functions supported on sets of finite measure. Then
the following properties hold:

i) (L inearity ) If a, b 2 R, then
ˆ
(a f + bg) = a

ˆ
f + b

ˆ
g.

ii) (Additivity ) If E and F are disjoint subsets of Rd, then
ˆ

E[F
f =
ˆ

E
f +
ˆ

F
f .
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iii) (Monotonicity ) If f  g, then
ˆ

f 
ˆ

g.

iv) (Triangle inequality ) | f | is also bounded, supported on a set of finite measure, and
����
ˆ

f
���� 
ˆ

| f | .

We are now in a position to prove the first important convergence theorem:

Theorem 61 (Bounded Convergence Theorem). Suppose that { fn} is a sequence of measurable
functions that are all bounded by M, are supported on a set E of finite measure, and fn(x) ! f (x)
a.e. x as n ! •. Then f is measurable, bounded, supported on E for a.e. x, and

ˆ
| fn � f | ! 0 as n ! •.

Consequently, ˆ
fn !

ˆ
f as n ! •.

Proof. From the assumptions one sees at once that f is bounded by M almost everywhere
and vanishes outside E, except possibly on a set of measure zero. Clearly, the triangle
inequality for the integral implies that it suffices to prove that

´
| fn � f | ! 0 as n approaches

infinity. Given # > 0, we may find, by Egorov’s theorem, a measurable subset A# ⇢ E such
that m (E r A#)  # and fn ! f uniformly on A#. Then, we know that for all sufficiently
large n and for all x 2 A#, we have

| fn(x)� f (x)|  #.

Putting these facts together yields
ˆ

E
| fn(x)� f (x)|dx =

ˆ
A#

| fn(x)� f (x)|dx +
ˆ

ErA#

| fn(x)� f (x)|dx (1.7)

 # m(E) + 2M m(E r A#) (1.8)

for all large n. Since # is arbitrary, the proof of the theorem is complete.
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Remark: We note that the above convergence theorem is a statement about the inter-
change of an integral and a limit, since its conclusion simply says that limn!•

´
fn =´

limn!• fn.

A useful observation that we can make at this point is the following: if f � 0 is bounded
and supported on a set of finite measure E and

´
f = 0, then f = 0 almost everywhere.

Indeed, if for each integer k � 1 we set

Ek = {x 2 E | f (x) � 1/k},

then the fact that k�1cEk(x)  f (x) implies

k�1m(Ek) 
ˆ

f ,

by monotonicity of the integral. Thus m(Ek) = 0 for all k, and since

{x | f (x) > 0} =
•[

k=1
Ek,

we see that f = 0 almost everywhere.

To close this section, we briefly return to Riemann integrable functions with the following
important result:

Theorem 62. Suppose f is Riemann integrable on the closed interval [a, b]. Then f is measurable,
and ˆ R

[a,b]
f (x)dx =

ˆ L

[a,b]
f (x)dx,

where the integral on the left-hand side is the standard Riemann integral, and that on the right-hand
side is the Lebesgue integral.

Proof. By definition, a Riemann integrable function is bounded, say | f (x)|  M, so we
need to prove that f is measurable, and then establish the equality of integrals. Again, by
definition of Riemann integrability, we may construct two sequences of step functions {jk}
and {yk} that satisfy the following properties:

(⇤) |jk(x)|  M and |yk(x)|  M for all x 2 [a, b] and k � 1.
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(⇤⇤) j1(x)  j2(x)  · · ·  f  y2(x)  y1(x).

(⇤ ⇤ ⇤) limk!•
´ R
[a,b] jk(x)dx = limk!•

´ R
[a,b] yk(x)dx =

´ R
[a,b] f (x)dx.

Several observations are in order. First, it follows immediately from their definition that
for step functions the Riemann and Lebesgue integrals agree; therefore

ˆ R

[a,b]
jk(x)dx =

ˆ L

[a,b]
jk(x)dx and

ˆ R

[a,b]
yk(x)dx =

ˆ L

[a,b]
yk(x)dx, (1.9)

for all k � 1.

Next, if we let
ej(x) = lim

k!•
jk(x) and ey(x) = lim

k!•
yk(x),

we have ej < f < ey. Moreover, both ej and ey are measurable (being the limit of step
functions), and the bounded convergence theorem yields

lim
k!•

ˆ L

[a,b]
jk(x)dx =

ˆ L

[a,b]
ej(x)dx

lim
k!•

ˆ L

[a,b]
yk(x)dx =

ˆ L

[a,b]
ey(x)dx.

This result, together with property (⇤ ⇤ ⇤) and equations (1.9), yield
ˆ L

[a,b]

⇥ ey(x)� ej(x)
⇤

dx = 0,

and since yk � jk � 0, we must have ey � ej � 0.

By the remark following the proof of the bounded convergence theorem, we conclude
that ey � ej = 0 a.e., and therefore ey = ej = f a.e., which proves that f is measurable. Finally,
since jk ! f almost everywhere, we have (by definition)

lim
k!•

ˆ L

[a,b]
jk(x)dx =

ˆ L

[a,b]
f (x)dx,

and by (⇤ ⇤ ⇤) and equations (1.9) we see that
´ R
[a,b] f (x)dx =

´ L
[a,b] f (x)dx as desired.
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1.10.3 Stage Three: Nonnegative Functions

We proceed with the integrals of functions that are measurable and non-negative but not
necessarily bounded. It will be important to allow these functions to be extended-valued,
that is, these functions may take on the value +• (on a measurable set). We recall in this
connection the convention that one defines the supremum of a set of positive numbers to
be +• if the set is unbounded.

In the case of such a function f we define its (extended) Lebesgue integral by
ˆ

f (x)dx = sup
g

ˆ
g(x)dx,

where the supremum is taken over all measurable functions g such that 0  g  f , and
where g is bounded and supported on a set of finite measure.

Remark: With the above definition of the integral, there are only two possible cases: the
supremum is either finite, or infinite. In the first case, when

´
f (x)dx < •, we shall say that

f is Lebesgue integrable (or simply integrable). Clearly, if E is any measurable subset of Rd,
and f � 0, then f cE is also positive, and we define

ˆ
E

f (x)dx =
ˆ

f (x)cE(x)dx.

Example 29. Let

f (x) =

(
|x|�a if |x|  1,
0 otherwise,

and g(x) =

(
|x|�a if |x| > 1,
0 otherwise.

Then f is integrable on Rd if and only if a < d and g is integrable on Rd if and only if a > d. m

The following notation is pretty standard and we will use it in some of the results that
follow: fn % f refers to a sequence { fn} of monotonically increasing functions that are
converging to the limit f as n ! • a.e. x. We denote the decreasing analogues by fn & f .

Proposition 21. The integral of nonnegative measurable functions enjoys the following properties:
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i) (L inearity ) If f , g � 0 and a, b 2 R, then
ˆ
(a f + bg) = a

ˆ
f + b

ˆ
g.

ii) (Additivity ) If E and F are disjoint subsets of Rd, and f � 0, then
ˆ

E[F
f =
ˆ

E
f +
ˆ

F
f .

iii) (Monotonicity ) If 0  f  g, then
ˆ

f 
ˆ

g.

iv) If g is integrable and 0  f  g, then f is integrable.

v) If f is integrable, then f (x) < • for almost every x.

vi) If
´

f = 0, then f (x) = 0 for almost every x.

Proof. Of the first four assertions, only i) is not an immediate consequence of the definitions,
and to prove it we argue as follows: We take a = b = 1 and note that if j  f and y  g,
where both j and y are bounded and supported on sets of finite measure, then j + y 
f + g, and j + y is also bounded and supported on a set of finite measure. Consequently

ˆ
f +
ˆ

g 
ˆ
( f + g).

To prove the reverse inequality, suppose h is bounded and supported on a set of finite
measure, and h  f + g. If we define

h1(x) = min{ f (x), h(x)} and h2 = h � h1,

we note that
h1  f and h2  g.

Moreover both h1, h2 are bounded and supported on sets of finite measure. Hence,
ˆ

h =
ˆ
(h1 + h2) =

ˆ
h1 +

ˆ
h2 

ˆ
f +
ˆ

g.
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Taking the supremum over h yields the required inequality.

To prove the conclusion v) we argue as follows: Suppose

Ek = {x | f (x) � k} and E• = {x | f (x) = •}.

Then, ˆ
f �
ˆ

cEk f � k m(Ek),

so that m(Ek) ! 0 as k ! •. Since Ek & E•, by a previous corollary we have that m(E•) =
0.

We now turn our attention to some important convergence theorems for the class of
nonnegative measurable functions. To motivate the results that follow, we ask the following
question: Suppose fn � 0 and fn(x) ! f (x) for almost every x. Is it true that

´
fn dx !´

f dx?

Unfortunately, the example that follows provides a negative answer to this, and shows
that we must change our formulation of the question to obtain a positive convergence result:

Example 30. Let

fn(x) =

(
n if 0 < x < 1/n,
0 otherwise.

Then fn(x) ! 0 for all x, yet
´

fn(x)dx = 1 for all n. m

In this particular example, the limit of the integrals is greater than the integral of the limit
function. This turns out to be the case in general, as we shall see now:

Lemma 12 ( Fatou’s Lemma). Suppose { fn} is a sequence of measurable functions with fn � 0.
If limn!• fn(x) = f (x) for a.e. x, then

´
f  lim infn!•

´
fn.

Proof. Suppose 0  g  f , where g is bounded and supported on a set E of finite measure. If
we set gn(x) = min{g(x), fn(x)}, then gn is measurable, supported on E, and gn(x) ! g(x)
a.e., so that by the bounded convergence theorem,ˆ

gn !
ˆ

g.

XcamZ\g g

f 124



1.10. Lebesgue Integration Chapter 1. Real Analysis
h [a\ g

By construction, we also have gn  fn, so that
´

gn 
´

fn by the monotonicity of the
integral. Thus, ˆ

g  lim inf
n!•

ˆ
fn.

Taking the supremum over all g yields the desired inequality.

Remark: Note that in the results just presented we do not exclude the cases
´

f = •, or
lim infn!• fn = •.

We can now immediately deduce the following series of corollaries:

Corollary 20. Suppose f is a nonnegative measurable function, and { fn} a sequence of nonnegative
measurable functions with fn(x)  f (x) and fn(x) ! f (x) for almost every x. Then

lim
n!•

ˆ
fn =

ˆ
f .

Proof. Since fn(x)  f (x) a.e. x, we necessarily have
´

fn 
´

f for all n. Hence,

lim inf
n!•

ˆ
fn 

ˆ
f .

This inequality combined with Fatou’s lemma proves the desired limit.

In particular, we can now obtain a basic convergence theorem for the class of nonnegative
measurable functions:

Corollary 21 (Monotone Convergence Theorem). Suppose { fn} is a sequence of non-negative
measurable functions with fn % f . Then

lim
n!•

ˆ
fn =

ˆ
f .

The proof follows immediately from the preceding corollary and its proof. Now, the
monotone convergence theorem has the following useful consequence:
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Corollary 22. Consider a series Â•
k=1 ak(x), where ak � 0 is measurable for every k � 1. Then

ˆ •

Â
k=1

ak(x)dx =
•

Â
k=1

ˆ
ak(x)dx.

If Â•
k=1
´

ak(x)dx is finite, then the series Â•
k=1 ak(x) converges for a.e. x.

Proof. Let fn(x) = Ân
k=1 ak(x) and f (x) = Â•

k=1 ak(x). The functions fn are measurable,
fn(x)  fn+1(x), and fn(x) ! f (x) as n tends to infinity. Since

ˆ
fn =

n

Â
k=1

ˆ
ak(x)dx,

the monotone convergence theorem implies

•

Â
k=1

ˆ
ak(x)dx =

ˆ •

Â
k=1

ak(x)dx.

If Â
´

ak < •, then the above implies that Â•
k=1 ak(x) is integrable, and by our earlier

observation, we conclude that Â•
k=1 ak(x) is finite almost everywhere.

Lemma 13 (Borel-Cantelli Lemma). If E1, E2, . . . is a collection of measurable subsets with
Â m(Ek) < •, then the set of points that belong to infinitely many sets Ek has measure zero.

Proof. Let ak(x) = cEk(x), and note that a point x belongs to infinitely many sets Ek if and
only if Â•

k=1 ak(x) = •. Our assumption on Â m(Ek) says precisely that Â•
k=1
´

ak(x)dx < •,
and the preceding corollary implies that Â•

k=1 ak(x) is finite except possibly on a set of
measure zero.

1.10.4 Stage Four: General Case

If f is any real-valued measurable function on Rd, we say that f is Lebesgue integrable
(or just integrable) if the nonnegative measurable function | f | is integrable in the sense
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discussed on stage three. If f is Lebesgue integrable, we give a meaning to its integral as
follows: First, we may define

f+(x) = max{ f (x), 0} and f�(x) = max{� f (x), 0},

so that both f+ and f� are non-negative and

f+ � f� = f .

Since f±  | f |, both functions f+ and f� are integrable whenever f is, and we then define
the Lebesgue integral of f by ˆ

f =
ˆ

f+ �
ˆ

f�.

In practice one encounters many decompositions f = f1 � f2, where f1, f2 are both nonneg-
ative integrable functions, and one would expect that regardless of the decomposition of f ,
we always have ˆ

f =
ˆ

f1 �
ˆ

f2.

In other words, the definition of the integral should be independent of the decomposition
f = f1 � f2.

Simple applications of the definition and the properties shown previously yield all the
elementary properties of the integral:

Proposition 22. The integral of Lebesgue integrable functions is linear, additive, monotonic, and
satisfies the triangle inequality.

Proposition 23. Suppose f is integrable on Rd. Then for every # > 0:

i) There exists a set of finite measure B (a ball, for example) such that
´

Bc | f | < #.

ii) There is a d > 0 such that
´

E | f | < # whenever m(E) < d.

Condition ii) is known as absolute continuity.
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Proof. By replacing f with | f | we may assume WLOG that f � 0. To prove condition i), let
BN denote the ball of radius N centered at the origin, and note that if fN(x) = f (x)cBN (x),
then fN � 0 is measurable, fN(x)  fN+1(x), and limN!• fN(x) = f (x). By the monotone
convergence theorem, we must have

lim
N!•

ˆ
fN =

ˆ
f .

In particular, for some large N,

0 
ˆ

f �
ˆ

f cBN < #,

and since 1 � cBN = cBc
N

, this implies
´

Bc
N

f < #, as we set out to prove.

Now to prove condition ii), we assume again that f � 0 and we let fN(x) = f (x)cEN ,
where EN = {x | f (x)  N}. Once again, fN � 0 is measurable, fN(x)  fN+1(x), and
given # > 0 there exists (by the monotone convergence theorem) an integer N > 0 such thatˆ

( f � fN) <
#

2
.

We now pick d > 0 so that Nd < #/2. If m(E) < d, thenˆ
E

f =
ˆ

E
( f � fN) +

ˆ
E

fN


ˆ

( f � fN) +
ˆ

E
fN


ˆ

( f � fN) + N m(E)

 #

2
+

#

2
= #.

Intuitively, integrable functions should in some sense vanish at infinity since their inte-
grals are finite; condition i) of the above proposition attaches a precise meaning to this in-
tuition. One should observe, however, that integrability need not guarantee the more naive
pointwise vanishing as |x| becomes large (see [Stein, 2005, Chpt 2, Ex 6]).

We are now ready to prove a cornerstone of the theory of Lebesgue integration, the
Dominated Convergence Theorem. It can be viewed as a culmination of our efforts, and is a
general statement about the interplay between limits and integrals.
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Theorem 63 (Dominated Convergence Theorem). Suppose { fn} is a sequence of measurable
functions such that fn(x) ! f (x) a.e. x as n ! •. If | fn(x)|  g(x), where g is integrable, then

ˆ
| fn � f | ! 0 as n ! •,

and consequently, ˆ
fn !

ˆ
f as n ! •.

Proof. For each N � 0 let EN = {x | |x|  N, g(x)  N}. Given # > 0, we may argue (as in
the first part of above proposition) that there exists N so that

ˆ
Ec

N

| f | < #.

Then the functions fncEN are bounded (by N) and supported on a set of finite measure, so
that by the bounded convergence theorem, we have

ˆ
EN

| fn � f | < # for all large n.

Hence, we obtain the estimate
ˆ

| fn � f | =
ˆ

EN

| fn � f |+
ˆ

Ec
N

| fn � f |


ˆ

EN

| fn � f |+ 2
ˆ

Ec
N

g

 # + 2# = 3#

for all large n. This proves the theorem.

h[YnabXcamZ\g
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1.11 Differentiation

1.11.1 The Averaging Problem

The following question is referred to as the averaging problem:

Suppose f is integrable on Rd. Is it true that

lim
m(B)!0

x2B

1
m(B)

ˆ
B

f (y)dy = f (x), for a.e. x ?

Note of course that in the special case when f is continuous at x, the limit does converge
to f (x). Indeed, given # > 0, there exists d > 0 such that k f (x) � f (y)k < # whenever
kx � yk < d.

Since
f (x)� 1

m(B)

ˆ
B

f (y)dy =
1

m(B)

ˆ
B
( f (x)� f (y))dy,

we find that whenever B is a ball of radius < d/2 that contains x, then
���� f (x)� 1

m(B)

ˆ
B

f (y)dy
����  1

m(B)

ˆ
B
k f (x)� f (y)k dy < #.

as desired.

The averaging problem has an affirmative answer, but to establish that fact, which is
qualitative in nature, we need to make some quantitative estimates bearing on the overall
behavior of the averages of f . This will be done in terms of the maximal averages of k f k, to
which we now turn.

1.11.2 Hardy-Littlewood Maximal Function

If f is integrable on Rd, we define its maximal function f ⇤ by

f ⇤(x) = sup
B : x2B

1
m(B)

ˆ
B
k f (y)k dy, x 2 Rd,
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where the supremum is taken over all balls containing the point x. In other words, we
replace the limit in the statement of the averaging problem by a supremum, and f by its
absolute value.

The main properties of f ⇤ we shall need are summarized in the following theorem:

Theorem 64. Suppose f is integrable on Rd. Then,

i) f ⇤ is measurable.

ii) f ⇤(x) < • for a.e. x.

iii) f ⇤ satisfies

m({x 2 Rd | f ⇤(x) > a})  3d

a
k f kL1(Rd) 8 a > 0. (1.10)

Proof of i). The assertion that f ⇤ is measurable is pretty simple. Indeed, the set Ea = {x 2
Rd : f ⇤(x) > a} is open, because if x 2 Ea, there exists a ball B such that x 2 B and

1
m(B)

ˆ
B
k f (y)k dy > a.

Now any point x close enough to x will also belong to B; hence x 2 Ea as well.

Proof of ii). This condition follows directly from iii) once we observe that

{x | f ⇤(x) = •} ⇢ {x | f ⇤(x) > a} 8 a.

Taking the limit as a tends to infinity, the third property yields m({x | f ⇤(x) = •}) = 0.

Proof of iii). The proof of inequality (1.10) relies on an elementary version of a Vitali covering
argument, which is stated in the following lemma aside:
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Aside Lemma

Lemma 14. Suppose B = {B1, B2, . . . , BN} is a finite collection of open balls in Rd. Then there
exists a disjoint sub-collection Bi1 , Bi2 , . . . , Bik of B that satisfies

m

 
N[

l=1
Bl

!
 3d

k

Â
j=1

m(Bij). (1.11)

Loosely speaking, the lemma tells us that we may always find a disjoint subcollection of
balls that covers a fraction of the region covered by the original collection of balls.

Now the proof of iii) is within reach. If we let Ea = {x : f ⇤(x) > a}, then for each x 2 Ea

there exists a ball Bx that contains x, and such that
1

m(Bx)

ˆ
Bx

k f (y)k dy > a.

Therefore, for each ball Bx we have

m(Bx) <
1
a

ˆ
Bx

k f (y)k dy. (1.12)

Fix a compact subset K of Ea. Since K is covered by [x2Ea Bx, we may select a finite subcover
of K, say K ⇢ [N

l=1Bl . The covering lemma discussed above guarantees the existence of a
subcollection Bi1 , Bi2 , . . . , Bik of disjoint balls that satisfies inequality (1.11). Now since these
balls Bi1 , Bi2 , . . . , Bik are disjoint and satisfy (1.11) as well as (1.12), we find that

m(K)  m

 
N[

l=1
Bl

!
 3d

k

Â
j=1

m(Bij) 
3d

a

k

Â
j=1

ˆ
Bij

k f (y)k dy

=
3d

a

ˆ
Sk

j=1 Bij

k f (y)k dy

 3d

a

ˆ
Rd

k f (y)k dy.

Since this inequality is true for all compact subsets K of Ea, the proof of the weak type
inequality for the maximal operator is complete.
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Remark: Let us clarify the nature of the main conclusion iii). As we shall observe later
when we prove the Lebesgue Differentiation Theorem, one has that f ⇤(x) � k f (x)k for a.e. x;
the effect of iii) is that, broadly speaking, f ⇤ is not much larger than k f k. From this point
of view, we would have liked to conclude that f ⇤ is integrable, as a result of the assumed
integrability of f . However, this is not the case, and iii) is the best substitute available (we
will see more on this on the problems at the end of the chapter).

An inequality of the type (1.10) is called a weak-type inequality because it is weaker than
the corresponding inequality for the L1-norms. Indeed, this can be seen from the Tchebychev

inequality, which states that for an arbitrary integrable function g,

m({x : kg(x)k � a})  1
a
kgkL1(Rd) 8 a > 0.

We should add that the value of 3d in the inequality (1.10) is unimportant for us. What
matters is that this constant be independent of a and f .

The estimate obtained for the maximal function now leads to a solution of the averaging
problem:

Theorem 65 (The Lebesgue Differentiation Theorem). If f is integrable on Rd, then

lim
m(B)!0

x2B

1
m(B)

ˆ
B

f (y)dy = f (x), for a.e. x. (1.13)

Proof. It suffices to show that for each a > 0 the set

Ea =

8
>><

>>:
x : lim sup

m(B)!0
B|x2B

����
1

m(B)

ˆ
B

f (y)dy � f (x)
���� > 2a

9
>>=

>>;

has measure zero, because this assertion then guarantees that the set E = [•
n=1E1/n has

measure zero, and the limit in (1.13) holds at all points of Ec. We fix a, and invoke a
previous theorem, which states that for each # > 0 we may select a continuous function g of
compact support with k f � gkL1(Rd) < #. Then since g is continuous, (1.13) holds not just for
a.e. x, but in fact for all x (this is shown on our earlier discussion of the averaging problem).
That is,

lim
m(B)!0

x2B

1
m(B)

ˆ
B

g(y)dy = g(x), for all x.
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Since we may write the difference 1
m(B)
´

B f (y)dy � f (x) as

1
m(B)

ˆ
B
( f (y)� g(y))dy +

1
m(B)

ˆ
B

g(y)dy � g(x) + g(x)� f (x),

we find that

lim sup
m(B)!0

B|x2B

����
1

m(B)

ˆ
B

f (y)dy � f (x)
����  ( f � g)⇤(x) + kg(x)� f (x)k,

where the symbol ⇤ indicates the maximal function we previously defined. Consequently, if

Fa = {x : ( f � g)⇤(x) � a} and Ga = {x : k f (x)� g(x)k � a},

then Ea ⇢ (Fa [ Ga), because if u1 and u2 are positive, then u1 + u2 > 2a only if ui > a for
at least one ui. On the one hand, Tchebychev’s Inequality yields

m(Ga) 
1
a
k f � gkL1(Rd),

and on the other hand, the weak type estimate for the maximal function gives

m(Fa) 
3d

a
k f � gkL1(Rd).

The function g was selected so that k f � gkL1(Rd) < #. Hence we get

m(Ea) 
3d

a
# +

1
a

#.

Since # is arbitrary, we must have m(Ea) = 0, and the proof of the theorem is complete.

Remark: Note that as an immediate consequence of the theorem applied to k f k, we see
that f ⇤(x) � k f (x)k for a.e. x.

We have worked so far under the assumption that f is integrable. This "global" assump-
tion is slightly out of place in the context of a "local" notion like differentiability. Indeed, the
limit in Lebesgue’s theorem is taken over balls that shrink to the point x, so the behavior of
f far from x is irrelevant. Thus, we expect the result to remain valid if we simply assume
integrability of f on every ball, as we shall see next.
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Definition 51. A measurable function f on Rd is said to be locally integrable if for every ball B,
the function f (x)cB(x) is integrable. We shall denote the space of all locally integrable functions by
L1

loc(R
d).

Loosely speaking, the behavior at infinity does not affect the local integrability of a func-
tion. For example, the functions ekxk and kxk�1/2 are both locally integrable, but not inte-
grable on Rd.

Now that we have the notion of local integrability, we can see that the Lebesgue Differenti-
ation Theorem holds under weaker assumptions:

Theorem 66. If f 2 L1
loc(R

d), then

lim
m(B)!0

x2B

1
m(B)

ˆ
B

f (y)dy = f (x), for a.e. x.

Definition 52. If E is a measurable set and x 2 Rd, we say that x is a point of Lebesgue density

of E if

lim
m(B)!0

x2B

m(B \ E)
m(B)

= 1

Loosely speaking, this condition says that small balls around x are almost entirely covered by E. More
precisely, for every a < 1 close to 1, and every ball of sufficiently small radius containing x, we have

m(B \ E) � am(B).

Thus E covers at least a proportion a of B.

Corollary 23. Suppose E is a measurable subset of Rd. Then:

i) Almost every x 2 E is a point of density of E.

ii) Almost every x /2 E is not a point of density of E.
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Definition 53. If f is locally integrable on Rd, the Lebesgue set of f consists of all points bx 2 Rd

for which f (bx) is finite and

lim
m(B)!0
bx2B

1
m(B)

ˆ
B
k f (y)� f (bx)kdy = 0.

Remark: At this stage, two simple observations about this definition are in order. First,
bx belongs to the Lebesgue set of f whenever f is continuous at bx. Second, if bx is in the
Lebesgue set of f , then

lim
m(B)!0
bx2B

1
m(B)

ˆ
B

f (y)dy = f (bx).

Corollary 24. If f is locally integrable on Rd, then almost every point belongs to the Lebesgue set
of f .

1.11.3 Functions of Bounded Variation

Definition 54. A function F is said to be of bounded variation on an interval [a, b] if the variations
of F over all partitions of such interval are bounded; that is, there exists M < • so that

N

Â
j=1

��F(tj)� F(tj�1)
��  M

for all partitions a = t0 < t1 < · · · < tN = b.

Notice that if F is real-valued, monotonic, and bounded, then F is of bounded variation.
Indeed, if for example F is nondecreasing and bounded by M, we see that

N

Â
j=1

��F(tj)� F(tj�1)
�� =

N

Â
j=1

F(tj)� F(tj�1)

= F(b)� F(a)  2M.
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Notice also that if F is differentiable at every point, and F0 is bounded, then F is of
bounded variation. Indeed, if kF0k  M, then the mean value theorem implies

kF(x)� F(y)k  M kx � yk, 8 x, y 2 [a, b],

which in turn implies that ÂN
j=1
��F(tj)� F(tj�1)

��  M(b � a).

Example 31. Look at the function

F(x) =

(
xa sin(x�b) if 0 < x  1
0 if x = 0.

We have that F is of bounded of variation if and only if a > b. m

Definition 55. The total variation of a function F on [a, x] (where a  x  b) is defined by

TF(a, x) = sup
N

Â
j=1

��F(tj)� F(tj�1)
�� ,

where the supremum is taken over all partitions of [a, x].

Definition 56. The positive variation of a function F on [a, x] (where a  x  b) is defined by

PF(a, x) = sup Â
(+)

(F(tj)� F(tj�1)),

where the sum is taken over all j such that F(tj) � F(tj�1), and the sup is taken over all partitions
of [a, x].

Definition 57. The negative variation of a function F on [a, x] (where a  x  b) is defined by

NF(a, x) = sup Â
(�)

(F(tj�1)� F(tj)),

where the sum is taken over all j such that F(tj�1) � F(tj), and the sup is taken over all partitions
of [a, x].
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Lemma 15. Suppose F is real-valued and of bounded variation on [a, b]. Then for all a  x  b, we
have

F(x)� F(a) = PF(a, x)� NF(a, x), and TF(a, x) = PF(a, x) + NF(a, x).

Theorem 67. A real-valued function F on [a, b] is of bounded variation if and only if F is the
difference of two increasing bounded functions.

Proof. (() Clearly, if F = F1 � F2, where each Fj is bounded and increasing, then F is of
bounded variation.

()) Conversely, suppose F is of bounded variation. Then, we let F1(x) = PF(a, x) + F(a)
and F2(x) = NF(a, x). Clearly, both F1 and F2 are increasing and bounded, and by the above
lemma F(x) = F1(x)� F2(x).

The next result lies at the heart of the theory of differentiation:

Theorem 68. If F is of bounded variation on [a, b], then F is differentiable almost everywhere. In
other words, the quotient

lim
h!0

F(x + h)� F(x)
h

exists for almost every x 2 [a, b].

The proof of this theorem relies on the lemma discussed below as well as on the concept
of the so called Dini numbers.

Lemma 16 (Riesz’s Lemma). Suppose G is real-valued and continuous on R. Let

E = {x 2 R : G(x + h) > G(x) for some h = hx > 0}

If E is non-empty, then it must be open, and hence can be written as a countable disjoint union of
open intervals E =

S
(ak, bk). If (ak, bk) is a finite interval of this union, then we have that

G(bk)� G(ak) = 0.

XcamZ\g g

f 138



1.11. Differentiation Chapter 1. Real Analysis
h [a\ g

Proof. Since G is continuous, it is clear that E is open whenever it is non-empty and can
therefore be written as a disjoint union of countably many open intervals. If (ak, bk) denotes
a finite interval in this decomposition, then ak /2 E; therefore we cannot have G(bk) > G(ak).

We now suppose that G(bk) < G(ak). By continuity, there exists ak < c < bk so that

G(c) =
G(ak) + G(bk)

2
,

and in fact we may choose c farthest to the right in the interval (ak, bk). Since c 2 E, there
must exist a d > c in E so that G(d) > G(c). Since bk /2 E, we must have G(x)  G(bk)
for all x � bk; therefore d < bk. Since G(d) > G(c), there exists (by continuity) c0 > d with
c0 < bk and G(c0) = G(c), which contradicts the fact that c was chosen farthest to the right
in (ak, bk).

This shows that we must have G(ak) = G(bk), and the lemma is proved.

Remark: This result is usually called the Rising Sun Lemma for the following reason. If
one thinks of the sun rising from the east (at the right) with the rays of light parallel to
the x-axis, then the points (x, G(x)) on the graph of G, with x 2 E, are precisely the points
which are in the shade; these points appear in bold in Figure 1.7.

Figure 1.7: Visual representation of the Rising Sun Lemma.

Corollary 25. If F is increasing and continuous, then F0 exists almost everywhere. Moreover F0 is
measurable, non-negative, and

ˆ b

a
F0(x)dx  F(b)� F(a).

In particular, if F is bounded on R, then F0 is integrable on R.
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Remark: Note that if we had equality, then the above corollary would give us the Funda-
mental Theorem of Calculus. However, we cannot go any farther than the inequality above if
we allow all continuous increasing functions, as it is illustrated by the following important
example, the so-called Cantor-Lebesgue function.

1.11.4 The Cantor-Lebesgue function

The following simple construction yields a continuous function F : [0, 1] ! [0, 1] that is
increasing with F(0) = 0 and F(1) = 1, but F0(x) = 0 almost everywhere! Hence F is of
bounded variation, but ˆ b

a
F0(x)dx 6= F(b)� F(a).

Consider the standard triadic Cantor set C ⇢ [0, 1], where C =
T•

k=0 Ck and each Ck is a
disjoint union of 2k closed intervals. For example, C1 = [0, 1/3] [ [2/3, 1].

Now let F1(x) be the continuous increasing function on [0, 1] (and linear on C1) that
satisfies

F1(x) =

8
>><

>>:

0 if x = 0,
1/2 if 1/3  x  2/3,
1 if x = 1.

Similarly, let F2(x) (see Figure 1.8) be the continuous increasing function on [0, 1] (and
linear on C2) that satisfies

F2(x) =

8
>>>>>>><

>>>>>>>:

0 if x = 0,
1/4 if 1/9  x  2/9,
1/2 if 1/3  x  2/3,
3/4 if 7/9  x  8/9,
1 if x = 1.

This process yields a sequence of continuous increasing functions {Fn}•
n=1 such that

clearly

kFn+1(x)� Fn(x)k  1
2n+1 .
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Figure 1.8: Here’s a visualization of the construction of F2.

Hence {Fn}•
n=1 converges uniformly to a continuous limit F, which is called the Cantor-

Lebesgue function (see Figure 1.9).

Figure 1.9: Here’s a visualization of the Cantor-Lebesgue function.

By construction F is increasing, F(0) = 0, F(1) = 1, and we see that F is constant on each
interval of the complement of the Cantor set. Since m(C) = 0, we find that F0(x) = 0 almost
everywhere, as desired.

The considerations in this section, as well as this last example, show that the assumption
of bounded variation guarantees the existence of a derivative almost everywhere, but not
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the validity of the formula ˆ b

a
F0(x)dx = F(b)� F(a).

In order to achieve this equality we need to consider absolutely continuous functions, which
we turn to next.

1.11.5 Absolutely Continuous Functions

Definition 58. A function f defined on some interval [a, b] is said to be absolutely continuous if
for any # > 0, there exists a d > 0 such that

N

Â
k=1

k f (bk)� f (ak)k < # whenever
N

Â
k=1

(bk � ak) < d,

where the intervals (ak, bk) (for k = 1, . . . , N) are disjoint intervals.

From the definition, it is clear that absolutely continuous functions are continuous, and
in fact uniformly continuous. Also, note that if F is absolutely continuous on a bounded in-
terval, then it is also of bounded variation on the same interval. Moreover, its total variation
is continuous (in fact absolutely continuous). As a consequence, the decomposition of such
a function F into two monotonic functions given previously in Theorem 67 shows that each
of these functions is continuous.

Remark: If F(x) =
´ x

a f (y)dy where f is integrable, then F is absolutely continuous. This
remark shows that absolute continuity is a necessary condition to impose on F if we hope
to prove the desired equality

´ b
a F0(x)dx = F(b)� F(a).

Theorem 69. If F is absolutely continuous on [a, b], then F0(x) exists almost everywhere. Moreover,
if F0(x) = 0 for a.e. x, then F is constant.

The following lemma and corollary are used in the proof of Theorem 69. First we need to
state the definition of a Vitali covering:
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Definition 59. A collection B of balls {B} is said to be a Vitali covering of a set E if for every
x 2 E and any h > 0 there is a ball B 2 B, such that x 2 B and m(B) < h. Thus every point is
covered by balls of arbitrarily small measure.

Lemma 17. Suppose E is a set of finite measure and B is a Vitali covering of E. For any d > 0, we
can find finitely many balls B1, . . . , BN in B that are disjoint and so that

N

Â
i=1

m(Bi) � m(E)� d.

Corollary 26. We can arrange the choice of the balls from the Vitali covering given in the above
lemma so that

m

 
E �

N[

i=1
Bi

!
< 2d.

The culmination of all our efforts is contained in the next theorem. In particular, it re-
solves the problem of establishing the reciprocity between differentiation and integration,
known as the Fundamental Theorem of Calculus:

Theorem 70 (Fundamental Theorem of Calculus). Suppose F is absolutely continuous on [a, b].
Then F0 exists almost everywhere and is integrable. Moreover,

F(x)� F(a) =
ˆ x

a
F0(y)dy, 8 a  x  b.

By selecting x = b we get F(b)� F(a) =
´ b

a F0(y)dy.

Conversely, if f is integrable on [a, b], then there exists an absolutely continuous function F such
that F0(x) = f (x) almost everywhere, and in fact, we may take F(x) =

´ x
a f (y) dy.

Proof. Since we know that a real-valued absolutely continuous function is the difference
of two continuous increasing functions, Corollary 25 shows that F0 is integrable on [a, b].
Now let G(x) =

´ x
a F0(y)dy. Then G is absolutely continuous; hence so is the difference

G(x)� F(x). By the Lebesgue Differentiation Theorem, we know that G0(x) = F0(x) for a.e. x;
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hence the difference F�G has derivative 0 almost everywhere. By Theorem 69, we conclude
that F � G is constant, and evaluating this expression at x = a gives the desired result.

The converse is a consequence of the observation we made earlier, namely that
´ x

a f (y)dy
is absolutely continuous, and the Lebesgue Differentiation Theorem, which gives F(x) = f (x)
almost everywhere.

h[YnabXcamZ\g

1.12 Hilbert Spaces

Definition 60. A set H is a Hilbert space if it satisfies the following:

i) H is a vector space over C (or R).

ii) H is equipped with an inner product h·, ·i, so that

– f 7! h f , gi is linear on H for every g 2 H.

– h f , gi = hg, f i.
– h f , f i � 0 for all f 2 H.

iii) We let k f k =
p
h f , f i. Then k f k = 0 if and only if f = 0.

iv) H is complete in the metric d( f , g) = k f � gk =
p
h f � g, f � gi.

Remark: Notice that the Cauchy-Schwarz and triangle inequalities

kh f , gik  k f kkgk and k f + gk  k f k+ kgk

are in fact easy consequences of assumptions i) and ii) of our definition. Note also that
saying that H a Hilbert space is the same as saying that H is a Banach space (i.e., a complete
normed linear space), with the norm induced by an inner product h·, ·i.
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Definition 61. If F is a function defined in the unit disc D2, we say that F has a radial limit at
the point �p  q  p on the circle, if the limit

lim
r!1
r<1

F(reiq)

exists.

Theorem 71. A bounded holomorphic function F(reiq) on the unit disc has radial limits at almost
every q.

Definition 62. The Hardy space H2(D2) is the space that consist of all holomorphic functions F
on the unit disc D2 that satisfy

sup
0r<1

•

Â
n=0

kank2r2n = sup
0r<1

1
2p

ˆ p

�p
kF(reiq)k2 dq < •,

where the an are the Fourier coefficients for n � 0 and 0 for n < 0. We also take the norm for
functions F in this class, kFkH2(D2), to be the square root of the above quantity.

Note that if F is bounded, then F 2 H2(D2), and moreover the conclusion of the existence
of radial limits almost everywhere stated in the above theorem holds for any F 2 H2(D2).
Finally, we note that

F 2 H2(D2) () F(z) =
•

Â
n=0

anzn

with Â•
n=0 kank2 < •. Furthermore, we have

•

Â
n=0

kank2 = kFk2
H2(D2).

This states in particular that H2(D2) is in fact a Hilbert space that can be viewed as the
"subspace" `2(Z+) of `2(Z), consisting of all {an} 2 `2(Z), with an = 0 when n < 0.

Side Note: The parallelogram law states that in a Hilbert space H, we have

kA + Bk2 + kA � Bk2 = 2[kAk2 + kBk2] for all A, B 2 H.
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Definition 63. Let H and H0 be Hilbert spaces with respective inner products h·, ·iH and h·, ·iH0

and the corresponding norms k · kH and k · kH0 . A mapping U : H ! H0 between these spaces is
called unitary if:

i) U is linear, i.e. U(a f + bg) = aU( f ) + bU(g).

ii) U is a bijection.

iii) kU f kH0 = k f kH for all f 2 H.

Definition 64. If S is a subspace of a Hilbert space H, we define the orthogonal complement of S
by

S? = { f 2 H | h f , gi = 0 8 g 2 S}.

Clearly, S? is also a subspace of H, and moreover S \ S? = {0}. To see this, note that
if f 2 S \ S?, then f must be orthogonal to itself; thus 0 = h f , f i = k f k, and therefore
f = 0. Moreover, S? is itself a closed subspace. Indeed, if fn ! f , then h fn, gi ! h f , gi for
every g by the Cauchy-Schwarz inequality. Hence if h fn, gi = 0 for all g 2 S and all n, then
h f , gi = 0 for all those g.

Proposition 24. If S is a closed subspace of a Hilbert space H, then

H = S � S?.

The notation in the proposition means that every f 2 H can be written uniquely as
f = g + h, where g 2 S and h 2 S?; we then say that H is the direct sum of S and S?. This
is equivalent to saying that any f 2 H is the sum of two elements, one in S, the other in S?,
and that S \ S? contains only 0.

With the decomposition H = S � S? one has the natural projection onto S defined by

Ps( f ) = g, where f = g + h and g 2 S, h 2 S?.

The mapping Ps is called the orthogonal projection onto S and satisfies the following simple
properties:
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i) f 7! Ps( f ) is linear.

ii) Ps( f ) = f whenever f 2 S.

iii) Ps( f ) = 0 whenever f 2 S?.

iv) kPs( f )k  k f k for all f 2 H.

Property i) means that Ps(a f1 + b f2) = aPs( f1) + bPs( f2), whenever f1, f2 2 H and a and
b are scalars.

Now let us look at a very important result in the next example:

Example 32. Consider L2([�p, p]) and let S denote the subspace that consists of all F 2 L2([�p, p])
with

F(q) ⇠
•

Â
n=0

aneinq .

In other words, S is the space of square integrable functions whose Fourier coefficients an vanish for
n < 0. From the proof of Fatou’s theorem (see Section §1.10), this implies that S can be identified
with the Hardy space H2(D2), and so is a closed subspace unitarily isomorphic to `2(Z+).

Therefore, using this identification, if P denotes the orthogonal projection from L2([�p, p]) to S,
we may also write P( f )(z) for the element corresponding to H2(D2), that is,

P( f )(z) =
•

Â
n=0

anzn.

Now given f 2 L2([�p, p]), we define the Cauchy integral of f by

C( f )(z) =
1

2pi

ˆ
g

f (z)
z � z

dz,

where g denotes the unit circle and z belongs to the unit disc.

Then we have the identity

P( f )(z) = C( f )(z), 8 z 2 D2.
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Indeed, since f 2 L2 it follows by the Cauchy-Schwarz inequality that f 2 L1([�p, p]), and
therefore we may interchange the sum and integral in the following calculation (recall kzk < 1):

P( f )(z) =
•

Â
n=0

anzn =
•

Â
n=0

✓
1

2p

ˆ p

�p
f (eiq)e�inq dq

◆
zn

=
1

2p

ˆ p

�p
f (eiq)

•

Â
n=0

(e�iqz)n dq

=
1

2p

ˆ p

�p

f (eiq)
1 � e�iqz

dq

=
1

2pi

ˆ p

�p

f (eiq)
eiq � z

ieiq dq

= C( f )(z). m

1.12.1 Linear Functionals and the Riesz Representation Theorem

It is a remarkable fact that every continuous linear functional on a Hilbert space arises as
an inner product, as stated by the following theorem:

Theorem 72 (Riesz Representation Theorem). Let ` be a continuous linear functional on a
Hilbert space H. Then, there exists a unique g 2 H such that

`( f ) = h f , gi 8 f 2 H.

Moreover, k`k = kgk.

Proof. Consider the subspace of H defined by

S = { f 2 H | `( f ) = 0}.

Since ` is continuous the subspace S , which is called the nullspace of `, is closed. If S = H,
then ` = 0 and we take g = 0. Otherwise S? is non-trivial and we may pick any h 2 S?

with khk = 1. With this choice of h we determine g by setting g = `(h)h. Thus if we let
u = `( f )h � `(h) f , then u 2 S , and therefore hu, hi = 0. Hence

0 = h`( f )h � `(h) f , hi = `( f )hh, hi � h f , `(h)hi.

Since hh, hi = 1, we find that `( f ) = h f , gi as desired.
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The first application of the Riesz representation theorem is to determine the existence of
the "adjoint" of a linear transformation:

Proposition 25. Let T : H ! H be a bounded linear transformation. There exists a unique bounded
linear transformation T⇤ on H so that

i) hT f , gi = h f , T⇤gi.

ii) kTk = kT⇤k.

iii) (T⇤)⇤ = T.

The linear operator T⇤ : H ! H satisfying the above conditions is called the adjoint of T. In the
special case when T = T⇤ we say that T is symmetric.
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Chapter 2

Topology

T
opology is concerned with those properties that remain invariant under contin-
uous transformations. In the context of Klein’s Erlanger Programm (where it re-
ceives a brief mention under its old name of analysis situs) it is the "geometry" of

groups of continuous invertible transformations, or homeomorphisms. The "spaces" to which
transformations are applied, and indeed the meaning of "continuous," remain somewhat
open. When these terms are interpreted in the most general way, as subject only to certain
axioms, one has what is known as general topology (or point-set topology, as it is also known).
This is where we will focus most of our attention in these introductory notes, although we
will also present the basics of what is known as algebraic topology at the very last section of
this chapter.

2.1 Topological Spaces

Definition 65. If X is a set, a topology on X is a collection T of subsets of X satisfying the
following properties:

i) X and ∆ are elements of T .

ii) T is closed under finite intersections: if U1, . . . , Un are elements of T , then their intersection
U1 \ · · · \ Un is an element of T as well.
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iii) T is closed under arbitrary unions: if (Ua)a2A is any (finite or infinite) family of elements of
T , then their union [a2AUa is also an element of T .

In other words, a topology on X is a collection of all open sets of X. A pair (X, T ) consisting of a set
X together with a topology T on X is called a topological space.

Example 33 (Simple Topologies). a) Let X be any given set and let T be the collection of all
subsets of X. Then T is a topology on X, called the discrete topology on X (see Figure 2.1 a)), and
(X, T ) is called a discrete space.

Figure 2.1: Topologies on the set {1, 2, 3}.

b) Let Y be any set, and let T = {Y, ∆} (see Figure 2.1 b)). This topology that consists only of
the entire space and the empty space is called the trivial topology on Y.

c) Let Z be the set {1, 2, 3}, and declare the open subsets to be {1}, {1, 2}, {1, 2, 3}, and the empty
set. This is the topology illustrated on Figure 2.1 c).

We can easily verify that each of the preceding examples is in fact a topology by checking
that they satisfy all three conditions stated on our definition. I’ll leave it to you as a fun
exercise to do so.

Remark: Note that our definition of a topology is based entirely on the concept of open
sets, even though we have made no mention whatsoever of a metric function on the space
where we define such topology. This is in stark contrast to our previous exposure to open
sets in Chapter 1, where everything depended on a metric. In a word, topology is a general-
ization to the concept of metric spaces, which are indeed simply a special case of topological
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spaces, i.e., they are topological spaces whose topologies (collections of open sets) are de-
fined in terms of the metric (balls of some radius). We now make the following definition:
a topological space (X, T ) is said to be metrizable if there is a metric d : X ⇥ X ! [0, •)
such that the topology induced by d is T . One of the themes in the study of topology is to
find necessary and sufficient conditions for which a topological space can be endowed with
a metric. There will be more on this later on; I also urge you to look up (after completing
your readings here of course) a famous result known as Urysohn’s Metrization Theorem. It
states that every Hausdorff second countable regular space is metrizable. All these words
will start to make sense soon, so don’t freak out!

Definition 66. Let X be a set and let

T f = {U ✓ X | X rU is finite or is all of X}.

Then T f is a topology on X, called the finite-complement topology.

To show that T f is indeed a topology, notice that both X and ∆ are in T f , since X r X is
finite and X r ∆ is all of X. Also, if {Ua} is an indexed family of nonempty elements of T f ,
we have that [Ua ⇢ T f . To see why, compute

X r
[

Ua =
\
(X rUa).

The latter set is finite because each set X r Ua is finite. Finally, if U1, . . . , Un are nonempty
elements of T f , to show that \Ui ⇢ T f , we compute

X r
n\

i=1
Ui =

n[

i=1
(X rUi).

The latter set is a finite union of finite sets, therefore it is finite.

Definition 67. Let X be a set and let

TC = {U ✓ X | X rU is countable or is all of X}.

Then TC is also a topology on X, called the cocountable topology (or also the countable-complement

topology).
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Suppose that X is a topological space and A is any subset of X. We now define several
related subsets that we previously discussed on Chapter 1, although now we are presenting
them in the more general setting of topology:

• The closure of A in X, denoted by Ā, is the set

Ā =
\

{B ✓ X | A ✓ B, B is closed in X} .

• The interior of A, denoted by Int(A) or Å, is given by

Å =
[

{C ✓ X | C ✓ A, C is open in X} .

• The exterior of A, denoted by Ext(A), is given by Ext(A) = X r Ā.

• The boundary of A, denoted by ∂A, is given by ∂A = X r Int(A) [ Ext(A)).

Figure 2.2: Interior, exterior, and boundary points.

Remark: It follows immediately from the properties of open and closed subsets that Ā is
closed and Å is open. As we previously mentioned in Chapter 1, Ā is the smallest closed
subset containing A while Å is the largest open subset contained in A. Notice also from
the above definitions that for any subset A ✓ X, the whole space X is equal to the disjoint
union of Å, Ext(A), and ∂A. Moreover, Å and Ext(A) are open in X, while Ā and ∂A are
closed in X.
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It is also sometimes useful to compare different topologies on the same set:

Definition 68. Given two topologies T1 and T2 on a set X, we say that T1 is finer than T2 if
T2 ✓ T1, and coarser than T2 if T1 ✓ T2. We say that T1 is comparable to T2 if either T1 ✓ T2 or
T2 ✓ T1.

The terminology in this definition is meant to suggest the picture of a subset that is open
in a coarser topology being further subdivided into smaller open subsets in a finer topology.
It can be shown that the identity map of X is continuous as a map from (X, T1) to (X, T2)
if and only if T1 is finer than T2, and furthermore it is a homeomorphism if and only if
T1 = T2.

Here are a few explicit examples of homeomorphisms that we should keep in mind:

Example 34. a) Any open ball in Rn is homeomorphic to any other open ball: the homeomorphism
can easily be constructed as a composition of translations x 7! x + x0 and dilations x 7! ax (for
some scalar a). Similarly, all spheres in Rn are homeomorphic to each other. These examples illustrate
that "size" is not a topological property; to a topologist, there is no difference whatsoever between a
ball of radius 2 and a ball of radius 22000. As long as one space can be "deformed" into another space
by "squeezing and stretching without tearing," the two spaces are identical to the topologists. No
wonder these poor souls can’t tell the difference between their donut and their coffee mug!

Figure 2.3: A topologist’s perspective.

b) Let Bn ✓ Rn be the unit ball, and define a map Y : Bn ! Rn by
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Y(x) =
x

1 � |x| .

A straight computation shows that the map F : Rn ! Bn defined by

F(x) =
y

1 + |y|

is an inverse for Y. Thus Y is bijective, and since Y and Y�1 = F are both continuous, Y is a
homeomorphism, from which follows that Rn is homeomorphic to Bn. Thus, since Rn is unbounded
while Bn is bounded, it follows that "boundedness" is not a topological property either.

c) Another illustrative example is the homeomorphism between the surface of a sphere and the
surface of a cube: Let S2 be the unit sphere in R3, and set

W = {(x, y, z) | max{|x|, |y|, |z|} = 1},

which is the cubical surface of side 2 centered at the origin. Now let j : W ! S2 be the map that
projects each point of W radially inward to the sphere as shown in Figure 2.4.

Figure 2.4: Deforming the cube W into the unit sphere S2.

More precisely, given a point p 2 W, the image j(p) is the unit vector in the direction of p. Thus
j is given by the formula

j(x, y, z) =
(x, y, z)p

x2 + y2 + z2
,
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which is continuous on W by the usual arguments of elementary analysis (notice that the denominator
is always nonzero on W, so the mapping is well defined). If we continue to push this argument further,
we can show that j is in fact a homeomorphism, with inverse

j�1(x, y, z) =
(x, y, z)

max{|x|, |y|, |z|} .

This demonstrates that "corners" are not topological properties either. m

Definition 69. If X is a set, a basis for a topology on X is a collection B of subsets of X (called
basis elements) such that

• For each x 2 X, there is at least one basis element B 2 B containing x. Note that this says
that the basis elements cover the entire space, i.e., [B2B = X.

• If x belongs to the intersection of two basis elements B1, B2 2 B, then there is another basis
element B3 2 B containing x such that B3 ⇢ B1 \ B2.

If B satisfies these two conditions, then we define the topology T generated by B as follows: A
subset U ⇢ X is said to be open in X (that is, to be an element of T ) if for each x 2 U, there is a
basis element B 2 B such that x 2 B and B ⇢ U. Note that each basis element is itself an element
of T .

We now define three topologies on the real line R, all of which are of interest to us:

Definition 70. If B is the collection of all open intervals in the real line,

(a, b) = {x | a < x < b},

the topology generated by B is called the standard topology on the real line.

Note that whenever we consider R, unless stated otherwise, we will always assume (as
we have always done up until this point) that it is given with this standard topology.

Definition 71. If B` is the collection of all half-open intervals in the real line,

[a, b) = {x | a  x < b},

where a < b, the topology generated by B` is called the lower limit topology on the real line.
When R is given this lower limit topology, we usually denote the space by R`.
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Example 35. Let R denote the set of real numbers in its usual topology, and let R` denote the same
set in the lower limit topology. Let Id` : R ! R` be the identity function Id`(x) = x for every
real number x. Then Id` is not a continuous function; the inverse image of the open set [a, b) of
R` equals itself, which is not open in R. On the other hand, the identity function Id` : R` ! R is
indeed continuous, because the inverse image of (a, b) is itself, which is open in R`. m

Example 35 showcases a very important concept that we alluded to earlier in Chapter 1
and I promised we would discuss in this chapter. Notice that R` is finer than R (with the
usual standard topology), as we will show below in Lemma 18. Since, intuitively, a finer
topology contains more open sets than a coarser one, it follows that all maps from a finer
topology to a coarser one are continuous (think about this statement and make sure you
understand why it’s true; it’s very important!). This is the reason why we saw in Chapter
1 that all maps from a discrete space are always continuous; it doesn’t get any finer than a
discrete topology!!

Definition 72. Let K = {1/n | n 2 N}. Generate a topology on R by taking as basis BK the
collection of all open intervals (a, b) and all the sets of the form (a, b)r K. The topology generated
by BK is called the K-topology on the real line. When R is given this topology, we usually denote
the space by RK.

Remark: Relative to the set of all real numbers carrying the standard topology, the set
K = {1/n | n 2 N} is not closed since it doesn’t contain its (only) limit point 0. Relative
to the K-topology however, the set K is automatically decreed to be closed by adding more
basis elements to the standard topology on R. In other words, the K-topology on R is strictly
finer than the standard topology on R, as we show now on Lemma 18.

The relation between these three topologies that we just discussed is the following:

Lemma 18. The topologies of R` and RK are strictly finer than the standard topology on R, but not
comparable with one another.

Proof. Let T , T`, and TK be the topologies of R, R`, and RK, respectively. Given any basis
element (a, b) for T and a point x 2 (a, b), the basis element [x, b) for T` has x as an element
and moreover, it is contained inside (a, b). On the other hand, given a basis element [x, d)
for T`, note that there is no open interval (a, b) that also has x as an element and that is
contained inside [x, d). Thus we have shown that T` is strictly finer than T .
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Similarly for TK, given a basis element (a, b) for T and a point x 2 (a, b), note that this
same interval is a basis element for TK that also contains x. On the other hand, given a basis
element UK = (�1, 1)r K for TK and a point 0 of UK, note that there is no open interval
that contains 0 and lies within UK.

Thus we have shown that the topologies of R` and RK are strictly finer than the stan-
dard topology on R. I’ll leave it to you as a fun exercise to show that R` and RK are not
comparable with one another.

Definition 73. A subbasis S for a topology on X is a collection of subsets of X whose union equals
X. The topology generated by the subbasis S is defined to be the collection T of all unions of
finite intersections of elements of S .

The basic idea is that a basis is the collection of all finite intersections of subbasis elements
(i.e. a subbasis generates a basis by taking finite intersections of its elements). Since the open
sets in a topology are all possible unions of basis elements, we have that the open sets in a
topology are all possible unions of finite intersections of subbasis elements.

Figure 2.5: Basis and subbasis comparison.

Definition 74. Let X be a set with a total order relation (also, assume that X has more than one
element). Let B be the collection of all sets of the following types:

• All open intervals (a, b) in X.
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• All intervals of the form [a0, b), where a0 is the smallest element (if any) of X.

• All intervals of the form (a, b0], where b0 is the largest element (if any) of X.

The collection B is a basis for a topology on X, which is called the order topology on X.

Note that the standard topology on R, as previously defined, is just the order topology
derived from the usual order on R.

Example 36. a) The positive integers Z+ form an ordered set with a smallest element (i.e., 1). The
order topology on Z+ is the discrete topology, for every one-point set is open: If n > 1, then the
one-point set {n} = (n � 1, n + 1) is a basis element; in the case when n = 1, the one-point set
{1} = [1, 2) is a basis element.

b): The set X = {1, 2}⇥ Z+ in the dictionary order is another example of an ordered set with a
smallest element. Let n 2 Z+. Then denoting 1 ⇥ n by an and 2 ⇥ n by bn, we can represent X by

a1, a2, . . . ; b1, b2, . . .

Note that the order topology on X is not the the discrete topology. The reason is that, even though
most one-point sets on X are open, there is an exception –the one-point set {b1}. Any open set
containing b1 must contain a basis element about b1 (by definition), and any basis element containing
b1 contains points of the ai sequence. m

Definition 75. Let X and Y be topological spaces. The product topology on X ⇥Y is the topology
having as basis the collection B of all sets of the form U ⇥ V, where U and V are open subsets of X
and Y, respectively.

Theorem 73. If BX is a basis for the topology of X and BY is a basis for the topology of Y, then the
collection

BX⇥Y = {BX ⇥ BY | BX 2 BX and BY 2 BY}

is a basis for the topology of X ⇥ Y.

Note that it is sometimes useful to express the product topology in terms of a subbasis.
To do this, we first define certain functions called projections:
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Definition 76. Let p1 : X ⇥ Y ! X be defined by the equation

p1(x, y) = x

and let p2 : X ⇥ Y ! Y be defined by the equation

p2(x, y) = y.

The maps p1 and p2 are called the projections of X ⇥ Y onto its first and second components,
respectively.

If U is an open subset of X, then the set p�1
1 (U) is precisely the set U ⇥ Y, which is open

in X ⇥ Y. Similarly, if V is open in Y, then the set p�1
2 (V) is precisely the set X ⇥ V, which

is also open in X ⇥ Y. The intersection of these two sets is the set U ⇥ V, as indicated in
Figure 2.6.

Figure 2.6: p�1
1 (U) \ p�1

2 (V) = (U ⇥ Y) \ (X ⇥ V) = U ⇥ V.

This fact leads us to the following theorem:

Theorem 74. The collection

S =
n

p�1
1 (U) | U is open in X

o[n
p�1

2 (V) | V is open in Y
o

is a subbasis for the product topology on X ⇥ Y.
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Proof. Let T denote the product topology on X ⇥Y, and let T 0 be the topology generated by
S . Because every element of S belongs to T , so do arbitrary unions of finite intersections of
elements of S . Thus T 0 ⇢ T . On the other hand, every basis element U ⇥V for the topology
T is a finite intersection of elements of S , since

U ⇥ V = p�1
1 (U)

\
p�1

2 (V) .

Therefore, U ⇥ V belongs to T 0, so that T ⇢ T 0 as well.

We now give a more general definition for the product topology, one that we extend to
infinite products:

Definition 77. Let {Xa}a2A be an indexed family of topological spaces. Let

pb : ’
a2A

Xa ! Xb

be the projection mapping associated with the index b, assigning to each element of the product space
’a2A Xa its bth coordinate,

pb((xa)a2A) = xb.

Now let Sb denote the collection

Sb = {p�1
b (Ub) | Ub open in Xb}.

and let S denote the union of these collections,

S =
[

b2A
Sb.

Then the topology generated by the subbasis S is called the product topology. In this topology,
’a2A Xa is called the product space.

Now we present another topology that we can define on Cartesian products of topological
spaces. As we will see, although the two definitions are strikingly similar, there are alarming
differences between the two topologies when dealing with infinite products.
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Definition 78. Let X = ’i2I Xi, where the Xi’s are topological spaces. Then the box topology on
X is the topology generated by the basis

Bbox =

(

’
i2I

Ui | Ui is open in Xi

)
.

While the definition of the box topology is quite easier to grasp than the more unwieldy
definition of the product topology, it is unfortunate that it satisfies fewer desirable prop-
erties. In particular, if all the component spaces are compact, the box topology on their
Cartesian product will not necessarily be compact, although the product topology on their
Cartesian product will always be compact (look up the famous Tychonoff Theorem to con-
vince yourself). In general, the box topology is finer than the product topology (all that
extra baggage is what messes up all the desirable properties! ß), although the two agree in
the case when our index I is finite.

Example 37. Take Rw, the countable Cartesian product of the real line, and consider the function
f : R ! Rw given by

f (x) = (x, x, , x, . . . );

the nth coordinate function of f is the function fn(x) = x. Each of the coordinate functions fn : R !
R is continuous in the standard topology on R, and thus f itself is continuous if Rw is given the
product topology, but f is not continuous in the box topology.

You wonder why? Well, consider the set

U =
•

’
n=1

(�1/n, 1/n).

This set U is open (it is a basis element) in the box topology, but not in the product topology. We
assert that f�1(U) is not open in R. If f�1(U) were open in R, it would contain some interval
(�d, d) about the point 0. But this would mean that f ((�d, d)) ⇢ U, so that, by applying the
projection map on the nth coordinate to both sides of this inclusion, we would get

fn((�d, d)) = (�d, d) ⇢ (�1/n, 1/n) for all n.

This is a contradiction because the components of U get arbitrarily close to 0 –any d-neighborhood
will eventually be outside some component of U.

The product topology is the more "natural" topology in the sense that pointwise statements about
its component spaces are transported to the Cartesian product and vice versa. For instance,
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• a sequence in the product topology converges if and only if each of the component sequences
converges in the component topology,

• a function is continuous in the product topology if and only if each of its component functions
is continuous in the component topology. m

The following properties of the box topology are very important. Some of these properties
may not mean much to you now, but as you proceed with your readings you will run into
these concepts later on. Let Rw denote the countable cartesian product of R with itself. Then
the box topology on Rw is:

• completely regular.

• neither compact nor connected.

• not first countable (hence not metrizable).

• not separable.

• paracompact (and hence normal and completely regular) if the continuum hypothesis
is true.

Lemma 19 (The Sequence Lemma). Let X be a topological space and let A ⇢ X. If there is a
sequence of points of A converging to x, then x 2 Ā. The converse holds if X is metrizable.

Example 38. Let us show that Rw in the box topology is not metrizable. In order to do this we will
show that the Sequence Lemma does not hold for Rw. Let A be the subset of Rw consisting of those
points all of whose coordinates are positive:

A = {(x1, x2, . . . ) | xi > 0 8 i 2 N}.

Let eO be the "origin" in Rw, that is, the point (0, 0, . . . ) each of whose coordinates is zero. In the
box topology, eO belongs to Ā; for if

B = (a1, b1)⇥ (a2, b2)⇥ . . .
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is any basis element containing eO, then B intersects A. For instance, the point
✓

1
2

b1,
1
2

b2, . . .
◆

belongs to B \ A.

But we assert that there is no sequence of points of A converging to eO. For let {an} be a sequence
of points of A, where

an = (x1n, x2n, . . . , xin, . . . ).

Every coordinate xin is positive, so we can construct a basis element B0 for the box topology on R by
setting

B0 = (�x11, x11)⇥ (�x22, x22)⇥ · · · .

Then B0 contains the origin eO, but it contains no member of the sequence {an}; the point an cannot
belong to B0 because the nth coordinate xnn does not belong to the interval (�xnn, xnn). Hence the
sequence {an} cannot converge to eO in the box topology. m

In summary, we have the following theorem:

Theorem 75 (Comparison of the Box and Product Topologies). The box topology on ’ Xa

has as basis all the sets of the form ’ Ua, where Ua is open in Xa for each a. The product topology
on ’ Xa has as basis all the sets of the form ’ Ua, where Ua is open in Xa, and Ua equals Xa except
for finitely many values of a.

Theorem 76. Let {Xa} be an indexed family of spaces, and let Aa ⇢ Xa for each a. If ’ Xa is given
by either the product or the box topology, then we have

’ Aa = ’ Aa.

Definition 79. Let X be a topological space with topology T . If Y is a subset of X, then the collection

TY = {Y \ U | U 2 T }

is a topology on Y, called the subspace topology. Equipped with this topology, Y is called a sub-

space of X.
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Lemma 20. If BX is a basis for the topology of X, then the collection

BY = {B \ Y | B 2 BX}
is a basis for the subspace topology on Y.

Now let us explore the relation between the subspace, order, and product topologies.
For product topologies, the result is what one might expect; for order topologies however,
things are not so hunky dory:

Theorem 77. If A is a subspace of X and B is a subspace of Y, then the product topology on A ⇥ B
is the same as the topology A ⇥ B inherits as a subspace of X ⇥ Y.

Proof. The set U ⇥ V is the general basis element for X ⇥ Y, where U is open in X and V
is open in Y. Therefore (U ⇥ V) \ (A ⇥ B) is the general basis element for the subspace
topology on A ⇥ B. Now

(U ⇥ V) \ (A ⇥ B) = (U \ A)⇥ (V \ B).

Since U \ A and V \ B are general open sets for the subspace topologies on A and B,
respectively, the set (U \ A)⇥ (V \ B) is the general basis element for the product topology
on A ⇥ B.
The conclusion we draw is that the bases for the subspace topology on A ⇥ B and the
product topology on A ⇥ B are the same. Hence the topologies are the same.

Now let X be an ordered set in the order topology, and let Y be a subset of X. The order
relation on X, when restricted to Y, makes Y into an ordered set. However, the resulting
order topology on Y need not be the same as the topology that Y inherits as a subspace of
X.

Example 39. a) We first show an example where the subspace and order topologies on Y agree:
Consider the subset Y = [0, 1] ⇢ R, in the subspace topology. The subspace topology has as basis all
sets of the form (a, b) \ Y, where (a, b) is an open interval in R. Such a set is one of the following
types:

(a, b) \ Y =

8
>>>><

>>>>:

(a, b) if a and b are in Y,
[0, b) if only b is in Y,
(a, 1] if only a is in Y,
Y or ∆ if neither a nor b is in Y.
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By definition, each of these sets is open in Y, but the ones of type [0, b) and (a, 1] are not open in the
ambient space R. Note that these sets form a basis for the order topology on Y. Thus, we see that in
the case of the set Y = [0, 1], its subspace topology (as a subspace of R) and its order topology are
the same.

b) We now show an example where the subspace and order topologies on Y don’t agree: Let Y be
the subset [0, 1) [ {2} of R. In the subspace topology on Y, the one-point set {2} is open, because it
is the intersection of the open set (3/2, 5/2) with Y. But in the order topology on Y, the set {2} is
not open. Any basis element for the order topology on Y that contains 2 is of the form

{x | x 2 Y and a < x  2}

for some a 2 Y. Such a set necessarily contains points of Y less than 2. Hence we see that the
subspace and order topologies on Y do not agree. m

We have however, that if Y is convex in X, then the subspace and order topologies do
always agree:

Theorem 78. Let X be an ordered set in the order topology, and let Y be a subset of X that is convex
in X. Then the order topology on Y is the same as the topology Y inherits as a subspace of X.

Proof. (✓) Consider the ray (a, •) in X. If a 2 Y, then we have

(a, •)
\

Y = {x | x 2 Y, x > a} ,

which is an open ray of the ordered set Y. Now, if a 62 Y, then a is either a lower bound or
an upper bound on Y. If it’s a lower bound, then note that (a, •) \ Y = Y; if instead a is an
upper bound, then (a, •) \ Y = ∆.

A similar argument shows that (�•, a) \ Y is either an open ray of Y, all of Y itself, or
empty. Since the sets (a, •) \ Y and (�•, a) \ Y form a subbasis for the subspace topology
on Y, and since each of them is open in the order topology, it follows that the order topology
contains the subspace topology.

(◆) To show the reverse containment, note that any open ray of Y equals the intersection
of an open ray of X with Y, so it is open in the subspace topology on Y. Since the open rays
of Y are a subbasis for the order topology on Y, this topology is contained in the subspace
topology, as desired.
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Theorem 79. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the
intersection of a closed set of X with Y.

Example 40. Consider the subspace Y = (0, 1] of the real line R. The set A = (0, 1/2) is a subset
of Y; its closure in R is the set [0, 1/2], while its closure in Y is the set [0, 1/2] \ Y = (0, 1/2]. m

2.1.1 Hausdorff Condition

Definition 80. A topological space X is said to be a Hausdorff space (also a T2 space)1 if given any
pair of distinct points p1, p2 2 X, there exist neighborhoods U1 of p1 and U2 of p2 with U1 \U2 = ∆.
(This property is often summarized by saying that "points can be separated by open subsets.")

Example 41. a) Every metric space is Hausdorff: if p1 and p2 are distinct, let r = d(p1, p2); then
the open balls of radius r/2 around p1 and p2 are disjoint by the triangle inequality.

b) Every discrete space is Hausdorff, because {p1} and {p2} are disjoint open subsets when p1 6=
p2.

c) Every open subset of a Hausdorff space is Hausdorff: if V ✓ X is open in the Hausdorff space
X, and p1, p2 are distinct points in V, then in X there are open subsets U1, U2 separating p1 and p2,
and the sets U1 \ V and U2 \ V are open in V, disjoint, and contain p1 and p2, respectively.

d) Suppose X is a topological space, and for every p 2 X there exists a continuous function
f : X ! R such that f�1({0}) = {p}. It can be shown that X is Hausdorff.

e) The trivial topology on any set containing more than one element is not Hausdorff, nor is the
topology on {1, 2, 3} described in Example 33 c). Because every metric space is Hausdorff, it follows
that these spaces are not metrizable.

Hausdorff spaces have many of the properties that we expect of metric spaces, such as
those expressed in the following proposition:

Proposition 26. Let X be a Hausdorff space.
] t

1 This terminology comes from the separation axioms, which we will discuss in greater detail later on. A T1 space
will also be defined shortly.
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a) Every finite subset of X is closed.

b) If a sequence {(pi} in X converges to a limit p 2 X, the limit is unique.

Proof of a). Consider first a set {p0} containing only one point. Given p 6= p0, the Hausdorff
property says that there exist disjoint neighborhoods U of p and V of p0. In particular, U
is a neighborhood of p contained in X r {p0}, so {p0} is closed. It then follows that finite
subsets are closed, because they are simply finite unions of one-point sets and, as we already
know, finite unions of closed sets are closed.

Proof of b). Suppose, to the contrary, that a sequence {pi} has two distinct limits p and p0.
By the Hausdorff property, there exist disjoint neighborhoods U of p and U0 of p0. Also,
by the definition of convergence, there exist N, N0 2 N such that i � N implies pi 2 U
and i � N0 implies pi 2 U0. But since U and U0 are disjoint, this is a contradiction when
i � max{N, N0}.

Note, however, that the condition that a finite point
set is closed does not guarantee the Hausdorff condi-
tion. For example, R in the finite complement topology
is not a Hausdorff space, but it is a space in which
finite point sets are closed. This condition that finite
point sets be closed has a name of its own: it is called
the T1 axiom, which we now define:

Definition 81. We say that a space X is a T1 space if for
any two points x, y 2 X there exists two open sets U and V
such that x 2 U and y 62 U, and y 2 V and x 62 V.

While we’re at it, we might as well define another
one of these weird separation axioms:

Definition 82. We say that a space X is a T0 space (or a Kolmogorov space) if for any two points
x, y 2 X, there is an open set U such that x 2 U and y 62 U or y 2 U and x 62 U.

Alright, that’s enough for now; we will see more of these weirdos on Section 2.2. Moving
on, it can be shown that the only Hausdorff topology on a finite set is the discrete topology.
Another important property of Hausdorff spaces is expressed in the following proposition:
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Proposition 27. Suppose X is a Hausdorff space and A ✓ X. If p 2 X is a limit point of A, then
every neighborhood of p contains infinitely many points of A.

And here’s the analogous result for T1 spaces, which is a biconditional statement:

Proposition 28. Let X be a space satisfying the T1 axiom and let A be a subset of X. Then the point
x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

We close out this subsection by stating two important results related to Hausdorff spaces.

Theorem 80. Every totally ordered set is a Hausdorff space in the order topology. The product of
two Hausdorff spaces is a Hausdorff space. A subspace of a Hausdorff space is a Hausdorff space.

Definition 83. A map f : X ! Y is said to be a closed map if for each closed set A of X, the set
f (A) is closed in Y. Similarly, f : X ! Y is said to be an open map if for each open set U of X, the
set f (U) is open in Y.

Lemma 21 (Closed Map Lemma). Suppose F is a continuous map from a compact space to a
Hausdorff space. Then,

a) F is a closed map.

b) If F is surjective, it is a quotient map.

c) If F is injective, it is a topological embedding.

d) If F is bijective, it is a homeomorphism.

2.1.2 Quotient Topology

Definition 84. Let X and Y be topological spaces, and let p : X ! Y be a surjective map. The map
p is said to be a quotient map provided a subset U of Y is open in Y if and only if p�1(U) is open
in X.
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Note that, by its biconditional nature, this concept of a quotient map is stronger than
that of a continuous map; some mathematicians call this condition "strong continuity." An
equivalent formulation is to require that a subset A of Y be closed if and only if p�1(A)
is closed in X. Equivalence of the two statements follow from the fact that f�1(Y r B) =
X r f�1(B).

Yet another way of describing a quotient map is as follows: We say that a subset C of X
is saturated (with respect to the surjective map p : X ! Y) if C contains every set p�1({y})
that it intersects. In other words, C is saturated if it equals the complete inverse image of a
subset of Y. Thus, to say that p is a quotient map is equivalent to saying that p is continuous
and p maps saturated open sets of X to open sets of Y (or saturated closed sets of X to closed
sets of Y).

Two special kinds of quotient maps are the open maps and the closed maps. It follows
immediately from the definition that if p : X ! Y is a surjective continuous map that is
either open or closed, then p is a quotient map. The converse however does not always
hold; that is, there are quotient maps that are neither open nor closed.

Example 42. a) Let X be the subspace [0, 1] [ [2, 3] of R and let Y be the subspace [0, 2] of R. The
map p : X ! Y defined by

p(x) =

(
x for x 2 [0, 1],
x � 1 for x 2 [2, 3]

is readily seen to be surjective, continuous, and closed. Therefore it is a quotient map. It is not,
however, an open map; the image of the open set [0, 1] of X is not open in Y. Note that if A is the
subspace [0, 1) [ [2, 3] of X, then the map q : A ! Y obtained by restricting p is continuous and
surjective, but it is not a quotient map. The reason is that the set [2, 3] is open in A and is saturated
with respect to q, but its image is not open in Y.

b) Let p1 : R ⇥ R ! R be the projection onto the first coordinate; then p1 is continuous and
surjective. Furthermore, p1 is an open map. For if U ⇥ V is a nonempty basis element for R ⇥ R,
then p1(U ⇥ V) = U is open in R; it follows that p1 carries open sets of R ⇥ R to open sets of
R. However, p1 is not a closed map. The subset C = {x ⇥ y | xy = 1} ⇢ R ⇥ R is closed, but
p1(C) = R r {0}, which is not closed in R. Note that if A ⇢ R ⇥ R is such that A = C [ {0},
then the map q : A ! R obtained by restricting p1 is continuous and surjective, but it is not a
quotient map. The reason is that the one-point set {0} is open in A and is saturated with respect to
q, but its image is not open in R. m
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We now show how the notion of a quotient map can be used to construct a topology on
a set:

Definition 85. If X is a space and S is a set and if p : X ! S is a surjective map, then there exists
exactly one topology T on S relative to which p is a quotient map; it is called the quotient topology

induced by p.

The topology T mentioned in the above definition is of course defined by letting it consist
of those subsets U of S such that p�1(U) is open in X. It is easy to check that T is a topology:

• The sets ∆ and S are open because

p�1(∆) = ∆ and p�1(S) = X.

• The other two conditions follow from the equations

p�1

 
[

a2A
Ua

!
=
[

a2A
p�1(Ua)

and

p�1

 
n\

i=1
Ui

!
=

n\

i=1
p�1(Ui).

Example 43. Let p be the map of the real line R onto the three-point set S = {a, b, c} defined by

p(x) =

8
>><

>>:

a if x > 0,
b if x < 0,
c if x = 0.

You can check that the quotient topology on S induced by p is the one indicated in Figure 2.7. m

There is a special situation in which the quotient topology occurs particularly frequently.
It is the following:
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Figure 2.7: Topology on S induced by p.

Definition 86. Let X be a topological space, and let X⇤ be a partition of X into disjoint subsets
whose union is X. Let p : X ! X⇤ be the surjective map that carries each point of X to the element
of X⇤ containing it. In the quotient topology induced by p, the space X⇤ is called the quotient space

of X.

Example 44. Let X be the closed unit ball

B2 = {(x, y) | x2 + y2  1}

in R2, and let X⇤ be the partition of X consisting of all the one-point sets {(x, y)} for which
x2 + y2 < 1, along with the circle S1 = {(x, y) | x2 + y2 = 1}. Typical saturated open sets in X are
pictured by the shaded regions in Figure 2.8. One can show that X⇤ is homeomorphic to the 2-sphere
S2 ⇢ R3, given by S2 = {(x, y, z) | x2 + y2 + z2 = 1}. m

Figure 2.8: Topology on A induced by p.
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2.2 Countability & Separation Axioms

In this section we will present the famous separation axioms of general topology after briefly
presenting the axioms of countability, of which the second axiom is of most importance for
most applications. For instance, as you will see in Chapter 4, the second countability axiom
is a requirement that we impose on our definition of manifolds. Some authors don’t impose
this requirement from the get-go, but then they end up using unnecessarily long phrases
such as "Let M be a Hausdorff, second countable manifold. . . " By requiring that manifolds
be Hausdorff and second countable from the start, we are guaranteed the existence of a
compact exhaustion and a partition of unity for our manifold, which are highly desirable
tools to possess for most applications. These words may not mean much to you at the
moment, but as always I present them to you upfront to spark your curiosity and so that
when you get to see the heavy machinery later on, you will get to appreciate it more.

2.2.1 Countability Axioms

Definition 87. A space X is said to have a countable basis at a point x 2 X if there is a
countable collection B of neighborhoods of x such that each neighborhood of x contains at least one
of the elements of B. A space that has a countable basis at each of its points is said to satisfy the first

countability axiom, or to be first-countable.

Note that every metrizable space satisfies this axiom.

Theorem 81. Let X be a topological space. Then,

• let A be a subset of X. If there is a sequence of points of A converging to x, then x 2 Ā. The
converse holds if X is first-countable.

• let f : X ! Y. If f is continuous, for every convergent sequence xn ! x in X, the sequence
f (xn) converges to f (x). The converse holds if X is first-countable.

As I emphasized at the beginning of this section, of much greater importance than the
first countability axiom is the following:
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Definition 88. If a space X has a countable basis for its topology, then X is said to satisfy the
second countability axiom, or to be second-countable.

It is quite obvious that the second axiom implies the first: Let B = {Un} be a countable
basis for the topology of a space X. For each point x 2 X, the subcollection Bx = {U 2 B |
x 2 U} is a countable neighborhood basis at x.

Proposition 29. We have the following two crucial properties of first and second countable spaces:

a) A subspace of a first countable (resp. second countable) space is first countable (resp. second
countable).

b) A countable product of first countable (resp. second countable) spaces is first countable (resp. second-
countable).

We will prove the second countable cases; the first countable counterparts follow a similar
argument.

Proof of a). If B = {Un} is a countable basis for X and A ⇢ X, then {A \Un} is a countable
basis for A.

Proof of b). If Bn is a countable basis for Xn, where n 2 Z+, then the collection of products

•

’
n=1

Un,

where Un 2 Bn for finitely many n and Un = Xn for the remaining n is a countable basis
for the product topology on ’•

n=1 Xn.

Theorem 82. Suppose that X has a countable basis.

• Every open covering of X contains a countable subcovering X. A space satisfying this condition
is called a Lindelöf space.

• There exists a countable subset of X that is dense in X. In this case the space X is said to be
separable.
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The two properties stated in the previous theorem are generally weaker than the second
countability axiom, albeit they are equivalent when the space X is metrizable. Other relevant
countability axioms for topological spaces include:

• sequential space: a set X is open if every sequence convergent to a point in the set is
eventually in X.

• s-compact space: there exists a countable cover by compact spaces.

Lastly, here’s a summary of the relationships amongst all the countability axioms we have
discussed:

• Every first countable space is sequential.

• Every s-compact space is Lindelöf.

• Every second countable space is first countable, separable, and Lindelöf.

• Every metric space is first countable.

• For metric spaces, second countability, separability, and the Lindelöf property are all
equivalent.

2.2.2 Separation Axioms

Throughout our discussions of the separation axioms, we will assume that all spaces being
considered satisfy the T1 axiom, i.e., that all finite point sets (in particular one-point sets)
are closed. Otherwise we would run into some pathological cases that will be more trouble
than they’re worth. To see an example of why we want this axiom satisfied, see the remark
immediately after the following two definitions.

Definition 89. Suppose that one-point sets are closed in X. Then X is said to be regular if for
each pair consisting of a point x and a closed set B disjoint from x, there exists disjoint open sets
containing x and B, respectively. A space that is regular (and satisfies the T1 axiom) is said to satisfy
the T3 axiom, or to be a T3 space.
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Definition 90. Suppose that one-point sets are closed in X. Then X is said to be normal if for each
pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B, respectively.
A space that is normal (and satisfies the T1 axiom) is said to satisfy the T4 axiom, or to be a T4
space.

Remark: It is clear that a regular space is Hausdorff, and that a normal space is regular.
However, note that we need to include the condition that one-point sets be closed (i.e., the
T1 axiom) as part of the definition of regularity and normality in order for this to be the
case. To see why, take for instance a two-point space Y in the indiscrete topology. Then
Y satisfies the other part of the definitions of regularity and normality, even though it is
not Hausdorff. To see examples showing that regularity is stronger than Hausdorff, and
normality is stronger than regularity, check Example 45 below.

The three separation axioms are illustrated in Figure 2.9.

Figure 2.9: Normal =) Regular =) Hausdorff.

There is actually a few more separation axioms besides these three and the previously
mentioned T0, but we will not discuss those in this section; we’re moving on to the fun stuff
(aka. algebraic topology) right after this section! Anyhow, there are other ways to formulate
the separation axioms that we have presented here. One such formulation that is sometimes
useful is given by the following lemma:

Lemma 22. Let X be a topological space and let one-point sets in X be closed.
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a) X is regular if and only if given a point x 2 X and a neighborhood U of x, there is a neighbor-
hood V of x such that V ⇢ U.

b) X is normal if and only if given a closed set A and an open set U containing A, there is an
open set V containing A such that V ⇢ U.

Proof of a). ()) Suppose that X is regular, and suppose that the point x and the neighbor-
hood U of x are given. Let B = X r U, so that B is a closed set. By hypothesis, there exists
disjoint open sets V and W containing x and B, respectively. The set V is disjoint from B,
since if y 2 B, the set W is a neighborhood of y disjoint from V. Therefore, V ⇢ U, as
desired.

(() To prove the converse, suppose the point x and the closed set B not containing x
are given. Let U = X r B. By hypothesis, there is a neighborhood V of x such that V ⇢ U.
The open sets V and X r V are disjoint open sets containing x and B, respectively. Thus, X
is regular, as desired.

Proof of b). This proof uses exactly the same argument as in part a). We only need to replace
the point x by the set A throughout.

Now we relate the separation axioms with the concepts previously introduced:

Theorem 83. We have the following properties:

a) A subspace of a Hausdorff space is Hausdorff. Also, a product of Hausdorff spaces is Hausdorff.

b) A subspace of a regular space is regular. Also, a product of regular spaces is regular.

Proof of a). Let X be Hausdorff. Let x and y be two points of the subspace Y of X. If U and
V are disjoint neighborhoods in X of x and y, respectively, then U \Y and V \Y are disjoint
neighborhoods of x and y in Y. Hence, a subspace of a Hausdorff space is Hausdorff.

Now let {Xa} be a family of Hausdorff spaces. Let x = (xa) and y = (ya) be distinct
points of the product space ’ Xa. Because we are assuming that x 6= y, there is some
index b such that xb 6= yb. Choose disjoint open sets U and V in Xb containing xb and yb,
respectively. Then the sets p�1

b (U) and p�1
b (V) are disjoint open sets in ’ Xa containing x

and y, respectively. Thus, a product of Hausdorff spaces is Hausdorff, as desired.
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Proof of b). Let Y be a subspace of the regular space X. Then one-point sets are closed in Y.
Let x be a point of Y and let B be a closed subset of Y disjoint from x. Now B \ Y = B,
where B denotes the closure of B in X. Therefore x 62 B, so using regularity of X, we can
choose disjoint open sets U and V of X containing x and B, respectively. Then U \ Y and
V \ Y are disjoint open sets in Y containing x and B, respectively. Hence, we have that a
subspace of a regular space is regular.

Now let {Xa} be a family of regular spaces, and let X = ’ Xa. By part a), X is Hausdorff,
so that one-point sets are closed in X. We now use Lemma 22 to prove regularity of X: Let
x = (xa) be a point of X and let U be a neighborhood of x in X. Choose a basis element ’ Ua

about x contained in U. Choose, for each a, a neighborhood Va of xa in Xa such that Va ⇢ Ua;
if it happens that Ua = Xa, then choose Va = Xa. Then V = ’ Va is a neighborhood of x
in X. Since V = ’ Va by Theorem 76, it follows at once that V ⇢ ’ Ua ⇢ U, so that X
is regular. Thus, we have shown that a product of regular spaces is regular, and we are
done.

There is no analogous theorem for normal spaces, as we shall see shortly. First, a theorem
that we are going to use on the next example:

Theorem 84. Let A be a set. There is no injective map f : P(A) ! A (where P(�) denotes as
usual the power set), and there is no surjective map g : A ! P(A).

Example 45. a) The space RK is Hausdorff but not regular. It is Hausdorff because any two distinct
points have disjoint open intervals containing them. However it is not regular, for the set K is
closed in RK and it does not contain the point {0}: Suppose that there exist disjoint open sets U
and V containing {0} and K, respectively. Now choose a basis element containing {0} and lying
in U. It must be a basis element of the form (a, b)r K, since each basis element of the form (a, b)
containing {0} intersects K. Choose n large enough so that 1/n 2 (a, b). Then choose a basis element
about 1/n contained in V; it must be a basis element of the form (c, d). Finally, choose z such that
max{c, 1/(n + 1)} < z < 1/n. Then z belongs to both U and V, so they are not disjoint.

b) The space R` is normal. It is immediate that one-point sets are closed in R`, since the topology
of R` is finer than that of R. To check normality, suppose that A and B are disjoint closed sets in R`.
For each point a 2 A, choose a basis element [a, xa) not intersecting B; and for each point b 2 B,
choose a basis element [b, xb) not intersecting A. The open sets

U =
[

a2A
[a, xa) and V =

[

b2B
[b, xb)
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are disjoint open sets of A and B, respectively.

c) The space R2
` (i.e., R2 endowed with the lower limit topology), which is commonly referred to

as the Sorgenfrey plane, is not a normal space. Note that the space R` is regular (in fact, normal, as
we saw in part b)), so the product space R2

` is also regular. Hence this example serves two purposes:
it shows that a regular space need not be normal, and it shows that the product of two normal spaces
need not be normal: We suppose that R2

` is normal and then arrive at a contradiction. Let D be the
diagonal, i.e., the subspace of R2

` consisting of all points of the form x ⇥ (�x).

Then D is closed in R2
` and it has the discrete topology. Hence every subset A of D, being closed in

D, is also closed in R2
` . Because Dr A is also closed in R2

` , this means that for every nonempty proper
subset A of D, one can find disjoint open sets UA and VA containing A and D r A, respectively.

Let D denote the set of points of R2
` having rational coordinates; it is dense in R2

` . We define a
map Y that assigns, to each subset of the the line D, a subset of the set D, by setting

Y(A) = D
\

UA if ∆ ( A ( D.

Y(∆) = ∆,
Y(D) = D.

We now show that Y : P(D) ! P(D) is injective: Let A be a proper nonempty subset of D. Then
Y(A) = D \ UA is neither empty (since UA is open and D is dense in R2

`) nor all of D (since
D \ VA is nonempty).

It remains to show that if B is another proper nonempty subset of D, then Y(A) 6= Y(B). One
of the sets A, B contains a point not in the other; suppose WLOG that x 2 A and x 62 B. Then
x 2 D r B, so that x 2 UA \ VB; since the latter set is open and nonempty, it must contain points
of D. These points belong to UA and not to UB; therefore, D \UA 6= D \UB, as desired. Thus, Y is
injective.
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Now we show that there exists an injective map P(D) ! D. Because D is countably infinite and
D has the cardinality of R, it suffices to define an injective map y of P(Z+) into R. For that, we let
y assign to the subset S of Z+ the infinite decimal .a1a2 . . . , where

ai =

(
0 if i 2 S,
1 if i 62 S.

That is,

y(S) =
•

Â
i=1

ai

10i .

Now the composite
P(D) Y�! P(D)

y�! D

is an injective map of P(D) into D. But Theorem 84 tells us that such a map does not exist! Thus
we have reached the desired contradiction. m

Theorem 85. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be disjoint closed
subsets of X. Each point x 2 A has a neighborhood U not intersecting B. Using regularity,
choose a neighborhood V of x whose closure lies in U, and then choose an element of B
containing x and contained in V. By choosing such a basis element for each x 2 A, we
construct a countable covering of A by open sets whose closures do not intersect B. Since
this covering of A is countable, we can index it with the positive integers; let us denote it
by {Un}.

Similarly, choose a countable collection {Vn} of open sets covering B, such that each set
Vn is disjoint from A. The sets U = [Un and V = [Vn are open sets containing A and B,
respectively, but they need not be disjoint. Thus, in order to construct two open sets that
are disjoint, we perform the following simple trick: Given n, define

U0
n = Un \

n[

i=1
Vi and V 0

n = Vn \
n[

i=1
Ui.

Note that each set U0
n is open, being the difference of an open set Un and a closed set

[n
i=1Vi. Similarly, each set V 0

n is open. It follows that the collection {U0
n} covers A, because
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Figure 2.10: Proof of Theorem 85.

each x 2 A belongs to Un for some n, and x belongs to none of the sets Vi. Similarly, the
collection {V 0

n} covers B. (See Figure 2.10.)

Finally, the open sets

U0 =
[

n2Z+

U0
n and V 0 =

[

n2Z+

V 0
n

are disjoint. For if x 2 U0 \V 0, then x 2 U0
j \V 0

k for some j and k. Suppose that j  k. It then
follows from the definition of U0

j that x 2 Uj; and since j  k, it follows from the definition
of V 0

k that x 62 Uj. A similar contradiction arises if j � k.

Theorem 86. Every metrizable space is normal.

Theorem 87. Every compact Hausdorff space is normal.

Theorem 88. Every well-ordered set X is normal in the order topology.
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To see proofs of these three theorems, and to see related examples, see [Munkres, 2000,
p. 202-205].

h[YnabXcamZ\g

2.3 Basics of Algebraic Topology

2.3.1 Some Categorical Nonsense

Mathematics is often referred to as the language of the universe. Well, as it turns out, it could
be argued that category theory is (in a sense) the universal language of mathematics. Just
about every branch of mathematics that you can think of can be "spoken" abstractly with
the language of category theory. While a thorough treatment of the subject is way beyond
our scope, I will present two key ingredients that permeate much of algebraic topology (and
indeed mathematics in general). These are the concepts of a "category" and that of "maps"
between different categories. I will also present some heavy machinery here that will most
likely make you cry and beg for mercy, but don’t worry, that madness won’t be required on
subsequent sections. I merely present them to give you a "bird’s eye view" of the wonderful
subject of category theory, and to encourage you to view mathematics from a "higher" point
of abstraction.

Definition 91. A category C consists of

• a class of objects, denoted Ob(C).

• given two objects x, y 2 C, a set Hom(x, y) of morphisms. Generalizing from the categories
where Hom(x, y) is a set of functions (which is not always the case, as you will see shortly!),
we usually denote f 2 Hom(x, y) by f : x ! y. Morphisms satisfy the following properties:

– given morphisms f : x ! y and g : y ! z, we can compose them and obtain g � f : x !

XcamZ\g g

f 182



2.3. Basics of Algebraic Topology Chapter 2. Topology
h [a\ g

z. When there is no possibility of confusion g � f is abbreviated g f .

y
g

��
z x

f
__

g f
oo

– for any x 2 C, there is an identity morphism 1x : x ! x such that, for any f : x ! y,
we have f 1x = f = 1y f .

As I alluded to in the definition, morphisms are more general than mappings. As you
will see in Example 46 below, there are morphisms that you are already quite familiar with,
but there are some that will make you pull your hair off. I will present one such outrageous
example here because it comes from a topic in algebraic topology that I am personally
quite fond of, and I would like to introduce it to you at this point. I am not expecting
you to understand this material at this stage, since it relies on some heavy machinery that
we haven’t even covered and that is way beyond the scope of this humble little book, but
nonetheless it will show you that the concept of morphisms is not as simple as you may
have thought upon brief inspection of Definition 91. Ready to be mindblown again? Here
we go!:

Definition 92. An (n + 1)-dimensional cobordism is a quintuple (W; M, N, iM, iN) consisting of
an (n + 1)-dimensional compact smooth manifold with boundary W, closed n-manifolds M and N,
and embeddings iM : M ,! ∂W and iN : N ,! ∂W, with disjoint images such that

∂W = iM(M)q iN(N).

The quintuple is usually abbreviated to (W; M, N), omitting any mention to the embeddings. The
n-manifolds M and N are said to be cobordant if such a cobordism exists. All manifolds cobordant
to a fixed given manifold M form the cobordism class of M.

Whew, that was intense, wasn’t it?? Again, don’t worry one bit if you didn’t understand
a single word on this definition; everything will seem much less daunting after you get
through Chapter 3, where you will deal with these so-called "manifolds" and with some
of the heavy, well-oiled mathematical machinery associated to them. For now, my purpose
is not to give you brain damage, but rather to spark your curiosity for what’s ahead and
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Jackie Chan’s reaction to Definition 92.

also provide an example that showcases the complexity of some not-so-familiar categories.
Without further ado, let’s give a brief example:

Example 46. Examples of categories are:

• Set, where the objects are sets and the morphisms are functions (this is a category that you’ve
been dealing with since kindergarten!).

• nCob, where the objects are (n � 1)-dimensional oriented compact manifolds, and morphisms
are (cobordism classes of) n-dimensional cobordisms. Here’s a pretty picture of cobordisms with
n = 2:

S q S

M⇤q1S
✏✏

S q S q S

1SqM
✏✏

S q S

The identity morphism in 2Cob is given by the (cobordism class of the) cylinder:

S

[0,1]⇥S
✏✏

S

• Vect, where objects are (finite-dimensional) vector spaces, and morphisms are linear operators.
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• Hilb, where objects are (finite-dimensional) Hilbert spaces, and morphisms are linear operators.

• Top, where the objects are topological spaces and the morphisms are continuous maps.

• Ring, where the objects are rings and the morphisms are ring homomorphisms.

• Grp, where the objects are groups and the morphisms are group homomorphisms.

• Top⇤, where the objects are pointed topological spaces and the morphisms are pointed contin-
uous maps. m

These last two categories are the ones that we’re are really after. In particular we will
want to "send" objects from the category of pointed topological spaces (a concept that will
be discussed later on) to objects that lie in the category of groups. In other words, we would
like to have at our disposal a "map" Top⇤ ! Grp; this is precisely what our next definition
will provide for us:

Definition 93. Given categories C and D, a functor F : C ! D consists of:

• A map sending any object x 2 C to an object F(x) 2 D.

• For any pair of objects x and y, a map sending morphisms f : x ! y to morphisms F( f ) : F(x) !
F(y), such that these laws hold:

– for any object x 2 C, we have F(1x) = 1F(x).
– for any pair of morphisms f : x ! y and g : y ! z, we have F(g f ) = F(g)F( f ).

In short: F sends objects to objects, morphisms to morphisms, and preserves sources, targets, identi-
ties, and composition.

Definition 94. A functor F : C ! D is called faithful if for each pair of objects X, Y 2 C,
the map FX,Y : HomC(X, Y) ! HomD(F(X), F(Y)) is injective. F is called full if the maps
FX,Y : HomC(X, Y) ! HomD(F(X), F(Y)) are all surjective. If C is a subcategory of D, then
the inclusion functor is always faithful. If it is full, C is called a full subcategory.

Definition 95. A functor is called essentially surjective if every object in D is isomorphic to
an image under F of an object of C. A functor is called an equivalence if it is faithful, full, and
essentially surjective.
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If there is one concept that you should absolutely take away from this subsection is that
of a functor. These dudes are literally everywhere in mathematics, and you encounter them
more often than you think! Don’t worry if all the categorical nonsense you’ve seen here has
given you a massive headache; I’ve been dealing with this crazy stuff for a while and it still
makes my head spin more than a pulsar! You can safely skip the rest of this subsection,
since there will be nothing relevant to our subsequent topics. . . or you can stay for a little
more . . .©

Definition 96. We say that a category C has adjoints or duals for morphisms or that is a ⇤-

category if there is a contravariant functor ⇤ : C ! C which takes objects to themselves and such
that ⇤2 = 1 (the identity functor). For any object x or morphism f , the dual is denoted ⇤(x) = x⇤

or ⇤( f ) = f ⇤.

Spelling out the definition, the contravariant functor ⇤ has to satisfy the following prop-
erties:

• x⇤ = x for any x 2 C,

• for any f : x ! y there is a morphism f ⇤ : y ! x (this is what "contravariant" means),

• for any x 2 C, (1x)⇤ = 1x⇤ = 1x,

• for any morphisms f : x ! y and g : y ! z, we have (g f )⇤ = f ⇤g⇤, and

• ( f ⇤)⇤ = f for any morphism f .

Example 47. Examples of ⇤-categories are:

• nCob, where M⇤ is obtained by exchanging the roles of input and output. If the cobordism is
imbedded, this can be represented as reflection along the "time" direction.

⇤�!

• any groupoid (a category where every morphism is invertible), as then the inverse has the
properties required of ⇤.
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• Hilb, where the adjoint T⇤ of a linear operator T : H ! H0 is defined by hT⇤f | yiH =
hf | TyiH0 . If this notation looks weird to you it’s because it *is* weird; what do you expect?
It was invented by physicists! (I’m joking, please lay down the pitchforks!). This is the so
called Bra-Ket notation or Dirac notation. Here’s a link to a short-and-sweet 3-minute
video explaining this madness.

Definition 97. We say that F : C ! D is a ⇤-functor if given f : x ! y, we have F( f ⇤) =
F( f )⇤ : F(x) ! F(y).

Definition 98. A category C is monoidal if it is equipped with an operation ⌦ with the following
properties:

• for any x, y 2 C, there is an object x ⌦ y 2 C;

• for any f : x ! x0 and g : y ! y0, there is a morphism f ⌦ g : x ⌦ y ! x0 ⌦ y0.

• for any objects x, y, z 2 C there is an isomorphism axyz : (x ⌦ y)⌦ z ! x ⌦ (y ⌦ z) called
the associator and satisfying the pentagon identity :

(w⌦x)⌦(y⌦z)
awx(yz)

++�
(w⌦x)⌦y

�
⌦z

a(wx)yz
33

awxy⌦1z

!!

w⌦
�

x⌦(y⌦z)
�

�
w⌦(x⌦y)

�
⌦z

aw(xy)z // w⌦
�
(x⌦y)⌦z

�

1w⌦axyz

==

• there is an object 1 such that, for any object x 2 C, there are isomorphisms lx : 1 ⌦ x ! x and
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rx : x ⌦ 1 ! x called units satisfying the other identity:

x ⌦ 1
rx

))(1 ⌦ x)⌦ 1

lx⌦11

33

a1x1

!!

x

1 ⌦ (x ⌦ 1)
11⌦rx // 1 ⌦ x

lx

EE

• finally, given f : x ! y, g : y ! z, f 0 : x0 ! y0 and g0 : y0 ! z0, we require that (g⌦ g0)( f ⌦
f 0) = (g f )⌦ (g0 f 0), which just says that the following diagram is unambiguous:

f

g

y

x

z

f 0

g0

y0

x0

z0

Example 48. Examples of monoidal categories are

• Group: objects are groups, morphisms are group homomorphisms and ⌦ is the direct product
of groups.

• nCob: the ⌦, both for objects and for morphisms, is the disjoint union of manifolds, i.e.,
⌦ = q.

• Vect or Hilb: the ⌦ is the tensor product. This is how in quantum mechanics two things are
"put together."

One last badass definition to close out this subsection:
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Definition 99. A topological quantum field theory (or TQFT for short) is a monoidal functor
from a category of cobordisms to a category of vector spaces. That is, it is a functor whose value on a
disjoint union of manifolds is equivalent to the tensor product of its values on each of the constituent
manifolds.

To illustrate our definition, consider a functor Z : 2Cob ! Vectk (by this I mean vector
spaces with underlying field k. The following diagram brings to life our definition:

Z : 2Cob �! Vectk
7! V

7! V ⌦ V ! V

7! k ! V
7! V ! k

For an even more elaborate construction, consider the figure you saw earlier on Exam-
ple 46; this time we add the target of the TQFT (i.e., the vector spaces) to the figure so you
can clearly see Definition 99 in all its glory.

S q S

M⇤q1S
✏✏

S q S q S

1SqM
✏✏

S q S

V ⌦ V

✏✏
V ⌦ V ⌦ V

✏✏
V ⌦ V

2.3.2 Basics of Homotopy

Definition 100. If p : X ! Y is a map, a subset U ✓ X is said to be saturated with respect to

p if U is the entire preimage of its image under p; i.e., if U = p�1 (p(U)). Given y 2 Y, the fiber

of p over y is the set p�1(y). (Thus, a subset of X is saturated if and only if it is a union of fibers).
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Definition 101. If X and Y are topological spaces, a map F : X ! Y (continuous or not) is said to
be proper if for every compact set K ✓ Y, the preimage F�1(K) is compact as well.

Here are some useful sufficient conditions for a map to be proper:

Proposition 30 (Sufficient Conditions for Properness). Suppose X and Y are topological spaces,
and F : X ! Y is a continuous map.

a) If X is compact and Y is Hausdorff, then F is proper.

b) If F is a closed map with compact fibers, then F is proper.

c) If F is a topological embedding with closed image, then F is proper.

d) If Y is Hausdorff and F has a continuous left inverse (i.e., a continuous map G : Y ! X such
that G � F = IdX), then F is proper.

e) If F is proper and A ✓ X is a subset that is saturated with respect to F, then F|A : A ! F(A)
is proper.

Definition 102. A deformation retraction of a space X onto a subspace A is a family of maps
ft : X ! X, for t 2 I, such that f0(X) = Id (the identity map), f1(X) = A, and ft|A = Id for
all t. The family ft should be continuous in the sense that the associated map X ⇥ I ! X given by
(x, t) 7! ft(x), is continuous.

Example 49. We now construct an explicit deformation retraction of the torus with one point deleted
onto a graph consisting of two circles intersecting in a point, namely, longitude and meridian circles
of the torus. Using the CW complex construction of the torus (see this on [Hatcher, 2001, Pg 5]), we
have the map denoted by the small arrows:

a a

b

b

a a

b

b

a a

b

b

a b
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To prove this map is indeed a deformation retraction, we use the identification of the unit square
with the unit disc (in this case the boundary of the circle is divided into four arcs with the labeling
scheme aba�1b�1), and using polar coordinates we can let F̃((r, q), t) = (r + t(1 � r), q). Then,
let F = q � F̃ where q is the quotient map shown as the last arrow above. F is continuous as F̃ is
continuous in each coordinate, and then q is continuous. F is also such that F((r, q), 0) = (r, q),
F((r, q), 1) = (1, q), and F((1, q), t) = (1, q). Thus, F is a deformation retraction. The two circles
in the last diagram are the longitude and meridian circles of the torus by construction, since on the
third diagram of the figure we identify the sides marked a to get the meridian circle and then the sides
marked b to get the longitude circle. m

Definition 103. For a map f : X ! Y, the mapping cylinder Mf is the quotient space of the
disjoint union (X ⇥ I)q Y obtained by identifying each (x, 1) 2 X ⇥ I with f (x) 2 Y.

Definition 104. A homotopy is any family of maps ft : X ! Y, for t 2 I, such that the associated
map F : X ⇥ I ! Y given by F(x, t) = ft(x) is continuous. One says that two maps f0, f1 : X ! Y
are homotopic if there exists a homotopy ft connecting them, in which case we write f0 ' f1.

In these terms, a deformation retraction of X onto a subspace A is a homotopy from
the identity map of X to a retraction of X onto A (a map r : X ! X such that r(X) = A
and r|A = Id. Equivalently, we may regard a retraction as a map X ! A restricting to
the identity on the subspace A ⇢ X; the subspace A ⇢ X in this case is called a retract

of X.) From a more formal viewpoint a retraction is a map r : X ! X with r2 = r, since
this equation says exactly that r is the identity on its image. Retractions are the topological
analogs of projection operators in other parts of mathematics.

Remark: A homotopy ft : X ! X that gives a deformation retraction of X onto a subspace
A has the property that ft|A = Id for all t. In general, a homotopy ft : X ! Y whose
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restriction to a subspace A ⇢ X is independent of t is called a homotopy relative to A
(or more concisely, a homotopy rel A). Thus, a deformation retraction of X onto A is a
homotopy rel A from the identity map of X to a retraction of X onto A.

If a space X deformation retracts onto a subspace A via ft : X ! X, then if r : X ! A
denotes the resulting retraction and i : A ! X the inclusion, we have ri = Id and ir ' Id,
the latter homotopy being given by ft. Generalizing this situation, a map f : X ! Y is called
a homotopy equivalence if there is a map g : Y ! X such that f g ' Id and g f ' Id. The
spaces X and Y are said to be homotopy equivalent or to have the same homotopy type,
which we denote by X ' Y. It is true in general that two spaces X and Y are homotopy
equivalent if and only if there exists a third space Z containing both X and Y as deformation
retracts.

Definition 105. A space having the homotopy type of a point is called contractible. This amounts
to requiring that the identity map of the space be nullhomotopic, that is, homotopic to a constant
map.

In general, this is slightly weaker than saying the space deformation retracts to a point;
see the exercises at the end of Chapter 1 of [Hatcher, 2001]., for an example distinguishing
these two notions.

Example 50. We now show that a retract of a contractible space is contractible. Saying that a space
X is contractible is equivalent to saying that IdX is homotopic to a constant map mapping to some
point x0 2 X. Let F(x, t) be this homotopy, and let A ⇢ X be our retract, i.e., there exists a map
r : X ! A such that r|A = IdA. Then, (F � r)|A is a homotopy between IdA and the constant
map mapping to r(x0), for it is a composition of continuous maps hence itself continuous, and since
r(F(x, 0))|A = (IdX � r)|A = r|A = IdA and r(F(x, 1))|A = r(x0). m

Example 51. In this example we show that a retract of a Hausdorff space is closed. Let A ⇢ X be a
retract of X. Consider a point x 2 ∂A. If x 62 A, then r(x) 6= x and there are disjoint neighborhoods
U of x and V of r(x). Then by continuity of r, there must be a neighborhood W ✓ U of x, so that
r(W) ✓ V. However, r(W \ A) is a nonempty subset of W,2 so it cannot be in V. Hence we must
have r(x) = x 2 A, and hence A is closed.

] t

2 W \ A is nonempty because, by assumption, x 2 ∂A.
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Alternatively, we could have used the fact that for any two maps f , g : X ! A, the so-called
equalizer {x 2 X | f (x) = g(x)} is a closed subspace of X if A is Hausdorff. This follows from the
diagonal DA being closed in A ⇥ A and ( f , g) : X ! A ⇥ A being continuous. In this particular
case we just take f = IdA and g = r; the equalizer is then the retract A. m

2.3.3 Covering Maps

Definition 106. Suppose E and X are topological spaces. A map p : E ! X is called a covering

map if E and X are connected and locally path-connected, p is surjective and continuous, and each
point p 2 X has a neighborhood U that is evenly covered by p, meaning that each component of
p�1(U) is mapped homeomorphically onto U by p. In this case, X is called the base of the covering,
and E is called a covering space of X. If U is an evenly covered subset of X, the components of
p�1(U) are called the sheets of the covering over U.

Figure 2.11: An evenly covered neighborhood of x. (In this figure p = q)

Example 52. Let E be the interval (0, 2) ⇢ R, and define f : E ! S1 by f (x) = e2pix (see
Figure 2.12). Then f is a local homeomorphism (because it is the restriction of the covering map
e : R ! S1 given by e(x) = e2pix), and is clearly surjective. However, f is not a covering map
because the point 1 2 S1 has no evenly covered neighborhood. m
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Figure 2.12: A surjective local homeomorphism that is not a covering map.

Definition 107. If p : E ! X is a covering map and F : B ! X is a continuous map, a lift of F is
a continuous map eF : B ! E such that p � eF = F:

E

B X
✏✏

p

//

F

??

eF

Proposition 31 (Lifting Properties of Covering Maps). Suppose p : E ! X is a covering map.

a) UNIQUE LIFTING PROPERTY: If B is a connected space and F : B ! X is a continuous
map, then any two lifts of F that agree at one point are identical.

b) PATH LIFTING PROPERTY: If f : I ! X is a path, then for any point e 2 E such that
p(e) = f (0), there exists a unique lift ef : I ! E of f such that ef (0) = e.

c) MONODROMY THEOREM: If f , g : I ! X are path-homotopic paths and efe, ege : I ! E
are their lifts starting at the same point e 2 E, then efe and ege are path-homotopic and efe(1) =
ege(1).

XcamZ\g g

f 194



2.3. Basics of Algebraic Topology Chapter 2. Topology
h [a\ g

Proposition 32 (Lifting Criterion). Suppose p : E ! X is a covering map, Y is a connected
and locally path-connected space, and F : Y ! X is a continuous map. Let y 2 Y and e 2 E be
such that p(e) = F(y). Then there exists a lift eF : Y ! E of F satisfying eF(y) = e if and only if
F⇤ (p1(Y, y)) ✓ p⇤ (p1(E, e)).

Proposition 33 (Coverings of Simply Connected Spaces). If X is a simply connected space,
then every covering map p : E ! X is a homeomorphism.

Definition 108. A topological space is said to be locally simply connected if it admits a basis of
simply connected open subsets.

Proposition 34 (Existence of a Universal Covering Space). If X is a connected and locally
simply connected topological space, there exists a simply connected topological space eX and a covering
map p : eX ! X. If bp : bX ! X is any other simply connected covering of X, then there is a
homeomorphism j : eX ! bX such that bp � j = p.

Definition 109. The simply connected covering space eX whose existence and uniqueness (up to
homeomorphism) are guaranteed by this last proposition is called the universal covering space of

X.
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Chapter 3

Smooth Manifolds

D
ifferential geometry is a beautiful language in which much of modern math-
ematics and physics is spoken. It is my personal favorite subject in all of mathe-
matics, and it is my hope that I can properly convey my boundless enthusiasm

for it in these notes.

There are different approaches to the study of differential geometry. Some authors ap-
proach the subject with a treatment of curves and surfaces in R3, which provide much of
the motivation and intuition for the general theory. Others choose to go straight into the
more general point of view of abstract manifolds, which are generalizations of curves and
surfaces to arbitrarily many dimensions that provide the mathematical context for under-
standing "space" in all of its manifestations. These notes follow the latter approach. To study
the geometry of curves and surfaces, I highly recommend books such as Differential Geome-
try of Curves and Surfaces by Manfredo P. do Carmo and Elementary Differential Geometry by
Andrew Pressley.

Be warned that if I claimed earlier that real analysis was calculus on steroids, I claim now
that differential geometry is multivariate calculus on meth (and I wouldn’t have it any other
way!). Make sure that you already have a solid acquaintance with undergraduate linear al-
gebra, real analysis, multivariate calculus, and topology before reading this chapter. Only
then you will be able to truly appreciate how marvelous this subject really is.
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3.1 Calculus Preliminaries

If f : A ! R is bounded, the extent to which f fails to be continuous at a 2 A can be
measured in a precise way: For d > 0, let

M(a, f , d) = sup{ f (x) | x 2 A, |x � a| < d},
m(a, f , d) = inf{ f (x) | x 2 A, |x � a| < d}.

Definition 110. The oscillation o( f , a) of f at a is defined by o( f , a) = limd!0[M(a, f , d) �
m(a, f , d)].

This limit always exists, since M(a, f , d)� m(a, f , d) decreases as d decreases. There are
two important facts about o( f , a), given in the following two theorems:

Theorem 89. The bounded function f is continuous at a if and only if o( f , a) = 0.

Theorem 90. Let A ⇢ Rn be closed. If f : A ! R is any bounded function, and # > 0, then
{x 2 A | o( f , x) � #} is closed.

3.1.1 Differentiation

Definition 111. A function f : Rn ! Rm is differentiable at a 2 Rn if there exists a linear
transformation l : Rn ! Rm such that

lim
h!0

k f (a + h)� f (a)� l(h)k
khk = 0. (3.1)

Remark: Note that h is a point of Rn while f (a + h) � f (a) � l(h) is a point of Rm,
hence the norm signs on (3.1) are essential. The linear transformation l is usually denoted
D f (a) and it is called the derivative of f at a. Also, the matrix associated with such linear
transformation is called the Jacobian matrix of f at a.

The justification for the phrase "the linear transformation l" is given by the following
theorem:
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Theorem 91. If f : Rn ! Rm is differentiable at a 2 Rn, there is a unique linear transformation
l : Rn ! Rm such that equation (3.1) is satisfied.

Proof. Suppose µ : Rn ! Rm satisfies

lim
h!0

k f (a + h)� f (a)� µ(h)k
khk = 0.

If d(h) = f (a + h)� f (a), then

lim
h!0

kl(h)� µ(h)k
khk = lim

h!0

kl(h)� d(h) + d(h)� µ(h)k
khk

 lim
h!0

kl(h)� d(h)k
khk + lim

h!0

kd(h)� µ(h)k
khk

= 0.

If x 2 Rn, then tx ! 0 as t ! 0. Hence for x 6= 0 we have

0 = lim
t!0

kl(tx)� µ(tx)k
ktxk =

kl(x)� µ(x)k
kxk .

Therefore l(x) = µ(x), and this concludes our proof.

Definition 112. Let f : Rn ! R and a 2 R. If the limit

lim
h!0

f (a1, . . . , ai + h, . . . , an)� f (a1, . . . , an)
h

exists, then it is called the ith
partial derivative of f at a, and it is denoted by ∂i f (a).

Theorem 92. Let A ⇢ Rn. If an extremum of f : A ! R occurs at a point a in the interior of A
and ∂i f (a) exists, then ∂i f (a) = 0.
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Proof. Let gi(x) = f (a1, . . . , x, . . . , an). Clearly gi has a maximum (or minimum) at ai, and gi
is defined in an open interval containing ai. Hence 0 = g0i(ai) = ∂i f (a).

Theorem 93. If f : Rn ! Rm is differentiable at a, then ∂j f i(a) exists for 1  i  m, 1  j  n,
and f 0(a) is the m ⇥ n matrix (∂j f i(a)).

There are several examples in the problems to show that the converse of the above the-
orem is false. It is true, however, if one hypothesis is added, as shown by the following
theorem:

Theorem 94. If f : Rn ! Rm, then D f (a) exists if all ∂j f i(x) exist in an open set containing a and
if each function ∂j f i is continuous at a. Such a function f is said to be continuously differentiable

at a.

Lemma 23. Let A ⇢ Rn be a rectangle and let f : A ! Rn be continuously differentiable. If there
is a number M such that k∂j f i(x)k  M for all x in the interior of A, then

k f (y)� f (x)k  n2M ky � xk 8 x, y 2 A.

Proof. We have that

f i(y)� f i(x) =
n

Â
j=1

[ f i(y1, . . . , yj, xj+1, . . . , xn)� f i(y1, . . . , yj�1, xj, . . . , xn)].

Now, applying the mean value theorem, there exists some zij such that

f i(y1, . . . , yj, xj+1, . . . , xn)� f i(y1, . . . , yj�1, xj, . . . , xn) = (yj � xj) · ∂j f i(zij)

 M · kyj � xjk.

Thus,

k f i(y)� f i(x)k 
n

Â
j=1

kyj � xjk · M  nM ky � xk (Since each kyj � xjk  ky � xk).

Finally,

k f (y)� f (x)k 
n

Â
j=1

k f i(y)� f i(x)k  n2M · ky � xk.
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Theorem 95 (Inverse Function Theorem). Suppose that f : Rn ! Rn is continuously differen-
tiable in an open set containing a, and det f 0(a) 6= 0. Then there is an open set V containing a and
an open set W containing f (a) such that f : V ! W has a continuous inverse f�1 : W ! V which
is differentiable and for all y 2 W satisfies

( f�1)0(y) =
1

f 0( f�1(y))
.

Proof. See [Spivak, 1971, p. 35]

It should be noted that an inverse function f�1 may exist even if det f 0(a) = 0. For
example, if f : R ! R is defined by f (x) = x3, then f 0(0) = 0 but f has the inverse
function f�1(x) = 3

p
x. One thing is certain however: if det f 0(a) = 0, then f�1 cannot be

differentiable at f (a). To prove this, note that f � f�1(x) = x. If f�1 were differentiable at
f (a), then the chain rule would give

f 0(a) · ( f�1)0( f (a)) = Id

=) det f 0(a) · det( f�1)0( f (a)) = 1,

contradicting the assumption that det f 0(a) = 0.

Now we want to ask ourselves the following question:

If f : Rn ⇥ R ! R with f (a1, . . . , an, b) = 0, when can we find, for each (x1, . . . , xn) near
(a1, . . . , an), a unique y near b such that f (x1, . . . , xn, y) = 0?

Even more generally, we can ask about the possibility of solving m equations, depending
upon parameters x1, . . . , xn, in m unknowns: If

fi : Rn ⇥ Rm ! R for i = 1, . . . , m

and
fi(a1, . . . , an, b1, . . . , bm) = 0 for i = 1, . . . , m,

when can we find, for each (x1, . . . , xn) near (a1, . . . , an) a unique (y1, . . . , ym) near (b1, . . . , bm)
which satisfies fi(x1, . . . , xn, y1, . . . , ym) = 0? The answer is provided by the following theo-
rem:
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Theorem 96 (Implicit Function Theorem). Suppose that f : Rn ⇥ Rm ! Rm is continuously
differentiable in an open set containing (a, b), and f (a, b) = 0. Let M be the m ⇥ m matrix

⇣
∂n+j f i(a, b)

⌘
for 1  i, j  m.

If det M 6= 0, there is an open set A ⇢ Rn containing a and an open set B ⇢ Rm containing b,
with the following property: for x 2 A there is a unique g(x) 2 B such that f (x, g(x)) = 0. The
function g is differentiable.

Proof. Define F : Rn ⇥ Rm ! Rn ⇥ Rm by F(x, y) = (x, f (x, y)). Then det F0(a, b) = det M 6=
0. By the Inverse Function Theorem there is an open set W ⇢ Rn ⇥ Rm containing F(a, b) =
(a, 0) and an open set in Rn ⇥ Rm containing (a, b), which we may take to be of the form
A ⇥ B, such that F : A ⇥ B ! W has a differentiable inverse h : W ! A ⇥ B. Clearly h
is of the form h(x, y) = (x, k(x, y)) for some differentiable function k (since F is of this
form). Now let p2 : Rn ⇥ Rm ! Rm be the projection on the second component defined by
p2(x, y) = y; then p2 � F = f . Therefore

f (x, k(x, y)) = f � h(x, y) = (p2 � F) � h(x, y)
= p2 � (F � h)(x, y) = p2(x, y) = y.

Thus, f (x, k(x, 0)) = 0; in other words we can define g(x) = k(x, 0).

3.1.2 Integration

Definition 113. The volume of a closed k-cube [a1, b1]⇥ · · ·⇥ [ak, bk], and also of an open k-cube
(a1, b1)⇥ · · ·⇥ (ak, bk), is given by (b1 � a1) · · · · · (bk � ak).

Definition 114. Suppose that A is a rectangle, f : A ! R is bounded, and P is a partition of A.
For each subrectangle S of the partition, let

mS( f ) = inf{ f (x) : x 2 S},
MS( f ) = sup{ f (x) : x 2 S},
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and let v(S) be the volume of S. Then the lower sum and upper sum of f for P are defined by

L( f , P) = Â
S

mS( f ) · v(S) and U( f , P) = Â
S

MS( f ) · v(S),

respectively.

Clearly, L( f , P)  U( f , P), and an even stronger assertion (given in Corollary 27 below)
is true.

Lemma 24. Suppose the partition P0 refines P (that is, each subrectangle of P0 is contained in a
subrectangle of P). Then

L( f , P)  L( f , P0) and U( f , P0)  U( f , P).

Corollary 27. If P and P0 are any two partitions, then it is always true that L( f , P0)  U( f , P).

Definition 115. A function f : A ! R is said to be integrable (in the Riemann sense) on the
rectangle A if f is bounded and if

sup{L( f , P)} = inf{U( f , P)}.

Theorem 97. A bounded function f : A ! R is Riemann integrable if and only if, for every # > 0,
there is a partition P of A such that U( f , P)� L( f , P) < #.

Example 53. a) Here’s an example of a Riemann integrable function. Let f : A ! R be a constant
function, f (x) = c. Then for any partition P and subrectangle S we have mS( f ) = MS( f ) = c, so
that

L( f , P) = U( f , P) = Â
S

c · v(S) = c · v(A).

Hence we have
´

A f = c · v(A).

b) Here’s an example of a nonintegrable function (in the Riemann sense). Let f : [0, 1]⇥ [0, 1] ! R

be defined by

f (x) =

(
0 if x 2 Q,
1 if x 62 Q.
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If P is any partition, then every subrectangle S will contain points (x, y) with x rational, and also
points (x, y) with x irrational. Hence, mS( f ) = 0 and MS( f ) = 1, so

L( f , P) = Â
S

0 · v(S) = 0,

while
U( f , P) = Â

S
1 · v(S) = v([0, 1]⇥ [0, 1]) = 1,

Therefore, f is not Riemann integrable. m

Lemma 25. Let A be a closed rectangle and let f : A ! R be a bounded function such that
o( f , x) < # for all x 2 A. Then there is a partition P of A with U( f , P)� L( f , P) < # · v(A).

Definition 116. A subset A ⇢ Rn is said to have measure zero if for every # > 0, there is a cover
{U1, U2, . . . } of A by closed (or open) rectangles such that Â•

i=1 v(Ui) < #.

Definition 117. A subset A ⇢ Rn is said to have content zero if for every # > 0, there is a finite
cover {U1, . . . , Un} of A by closed (or open) rectangles such that Ân

i=1 v(Ui) < #.

Theorem 98. If a < b, then [a, b] ⇢ R does not have content 0. In fact, if {U1, . . . , Un} is a finite
cover of [a, b] by closed intervals, then Ân

i=1 v(Ui) � b � a.

If a < b, it is also true that [a, b] does not have measure 0. This follows from the following
theorem:

Theorem 99. If A is compact and has measure 0, then A also has content 0.

Remark: The conclusion of Theorem 99 is false if A is not compact. For example, let A be
the set of rational numbers between 0 and 1; then A has measure 0. Suppose, however, that
{[a1, b1], . . . , [an, bn]} covers A. Then A is contained in the closed set [a1, b1]

S · · ·S[an, bn]
and therefore,

[0, 1] ⇢ [a1, b1]
[

· · ·
[
[an, bn].

It follows from Theorem 98 that Ân
i=1(bi � ai) � 1 for any such cover, and consequently A

does not have content 0.
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Theorem 100. Let A be a closed rectangle and f : A ! R be a bounded function. Let B = {x |
f is not continuous at x}. Then f is integrable (in the Riemann sense) if and only if B is a set of
measure 0.

h[YnabXcamZ\g

3.2 Introduction to Smooth Manifolds

Math jokes are the best,
aren’t they?

Before we delve deeper into the subject, let me warn you
about the notation we are using. Notation is something that
can vary tremendously from author to author all across
mathematics, and it is especially true of differential geome-
try. This is why differential geometry is often referred to as
the study of geometric properties that are invariant under
change of notation (this is the part where you’re supposed
to laugh at my terrible jokes).

You can pick up ten different references to study geome-
try and chances are that they will all use a different notation.
That is something that you simply have to deal with, but it
isn’t the end of the world. As long as you really understand
the concepts, the notation won’t throw you off much. Just
keep an eye out for that and you’ll be fine.

3.2.1 Some Preliminaries

Definition 118. A topological space X is

• connected if there do not exist two disjoint, nonempty, open subsets of X whose union is X.

• path-connected if every pair of points in X can be joined by a path in X.

• locally path-connected if X has a basis of path-connected open subsets.
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Proposition 35. If M is a topological manifold, then

a) M is locally path-connected.

b) M is connected if and only if it is path-connected (In general, connected 6) path-connected,
but in manifolds this is always true.)

c) the connected components of M are exactly the path-connected components.

d) M has countably many components, each of which is open in M and is a connected topological
manifold.

Definition 119. A topological space X is said to be locally compact if every point has a neighbor-
hood contained in a compact subset of X.

Definition 120. A subset of a topological space X is said to be precompact in X if its closure in X
is compact.

Proposition 36. For a Hausdorff space X the following are equivalent:

a) X is locally compact.

b) Each point of X has a precompact neighborhood.

c) X has a basis of precompact open subsets.

Lemma 26. Every topological manifold has a countable basis of precompact coordinate balls.

Proposition 37. Every topological manifold is locally compact.

Proof. From Lemma 26 we have that every point in a topological manifold is contained in a
precompact coordinate ball.

Let X be a topological space. Then we have the following definitions:
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Definition 121. A collection {Si} of subsets of X is said to be locally finite if each point of X has
a neighborhood that intersects at most finitely many of the sets in {Si}.

Definition 122. Given a cover U of X, another cover V is called a refinement of U if for each
V 2 V there exists some U 2 U such that V ✓ U.

Definition 123. We say that X is paracompact if every open cover of X admits an open, locally
finite refinement.

Theorem 101. Every topological manifold is paracompact. In fact, given a topological manifold M,
an open cover U of M, and any basis B for the topology of M, there exists a countable, locally finite
refinement of U consisting of elements of B.

Theorem 102. Let M be a topological manifold. Then its fundamental group p1(M) has countably
many elements.

Proof. See proof on [Lee, 2013, p. 10].

3.2.2 Smooth Manifolds

Definition 124. A coordinate chart (or just a chart) on a topological manifold M is a pair (U, j),
where U is an open subset of M and j : U ! bU is a homeomorphism from U to an open subset
bU = j(U) ✓ Rn (see Figure 3.1.)

Definition 125. Let M be a topological n-manifold. If (U, j), (V, y) are two charts such that
U \ V 6= ∆, the composite map y � j�1 : j(U \ V) ! y(U \ V) is called the transition map

from j to y (see Figure 3.2 below). It is a composition of homeomorphisms, and is therefore itself a
homeomorphism.
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Figure 3.1: A coordinate chart.

Definition 126. An r-times continuously differentiable function f : Rn ! Rm is called a Cr
-

diffeomorphism if it is a bijection (m = n and f (x) = 0 () x = 0) and its inverse f�1 : Rm !
Rn is r-times continuously differentiable as well. For our purposes we will focus on the case r = •,
in which case we call the C• function f a smooth function and instead of saying that it is a C•

diffeomorphism we simply say that it is a diffeomorphism. (These concepts will be extended to maps
between more general manifolds in the next subsection.)

Definition 127. Two charts (U, j) and (V, y) are said to be smoothly compatible if either U \
V = ∆ or the transition map y � j�1 is a diffeomorphism. Since j(U \ V) and y(U \ V) are open
subsets of Rn, smoothness of this map is to be interpreted in the ordinary sense of having continuous
partial derivatives of all orders.

Definition 128. We define an atlas for a manifold M to be a collection of charts whose domains
cover M. An atlas A is called a smooth atlas if any two charts in A are smoothly compatible with
each other.

Note that to show that an atlas is smooth, we need only verify that each transition map
y � j�1 is smooth whenever (U, j) and (V, y) are charts in A ; once we have proved this, it
follows that y � j�1 is a diffeomorphism because its inverse (y � j�1)�1 = j � y�1 is one of
the transition maps we have already shown to be smooth. Alternatively, given two particular
charts (U, j) and (V, y) it is often easiest to show that they are smoothly compatible by
verifying that y � j�1 is smooth and injective with nonsingular Jacobian at each point, and
appealing to the following proposition:
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Figure 3.2: A transition map.

Proposition 38. Suppose U ✓ Rn is an open subset, and F : U ! Rn is a smooth function whose
Jacobian determinant is nonzero at every point in U. Then,

a) F is an open map.

b) if F is injective, then F : U ! F(U) is a diffeomorphism.

Our plan is to define a "smooth structure" on M by giving a smooth atlas, and to define
a function f : M ! R to be smooth if and only if f � j�1 is smooth in the sense of ordinary
calculus for each coordinate chart (U, j) in the atlas. There is one minor technical problem
with this approach: in general, there will be many possible atlases that give the "same"
smooth structure, in that they all determine the same collection of smooth functions on M.
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For example, consider the following pair of atlases on Rn:

A• = {(Rn, IdRn)},
A2 = {(B1(x), IdB1(x)) | x 2 Rn}.

Although these are different smooth atlases, clearly a function f : Rn ! R is smooth
with respect to either atlas if and only if it is smooth in the sense of ordinary calculus.
We could choose to define a smooth structure as an equivalence class of smooth atlases
under an appropriate equivalence relation. However, it is more straightforward to make the
following definitions:

Definition 129. A smooth atlas A on M is maximal (or complete) if it is not properly contained
in any larger smooth atlas. This just means that any chart that is smoothly compatible with every
chart in A is already in A .

Definition 130. If M is a topological manifold, a smooth structure on M is a maximal smooth
atlas. A smooth manifold is a pair (M, A ), where M is a topological manifold and A is a smooth
structure on M.

It is generally not very convenient to define a smooth structure by explicitly describing
a maximal smooth atlas, because such an atlas contains very many charts. Fortunately, we
need only specify some smooth atlas, as the next proposition shows:

Proposition 39. Let M be a topological manifold.

a) Every smooth atlas A for M is contained in a unique maximal smooth atlas, called the smooth
structure determined by A .

b) Two smooth atlases for M determine the same smooth structure if and only if their union is a
smooth atlas.

For example, if a topological manifold M can be covered by a single chart, the smooth
compatibility condition is trivially satisfied, so any such chart automatically determines a
smooth structure on M. An example would be A1 = {(Rn, IdRn)}.
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Definition 131. A set B ✓ M is called a regular coordinate ball if there is a smooth coordinate
ball B0 ◆ B and a smooth coordinate map j : B0 ! Rn such that for some positive real numbers
r < r0, we have

j(B) = Br(0), j(B) = Br(0), and j(B0) = Br0(0).

Proposition 40. Every smooth manifold has a countable basis of regular coordinate balls.

Usually we construct a smooth manifold structure in two stages: we start with a topologi-
cal space and check that it is a topological manifold, and then we specify a smooth structure.
However it is often more convenient to combine these two steps into a single construction,
especially if we start with a set that is not already equipped with a topology. The following
lemma provides a shortcut; it shows how, given a set with suitable "charts" that overlap
smoothly, we can use the charts to define both a topology and a smooth structure on the
set:

Lemma 27 (Smooth Manifold Chart Lemma). Let M be a set, and suppose we are given a
collection {Ua} of subsets of M together with maps ja : Ua ! Rn, such that the following properties
are satisfied:

a) For each a, ja is a bijection between Ua and an open subset ja(Ua) ✓ Rn.

b) For each a and b, the sets ja(Ua
T

Ub) and jb(Ua
T

Ub) are open in Rn.

c) Whenever Ua
T

Ub 6= ∆, the map jb � j�1
a : ja(Ua

T
Ub) ! jb(Ua

T
Ub) is smooth.

d) Countably many of the sets Ua cover M.

e) Whenever p, q are distinct points in M, either there exists some Ua containing both p and q
or there exist disjoint sets Ua, Ub with p 2 Ua and q 2 Ub.

Then M has a unique smooth manifold structure such that each (Ua, ja) is a smooth chart.

Proof. See proof on [Lee, 2013, p. 22].
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3.3 Smooth Maps

Definition 132. Suppose M is a smooth n-manifold, k is a nonnegative integer, and f : M ! Rk is
any function. We say that f is a smooth function if for every p 2 M, there exists a smooth chart
(U, j) for M whose domain contains p and such that the composite function f � j�1 is smooth on
the open subset bU = j(U) ✓ Rn (see Figure 3.3 below).

Figure 3.3: Definition of smooth functions.

The most important special case is that of smooth real-valued functions f : M ! R; the
set of all such functions is denoted by C•(M). Because sums and constant multiples of
smooth functions are smooth, it turns out that C•(M) is a vector space over R.

The definition of smooth functions generalizes easily to maps between manifolds:

Definition 133. Let M and N be smooth manifolds, and let F : M ! N be any map. We say that
F is a smooth map if for every p 2 M, there exist smooth charts (U, j) containing p and (V, y)
containing F(p) such that F(U) ✓ V and the composite map y � F � j�1 is smooth from j(U) to
y(V) (see Figure 3.4 below).

Note that our previous definition of smoothness of real-valued or vector-valued functions
can be viewed as a special case of this one, by taking N = V = Rk and y = Id : Rk ! Rk.
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Figure 3.4: Definition of smooth maps.

Remark: In spite of the apparent complexity of the definition, it is usually not hard to
prove that a particular map is smooth. There are basically only three common ways to do
so:

• Write the map in smooth local coordinates and recognize its component functions as
compositions of smooth elementary functions.

• Exhibit the map as a composition of maps that are known to be smooth.

• Use some special-purpose theorem that applies to the particular case under consider-
ation.

Proposition 41. Every smooth map is continuous.

Proof. Suppose M and N are smooth manifolds (with or without boundary,) and F : M ! N
is smooth. Given p 2 M, smoothness of F means there are smooth charts (U, j) containing
p and (V, y) containing F(p) such that F(U) ✓ V and y � F � j�1 : j(U) ! y(V) is a
smooth real/vector valued function, which is known to be continuous. Since j : U ! j(U)
and y : V ! y(V) are homeomorphisms, this implies in turn that

F|U = y�1 � (y � F � j�1) � j : U ! V,

which is a composition of continuous maps. Since F is continuous in a neighborhood of
each point, it is continuous on M, as desired.
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Proposition 42 (Equivalent Characterizations of Smoothness). Suppose M and N are smooth
manifolds (with or without boundary,) and F : M ! N is a map. Then F is smooth if and only if
either of the following conditions is satisfied:

a) For every p 2 M, there exist smooth charts (U, j) containing p and (V, y) containing F(p)
such that U \ F�1(V) is open in M and the composite map y � F � j�1 is smooth from
j(U \ F�1(V)) to y(V).

b) F is continuous and there exist smooth atlases {(Ua, ja)} and {(Vb, yb)} for M and N,
respectively, such that for each a and b, yb � F � j�1

a is a smooth map from ja(Ua \ F�1(Vb))
to yb(Vb).

Proposition 43 (Smoothness Is Local). Suppose M and N are smooth manifolds (with or without
boundary), and let F : M ! N be a map.

a) If every point p 2 M has a neighborhood U such that the restriction F|U is smooth, then F is
smooth.

b) Conversely, if F is smooth, then its restriction to every open subset is smooth.

The next corollary is essentially just a restatement of the previous proposition, but it gives
a highly useful way of constructing smooth maps:

Corollary 28 (Gluing Lemma for Smooth Maps). Let M and N be smooth manifolds (with or
without boundary,) and let {Ua}a2A be an open cover of M. Suppose that for each a 2 A, we are
given a smooth map Fa : Ua ! N such that the maps agree on overlaps, that is

Fa|Ua\Ub
= Fb|Ua\Ub

8 a, b 2 A.

Then there exists a unique smooth map F : M ! N such that F|Ua = Fa for each a 2 A.

Definition 134. If F : M ! N is a smooth map, and (U, j) and (V, y) are any smooth charts for
M and N, respectively, we call the composite map bF = y � F � j�1 the coordinate representation

of F with respect to the given coordinates. It maps the set j(U \ F�1(V)) to y(V).
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Proposition 44. Suppose F : M ! N is a smooth map between smooth manifolds (with or without
boundary). Then the coordinate representation of F with respect to every pair of smooth charts for M
and N is smooth.

Remark: As with real-valued or vector-valued functions, once we have chosen specific
local coordinates in both the domain and codomain, we can often ignore the distinction
between bF and F.

Proposition 45. Let M, N, and P be smooth manifolds (with or without boundary.)

a) Every constant map c : M ! N is smooth.

b) The identity map of M is smooth.

c) If U ✓ M is an open submanifold (with or without boundary), then the inclusion map U ,! M
is smooth.

d) If F : M ! N and G : N ! P are smooth, then so is G � F : M ! P.

Proposition 46. Suppose M1, . . . , Mk and N are smooth manifolds (with or without boundary),
such that at most one of M1, . . . , Mk has nonempty boundary. For each i, let pi : M1 ⇥ · · ·⇥ Mk !
Mi denote the projection onto the Mi factor. Then a map F : N ! M1 ⇥ · · ·⇥ Mk is smooth if and
only if each of the component maps Fi = pi � F : N ! Mi is smooth.

Proof. For simplicity we assume that Mk is a smooth manifold with boundary. From Propo-
sition 45 part d), it is clear that every Fi is smooth if F is smooth. Suppose that each Fi is
smooth and let x 2 N. For each i, choose smooth charts (Ui, ji) containing x and (Vi, yi)
containing Fi(x) such that

yi � Fi � j�1
i = yi � pi � F � j�1

i .

Now replace U1 with U = U1 \ · · · \ Uk and replace j1 with j1|U ; by Proposition 44, each
map yi � pi � F � j�1

i is smooth. Write V = V1 ⇥ · · · ⇥ Vk and y = y1 ⇥ · · · ⇥ yk so that
(V, y) is a smooth chart containing F(x). Since the ith component of y � F � j�1

1 is just
yi � pi � F � j�1

1 , the map y � F � j�1
1 is smooth. This shows that F is smooth, as desired.
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3.3.1 Partitions of Unity

The version of the gluing lemma for smooth maps that we presented on Corollary 28 is well
defined on open subsets, but we cannot expect to glue together smooth maps defined on
closed subsets and obtain a smooth result. For example, the two functions f+ : [0, •) ! R

and f� : (�•, 0] ! R defined by

f+(x) = +x, x 2 [0, •),
f�(x) = �x, x 2 (�•, 0]

are both smooth and agree at the point 0 where they overlap, but the continuous function
f : R ! R that they define, namely f (x) = kxk, is not smooth at the origin.

A disadvantage of this corollary is that in order to use it, we must construct maps that
agree exactly on relatively large subsets of the manifold, which is too restrictive for some
purposes. In this section we introduce partitions of unity, which are tools for "blending
together" local smooth objects into global ones without necessarily assuming that they agree
on overlaps.

All of our constructions in this section are based on the existence of smooth functions
that are positive in a specified part of a manifold and identically zero in some other part.
We begin by defining a smooth function on the real line that is zero for t  0 and positive
for t > 0:

Lemma 28. The function f : R ! R defined by

f (t) =

(
e�1/t t > 0,
0 t  0

is smooth (see Figure 3.5 below).

Lemma 29. Given any real numbers r1 and r2 such that r1 < r2, there exists a smooth function
h : R ! R such that

h(t) =

8
>><

>>:

1 t  r1,
0 < h(t) < 1 r1 < t < r2,
0 t � r2.

XcamZ\g g

f 215



3.3. Smooth Maps Chapter 3. Smooth Manifolds
h [a\ g

Figure 3.5: f (t) = e�1/t.

Proof. Let f be the function of the previous lemma, and set

h(t) =
f (r2 � t)

f (r2 � t) + f (t � r1)
.

Figure 3.6: A cutoff function.

Such a function is usually called a cutoff function. Note that the denominator is positive
for all t, because at least one of the expressions r2 � t and t � r1 is always positive. The
desired properties of h follow easily from those of f .

Lemma 30. Given any positive real numbers r1 < r2, there is a smooth function H : Rn ! R such
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that

H(x) =

8
>><

>>:

1 x 2 Br1(0),
0 < H(x) < 1 x 2 Br2(0)r Br1(0),
0 x 2 Rn r Br2(0).

Proof. Just set H(x) = h(kxk), where h is the function of the preceding lemma. Clearly, H
is smooth on Rn r {0}, because it is a composition of smooth functions there. Since it is
identically equal to 1 on Br1(0), it is smooth there too.

The function H constructed in this lemma is an example of a smooth bump function,
a smooth real-valued function that is equal to 1 on a specified set and is zero outside a
specified neighborhood of that set.

Definition 135. Suppose M is a topological space, and let c = (Xa)a2A be an arbitrary open cover
of M, indexed by a set A. A partition of unity subordinate to c is an indexed family (ya)a2A of
continuous functions ya : M ! R with the following properties:

• 0  ya  1 for all a 2 A and all x 2 M.

• supp ya ✓ Xa for each a 2 A.

• The family of supports (supp ya)a2A is locally finite.

• Âa2A ya(x) = 1 for all x 2 M.

If M is a smooth manifold with or without boundary (as opposed to just an arbitrary topological
space,) a smooth partition of unity is one for which each of the functions ya is smooth.

Theorem 103 (Existence of Partitions of Unity). Suppose M is a smooth manifold (with or
without boundary,) and c = (Xa)a2A is any indexed open cover of M. Then there exists a smooth
partition of unity subordinate to c.

There are basically two different strategies for patching together locally defined smooth
maps to obtain a global one. If you can define a map in a neighborhood of each point in such
a way that the locally defined maps all agree where they overlap, then the local definitions
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piece together to yield a global smooth map by Corollary 28. (This usually requires some
sort of uniqueness result.) But if the local definitions are not guaranteed to agree, then you
usually have to resort to a partition of unity. The trick then is showing that the patched-
together objects still have the required properties.

Definition 136. If M is a topological space, A ✓ M is a closed subset, and U ✓ M is an open subset
containing A, a continuous function y : M ! R is called a bump function for A supported in U
if 0  y  1 on M, y ⌘ 1 on A, and supp y ✓ U.

Proposition 47 (Existence of Smooth Bump Functions). Let M be a smooth manifold (with or
without boundary). For any closed subset A ✓ M and any open subset U containing A, there exists
a smooth bump function for A supported in U.

Definition 137. Suppose M and N are smooth manifolds (with or without boundary,) and A ✓ M
is an arbitrary subset. If N has empty boundary, we say that a map F : A ! N is smooth on A if
it has a smooth extension in a neighborhood of each point: that is, if for every p 2 A there is an open
subset W ✓ M containing p and a smooth map eF : W ! N whose restriction to W \ A agrees with
F. When ∂N 6= ∆, we say that F : A ! N is smooth on A if for every p 2 A there exist an open
subset W ✓ M containing p and a smooth chart (V, y) for N whose domain contains F(p), such
that F(W \ A) ✓ V and y � F|W\A is smooth as a map into Rn in the sense defined above (i.e., it
has a smooth extension in a neighborhood of each point).

Lemma 31 (Extension Lemma for Smooth Functions). Suppose M is a smooth manifold (with
or without boundary,) A ✓ M is a closed subset, and f : A ! Rk is a smooth function. For any
open subset U containing A, there exists a smooth function ef : M ! Rk such that ef |A = f and
supp ef ✓ U.

Remark: The assumption in the extension lemma that the codomain of f is Rk, and not
some other smooth manifold, is needed: for other codomains, extensions can fail to exist for
topological reasons. For example, the identity map S1 ! S1 is smooth, but does not have
even a continuous extension to a map from R2 to S1. Later on in the course we will show
that a smooth map from a closed subset of a smooth manifold into a smooth manifold has
a smooth extension if and only if it has a continuous one.
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Definition 138. If M is a topological space, an exhaustion function for M is a continuous function
f : M ! R with the property that the set f�1((�•, c]) (called a sublevel set of f ) is compact for
each c 2 R.

Remark: The name "exhaustion function" comes from the fact that as n ranges over the
positive integers, the sublevel sets f�1((�•, n]) form an exhaustion of M by compact sets;
thus an exhaustion function provides a sort of continuous version of an exhaustion by
compact sets. For example, the functions f : Rn ! R and g : Bn ! R given by

f (x) = kxk2, g(x) =
1

1 � kxk2

are smooth exhaustion functions. Of course, if M is compact, any continuous real-valued
function on M is an exhaustion function, so such functions are interesting only for noncom-
pact manifolds.

Proposition 48 (Existence of Smooth Exhaustion Functions). Every smooth manifold (with or
without boundary) admits a smooth positive exhaustion function.

The following theorem shows the remarkable fact that every closed subset of a manifold
can be expressed as a level set of some smooth real-valued function:

Theorem 104 (Level Sets of Smooth Functions). Let M be a smooth manifold. If C is any closed
subset of M, there is a smooth nonnegative function f : M ! R such that f�1(0) = C.

h[YnabXcamZ\g

3.4 Tangent Vectors

Before we get started, we should mention that we will be using the so called Einstein Sum-
mation Convention throughout all the following sections. It may be a bit weird at first, but
once you become familiar with it the computations will look simpler (or at the very least
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less cluttered). Because of the appearance of summations such as Âi xiEi in this subject, we
often abbreviate such a sum by omitting the summation sign:

We write E(x) = xiEi as an abbreviation of E(x) =
n

Â
i=1

xiEi.

The rule is the following: if the same index name (such as i in the expression above) appears
exactly twice in any monomial term, once as an upper index and once as a lower index, that
term is understood to be summed over all possible values of that index, generally from 1 to
the dimension of the space in question. The rule also applies in the following situation:

We write E(x) = Xi ∂

∂xi as an abbreviation of E(x) =
n

Â
i=1

Xi ∂

∂xi .

We point this out because note that in this latter case the index appears twice as a super-
script; however since in ∂/∂xi the index appears in the "denominator," it is counted as a
subscript and our summation convention applies.

3.4.1 Geometric Tangent Vectors

Definition 139. Given a fixed point a 2 Rn, let us define the geometric tangent space to Rn
at

a, denoted by Rn
a , to be the set {a}⇥ Rn = {(a, v) | v 2 Rn}. A geometric tangent vector in Rn

is an element of Rn
a for some a 2 Rn.

As a matter of notation, we abbreviate (a, v) as va (or sometimes v|a if it is clearer, for
example if v itself has a subscript). We think of va as the vector v with its initial point at a
(Figure 3.7).

Remark: Note that the geometric tangent space Rn
a is a real vector space under the natural

operations

va + wa = (v + w)a and c(va) = (cv)a 8 va, wa 2 Rn
a , 8 c 2 R.

One thing that a geometric tangent vector provides is a means of taking directional deriva-
tives of functions. For example, any geometric tangent vector va 2 Rn

a yields a map
Dv|a : C•(Rn) ! R, which takes the directional derivative of a C• function f in the direc-
tion v at a:

Dv
��

a f = Dv f (a) =
d
dt

���
t=0

f (a + tv).

XcamZ\g g

f 220



3.4. Tangent Vectors Chapter 3. Smooth Manifolds
h [a\ g

Figure 3.7: Geometric tangent space.

This operation is linear over R and satisfies the product rule:

Dv
��

a( f g) = f (a) Dv
��

a g + g(a) Dv
��

a f .

If va = viei|a (note the Einstein summation convention that we previously discussed) in
terms of the standard basis, then by the chain rule Dv

��
a f can be written more concretely as

Dv
��

a f = vi ∂ f
∂xi (a).

With this construction in mind, we make the following definition:

Definition 140. If a is a point of Rn, a map v : C•(Rn) ! R is called a derivation at a if it is
linear over R and satisfies the product rule v( f g)(a) = f (a)v(g) + g(a)v( f ).

Remark: Note that the set of all derivations of C•(Rn) at a, denoted DaRn, is a real vector
space under the operations

(v1 + v2)( f ) = v1( f ) + v2( f ) and (c v)( f ) = c(v( f )).

The most important (and perhaps somewhat surprising) fact about DaRn is that it is
finite-dimensional, and in fact is naturally isomorphic to the geometric tangent space Rn

a
that we defined above. The proof is based on the following lemma:

Lemma 32 (Properties of Derivations). Suppose a 2 Rn, v 2 DaRn, and f , g 2 C•(Rn). Then
we have the following:
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a) If f is a constant function, then v( f ) = 0.

b) If f (a) = g(a) = 0, then v( f g) = 0.

The next proposition shows that derivations at a are in one-to-one correspondence with
geometric tangent vectors:

Proposition 49. Let a 2 Rn. Then,

a) For each geometric tangent vector va 2 Rn
a , the map Dv

��
a : C•(Rn) ! R is a derivation at a.

b) The map va 7! Dv
��

a is an isomorphism from Rn
a onto DaRn.

Corollary 29. For any a 2 Rn, the n derivations

∂

∂x1

���
a
, . . . ,

∂

∂xn

���
a

defined by
∂

∂xi

���
a

f =
∂ f
∂xi (a)

form a basis for DaRn, which therefore has dimension n.

Proof. Apply the previous proposition and note that ∂/∂xi
��

a = Dei

��
a.

3.4.2 Tangent Vectors on Manifolds

Now we are in a position to define tangent vectors on manifolds:

Definition 141. Let M be a smooth manifold (with or without boundary), and let p be a point of M.
A linear map. A linear map v : C•(M) ! R is called a derivation at p if it satisfies the product
rule

v( f g)(p) = f (p)v(g) + g(p)v( f ) for all f , g 2 C•(M).

The set of all derivations of C•(M) at p, denoted by Tp M, is a vector space called the tangent space

to M at p. An element of Tp M is called a tangent vector at p.

The following lemma is the analogue of Lemma 32 for manifolds:
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Lemma 33 (Properties of Tangent Vectors on Manifolds). Suppose M is a smooth manifold
(with or without boundary), p 2 M, v 2 Tp M, and f , g 2 C•(M). Then we have the following:

a) If f is a constant function, then v( f ) = 0.

b) If f (p) = g(p) = 0, then v( f g) = 0.

To relate the abstract tangent spaces we have defined on manifolds to geometric tangent
spaces in Rn, we have to explore the way smooth maps affect tangent vectors. In the case of
a smooth map between Euclidean spaces, the total derivative of the map at a point (repre-
sented by its Jacobian matrix) is a linear map that represents the "best linear approximation"
to the map near the given point. In the manifold case there is a similar linear map, but it
makes no sense to talk about a linear map between manifolds. Instead, it will be a linear
map between tangent spaces.

Definition 142. If M and N are smooth manifolds (with or without boundary) and F : M ! N is
a smooth map, then for each p 2 M we define a map

dFp : Tp M ! TF(p)N,

called the differential of F at p, as follows: Given v 2 Tp M, we let dFp(v) be the derivation at
F(p) that acts on f 2 C•(N) by the rule dFp(v)( f ) = v( f � F) (see Figure 3.8 below).

Figure 3.8: The differential.

Note that if f 2 C•(N), then f � F 2 C•(M) so v( f � F) makes sense. The operator
dFp(v) : C•(N) ! R is linear because v is, and is a derivation at F(p) because for any
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f , g 2 C•(N), we have

dFp(v)( f g) = v (( f g) � F) = v (( f � F)(g � F))
= f � F(p) v(g � F) + g � F(p) v( f � F)
= f (F(p))dFp(v)(g) + g (F(p))dFp(v)( f ).

Proposition 50 (Properties of Differentials). Let M, N, and S be smooth manifolds (with or
without boundary), let F : M ! N and G : N ! S be smooth maps, and let p 2 M.

a) dFp : Tp M ! TF(p)N is linear.

b) d(G � F)p = dGF(p) � dFp : Tp M ! TG�F(p)S.

c) d(IdM)p = IdTp(M) : Tp M ! Tp M.

d) If F is a diffeomorphism, then dFp : Tp M ! TF(p)N is an isomorphism, and (dFp)�1 =
d(F�1)F(p).

The next proposition indicates that tangent vectors act locally.

Proposition 51. Let M be a smooth manifold (with or without boundary), p 2 M, and v 2 Tp M.
If f , g 2 C•(M) agree on some neighborhood of p, then v( f ) = v(g).

Using this proposition, we can identify the tangent space to an open submanifold with
the tangent space to the whole manifold:

Proposition 52 (The Tangent Space to an Open Submanifold). Let M be a smooth manifold
(with or without boundary), let U ✓ M be an open subset, and let i : U ,! M be the inclusion map.
For every p 2 U, the differential dip : TpU ! Tp M is an isomorphism.

Remark: Given an open subset U ✓ M, the isomorphism dip between TpU and Tp M is
canonically defined, independently of any choices. Hence from now on we identify TpU
with Tp M for any point p 2 U.
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Proposition 53 (Dimension of the Tangent Space). If M is an n-dimensional smooth manifold,
then for each p 2 M, the tangent space Tp M is an n-dimensional vector space.

Recall that every finite-dimensional vector space has a natural smooth manifold structure
that is independent of any choice of basis or norm. The following proposition shows that
the tangent space to a vector space can be naturally identified with the vector space itself.
Suppose V is a finite-dimensional vector space and a 2 V. Just as we did earlier in the case
of Rn, for any vector v 2 V, we define a map Dv

��
a : C•(V) ! R by

Dv
��

a f =
d
dt

���
t=0

f (a + tv). (3.2)

Proposition 54 (The Tangent Space to a Vector Space). Suppose V and W are finite-dimensional
vector spaces with their respective standard smooth manifold structures. For each point a 2 V, the
map v 7! Dv|a defined by (3.2) is a canonical isomorphism from V to TaV, such that for any linear
map L : V ! W, the following diagram commutes:

V TaV

W TLaW

⇠= //

L

✏✏

dLa

✏✏

⇠=
//

It is important to understand that each isomorphism V ⇠= TaV is canonically defined, in-
dependently of any choice of basis. Because of this result, we can routinely identify tangent
vectors to a finite-dimensional vector space with elements of the space itself. More gener-
ally, if M is an open submanifold of a vector space V, we can combine our identifications
Tp M $ TpV $ V to obtain a canonical identification of each tangent space to M with V.
For example, since GL(n, R) is an open submanifold of the vector space M(n, R), we can
identify its tangent space at each point (i.e., matrix) X 2 GL(n, R) with the full space of
matrices M(n, R).

There is another natural identification for tangent spaces to a product manifold:
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Proposition 55 (The Tangent Space to a Product Manifold). Let M1, . . . , Mk be smooth man-
ifolds, and for each j, let pj : M1 ⇥ · · ·⇥ Mk ! Mj be the projection onto the Mj factor. For any
point p = (p1, . . . , pk) 2 M1 ⇥ · · ·⇥ Mk and tangent vector n 2 Tp(M1 ⇥ · · ·⇥ Mk), the map

a : Tp(M1 ⇥ · · ·⇥ Mk) �! Tp1 M1 � · · ·� Tpk Mk

defined by
a(v) =

�
d(p1)p(v), . . . , d(pk)p(v)

�
(3.3)

is an isomorphism. The same is true if one of the spaces Mi is a smooth manifold with boundary.

Once again, because the isomorphism (3.3) is canonically defined, independently of any
choice of coordinates, we can consider it as a canonical identification, and we will always
do so. Thus, for example, we identify T(p,q)(M ⇥ N) with Tp M � TqN, and treat Tp M and
TqN as subspaces of T(p,q)(M ⇥ N).

3.4.3 Computations in Coordinates

Suppose M is a smooth manifold and let (U, j) be a smooth coordinate chart on M. Then j
is, in particular, a diffeomorphism from U to an open subset bU ✓ Rn. Combining Proposi-
tions 52 and 50 part d) from above, we see that dj(p) : Tp M ! Dj(p)R

n is an isomorphism.
Then by Corollary 29, the derivations ∂/∂x1|j(p), . . . , ∂/∂xn|j(p) form a basis for Dj(p)R

n.
Therefore, the preimages of these vectors under the isomorphism djp form a basis for
Tp M.

In keeping with our standard practice of treating coordinate maps as identifications when-
ever possible, we use the notation ∂/∂xi|p for these vectors, characterized by either of the
following expressions:

∂

∂xi

���
p
= (djp)

�1
✓

∂

∂xi

���
j(p)

◆
= d(j�1)j(p)

✓
∂

∂xi

���
j(p)

◆
.

Unwinding the definitions, we see that ∂/∂xi|p acts on a function f 2 C•(U) by

∂

∂xi

���
p

f =
∂

∂xi

���
j(p)

( f � j�1) =
∂ bf
∂xi (bp),
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where bf = f � j�1 is the coordinate representation of f , and bp = (p1, . . . , pn) = j(p) is the
coordinate representation of p. In other words, ∂/∂xi|p is just the derivation that takes the
ith partial derivative of (the coordinate representation of) f at (the coordinate representation
of) p. The vectors ∂/∂xi|p are called the coordinate vectors at p associated with the given
coordinate system. In the special case of standard coordinates on Rn, the vectors ∂/∂xi|p
are literally just the partial derivative operators.

The following proposition summarizes the discussion so far:

Proposition 56. Let M be a smooth n-manifold (with or without boundary), and let p 2 M.
Then Tp M is an n-dimensional vector space, and for any smooth chart

�
U, (xi)

�
containing p, the

coordinate vectors ∂/∂x1|p, . . . , ∂/∂xn|p form a basis for Tp M.

Thus, a tangent vector v 2 Tp M can be written uniquely as a linear combination

v = vi ∂

∂xi

���
p
,

The ordered basis
�
∂/∂xi|p

�
is called a coordinate basis for Tp M, and the coefficients

(v1, . . . , vn) are called the components of v with respect to the coordinate basis. If v is
known, its components can be computed easily from its action on the coordinate functions.
For each j, the components of v are given by vj = v(xj) (where we think of xj as a smooth
real-valued function on U), because

v(xj) =

✓
vi ∂

∂xi

���
p

◆
(xj) = vi ∂xj

∂xi (p) = vj.

3.4.4 The Differential in Coordinates

Next we explore how differentials look in coordinates. We begin by considering the special
case of a smooth map F : U ! V, where U ✓ Rn and V ✓ Rm are open subsets of Euclidean
spaces. For any p 2 U, we will determine the matrix of dFp : TpRn ! TF(p)R

m in terms of
the standard coordinate bases. Using (x1, . . . , xn) to denote the coordinates in the domain
and (y1, . . . , ym) to denote those in the codomain, and letting f 2 C•(Rm), we use the chain
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rule to compute the action of dFp on a typical basis vector as follows:

dFp

✓
∂

∂xi

���
p

◆
f =

∂

∂xi

���
p
( f � F)

=
∂ f
∂yj (F(p))

∂Fj

∂xi (p)

=

✓
∂Fj

∂xi (p)
∂

∂yj

���
F(p)

◆
f .

Thus we have that

dFp

✓
∂

∂xi

���
p

◆
=

∂Fj

∂xi (p)
∂

∂yj

���
F(p)

.

In other words, the matrix of dFp in terms of the coordinate bases is

0

B@

∂F1

∂x1 (p) · · · ∂F1

∂xn (p)
... . . . ...

∂Fm

∂x1 (p) · · · ∂Fm

∂xn (p)

1

CA .

Recall that the columns of the matrix are the components of the images of the basis vectors.
This matrix is none other than the Jacobian matrix of F at p, which is the matrix representa-
tion of the total derivative DF(p) : Rn ! Rm. Therefore, in this case, dFp : TpRn ! TF(p)R

m

corresponds to the total derivative under our usual identification of Euclidean spaces with
their tangent spaces.

Now consider the more general case of a smooth map F : M ! N between smooth mani-
folds (with or without boundary). Choosing smooth coordinate charts (U, j) for M contain-
ing p and (V, y) for N containing F(p), we obtain the coordinate representation

bF = y � F � j�1 : j(U \ F�1(V)) ! y(V) (see Figure 3.9).

Now let bp = j(p) denote the coordinate representation of p. By the above computation,
dbFbp is represented with respect to the standard coordinate bases by the Jacobian matrix of
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Figure 3.9: The differential in coordinates.

bF at bp. Using the fact that F � j�1 = y�1 � bF, we compute

dFp

✓
∂

∂xi

���
p

◆
= dFp

✓
d(j�1)bp

✓
∂

∂xi

���
bp

◆◆

= d(y�1)bF(bp)

✓
dbFbp

✓
∂

∂xi

���
bp

◆◆

= d(y�1)bF(bp)

 
∂bFj

∂xi (bp)
∂

∂yj

���
bF(bp)

!

=
∂bFj

∂xi (bp)
∂

∂yj

���
F(p)

.

Thus, dFp is represented in coordinate bases by the Jacobian matrix of (the coordinate rep-
resentative of) F. In fact, the definition of the differential was cooked up precisely to give a
coordinate-independent meaning to the Jacobian matrix. In the differential geometry liter-
ature, the differential is sometimes called the tangent map, the total derivative, or simply
the derivative of F. Because it "pushes" tangent vectors forward from the domain manifold
to the codomain, it is also called the (pointwise) pushforward.
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3.4.5 The Tangent Bundle

Definition 143. Given a smooth manifold M (with or without boundary), we define the tangent

bundle of M, denoted by TM, to be the disjoint union of the tangent spaces at all points of M:

TM = qp2MTp M.

We usually write an element of this disjoint union as an ordered pair (p, v), with p 2 M and
v 2 Tp M. The tangent bundle comes equipped with a natural projection map p : TM ! M,
which sends each vector v in Tp M to the point p at which it is tangent: p(p, v) = p.

Proposition 57. For any smooth n-manifold M, the tangent bundle TM has a natural topology and
smooth structure that make it into a 2n-dimensional smooth manifold. With respect to this structure,
the projection p : TM ! M is smooth.

Proof. You can find the proof on [Lee, 2013, p. 66].

Proposition 58. If M is a smooth n-manifold (with or without boundary), and M can be covered
by a single smooth chart, then TM is diffeomorphic to M ⇥ Rn.

Definition 144. By putting together the differentials of F at all points of M, we obtain a globally
defined map between tangent bundles, called the global differential or global tangent map and
denoted by dF : TM ! TN. This is just the map whose restriction to each tangent space Tp M ✓
TM is dFp (when we apply the differential of F to a specific vector v 2 Tp M, we can write either
dFp(v) or dF(v), depending on how much emphasis we wish to give to the point p).

Proposition 59. If F : M ! N is a smooth map, then its global differential dF : TM ! TN is a
smooth map.

The following properties of the global differential follow immediately from Proposi-
tion 50:

Corollary 30 (Properties of the Global Differential). Let M, N, and S be smooth manifolds
(with or without boundary), let F : M ! N and G : N ! S be smooth maps, and let p 2 M. Then,
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a) d(G � F) = dG � dF.

b) d(IdM) = IdTM.

c) If F is a diffeomorphism, then dF : TM ! TN is also a diffeomorphism, and (dF)�1 =
d(F�1).

h[YnabXcamZ\g

3.5 Submersions, Immersions, Embeddings

In this section we discuss a corollary of the Inverse Function Theorem, known as the Rank
Theorem, and some of its most crucial ramifications. We then delve more deeply into smooth
embeddings and smooth submersions, and apply the theory to a particularly useful class
of smooth submersions: the smooth covering maps.

3.5.1 Maps of Constant Rank

Definition 145. Suppose M and N are smooth manifolds (with or without boundary). Given a
smooth map F : M ! N and a point p 2 M, we define the rank of F at p to be the rank of the
linear map dFp : Tp M ! TF(p)N; it is the rank of the Jacobian matrix of F in any smooth chart, or
the dimension of Im(dFp) ✓ TF(p)N. If F has the same rank r at every point, we say that it has
constant rank, and write rank F = r.

Because the rank of a linear map is never higher than the dimension of either its domain
or its codomain, the rank of F at each point is bounded above by min{dim M, dim N}. If
the rank of dFp is equal to this upper bound, we say that F has full rank at p, and if F has
full rank everywhere, we say F has full rank.

The most important constant-rank maps are those of full rank:
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Definition 146. A smooth map F : M ! N is called a smooth submersion if its differential is
surjective at each point (or equivalently, if rank F = dim N). It is called a smooth immersion if
its differential is injective at each point (equivalently, rank F = dim M).

Proposition 60. Suppose F : M ! N is a smooth map and p 2 M. If dFp is surjective, then p has
a neighborhood U such that F|U is a submersion. If dFp is injective, then p has a neighborhood U
such that F|U is an immersion.

Example 54. a) Suppose M1, . . . , Mk are smooth manifolds. Then each of the projection maps
pi : M1 ⇥ · · ·⇥ Mk ! Mi is a smooth submersion. In particular, the projection p : Rn+k ! Rn

onto the first n coordinates is a smooth submersion.

b) If g : I ! M is a smooth curve in a smooth manifold M (with or without boundary), then g is
a smooth immersion if and only if g0(t) 6= 0 for all t 2 I.

c) If M is a smooth manifold and its tangent bundle TM is given the smooth manifold structure
described in the proof to Proposition 57 (see [?, 66]), the projection p : TM ! M is a smooth
submersion. To verify this, just note that with respect to any smooth local coordinates (xi) on an
open subset U ✓ M and the corresponding natural coordinates (xi, vi) on p�1(U) ✓ TM, the
coordinate representation of p is bp(x, v) = x.

d) The smooth map X : R2 ! R3 given by

X(u, v) = ((2 + cos 2pu) cos 2pv, (2 + cos 2pu) sin 2pv, sin 2pu)

is a smooth immersion of R2 into R3 whose image is the doughnut-shaped surface obtained by
revolving the circle (y� 2)2 + z2 = 1 in the (y, z)-plane about the z-axis (see Figure 3.10 below). m

Definition 147. If M and N are smooth manifolds (with or without boundary), a map F : M ! N
is called a local diffeomorphism if every point p 2 M has a neighborhood U such that F(U) is
open in N and F|U : U ! F(U) is a diffeomorphism.

The next theorem is the key to the most important properties of local diffeomorphisms:
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Figure 3.10: A torus of revolution in R3.

Theorem 105 (Inverse Function Theorem for Manifolds). Suppose M and N are smooth
manifolds (without boundary)1 and F : M ! N is a smooth map. If p 2 M is a point such that dFp is
invertible, then there are connected neighborhoods U0 of p and V0 of F(p) such that F|U0 : U0 ! V0
is a diffeomorphism.

Proposition 61 (Elementary Properties of Local Diffeomorphisms). We have the following
properties for local diffeomorphisms:

a) Every composition of local diffeomorphisms is a local diffeomorphism.

b) Every finite product of local diffeomorphisms between smooth manifolds is a local diffeomor-
phism.

c) Every local diffeomorphism is a local homeomorphism and an open map.

d) The restriction of a local diffeomorphism to an open submanifold (with or with out boundary)
is a local diffeomorphism.

e) Every diffeomorphism is a local diffeomorphism.

f) Every bijective local diffeomorphism is a diffeomorphism.

g) A map between smooth manifolds (with or without boundary) is a local diffeomorphism if and
only if in a neighborhood of each point of its domain, it has a coordinate representation that is
a local diffeomorphism.

] t

1 To see a case where the theorem fails for a map whose domain has nonempty boundary, see Problem 4 � 1
on [Lee, 2013, p. 95].

XcamZ\g g

f 233



3.5. Submersions, Immersions, Embeddings Chapter 3. Smooth Manifolds
h [a\ g

Proposition 62. Suppose M and N are smooth manifolds (without boundary), and F : M ! N is
a map. Then we have the following:

a) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth submer-
sion.

b) If dim M = dim N and F is either a smooth immersion or a smooth submersion, then it is a
local diffeomorphism.

The most important fact about constant-rank maps is the following consequence of the
inverse function theorem, which says that a constant-rank smooth map can be placed locally
into a particularly simple canonical form by a change of coordinates. It is a nonlinear version
of the canonical form theorem for linear maps (see [Lee, 2013, p. 626, Theorem B.20]):

Theorem 106 (Rank Theorem). Suppose M and N are smooth manifolds of dimensions m and n,
respectively, and F : M ! N is a smooth map with constant rank r. For each p 2 M, there exist
smooth charts (U, j) for M centered at p and (V, y) for N centered at F(p) such that F(U) ✓ V,
in which F has a coordinate representation of the form

bF(x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

In particular, if F is a smooth submersion, this becomes

bF(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn),

and if F is a smooth immersion, it is

bF(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

The next corollary can be viewed as a more invariant statement of the rank theorem. It
says that constant-rank maps are precisely the ones whose local behavior is the same as that
of their differentials:

Corollary 31. Let M and N be smooth manifolds, let F : M ! N be a smooth map, and suppose M
is connected. Then the following are equivalent:

a) For each p 2 M there exist smooth charts containing p and F(p), in which the coordinate
representation of F is linear.
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b) F has constant rank.

The rank theorem is a purely local statement. However, it has the following powerful
global consequence.

Theorem 107 (Global Rank Theorem). Let M and N be smooth manifolds and suppose F : M !
N is a smooth map of constant rank.

a) If F is surjective, it is a smooth submersion.

b) If F is injective, it is a smooth immersion.

c) If F is bijective, it is a diffeomorphism.

3.5.2 Embeddings

One special kind of immersion is particularly important:

Definition 148. If M and N are smooth manifolds (with or without boundary), a smooth embed-

ding of M into N is a smooth immersion F : M ! N that is also a topological embedding, i.e., a
homeomorphism onto its image F(M) ✓ N in the subspace topology.

Remark: Note that a smooth embedding is a map that is both a topological embedding
and a smooth immersion, not just a topological embedding that happens to be smooth.

Example 55 (Smooth Embeddings). a) If M is a smooth manifold (with or without boundary)
and U ✓ M is an open submanifold, the inclusion map U ,! M is a smooth embedding.

b) If M1, . . . , Mk are smooth manifolds and pi 2 Mi are arbitrarily chosen points, each of the maps
ij : Mj ! M1 ⇥ · · ·⇥ Mk given by

ij(q) = (p1, . . . , pj�1, q, pj+1, . . . , pk)

is a smooth embedding. In particular, the inclusion map Rn ,! Rn+k given by

(x1, . . . , xn) ,! (x1, . . . , xn, 0, . . . , 0| {z }
k�n zeroes

)

is a smooth embedding. m
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To understand more fully what it means for a map to be a smooth embedding, it is useful
to bear in mind some examples of injective smooth maps that are NOT smooth embeddings.
The next three examples illustrate three rather different ways in which this can happen:

Example 56 (Smooth Topological Embedding). The map g : R ! R2 given by g(t) = (t3, 0)
is a smooth map and a topological embedding. However, since g0(0) = 0, we have that g is not a
smooth immersion and thus not a smooth embedding. m

Example 57 (The Figure-Eight Curve). Consider the curve b : (�p, p) ! R2 defined by

b(t) = (sin 2t, sin t).

Its image is a set that looks like a figure-eight in the plane (see Figure 3.11), sometimes called a
lemniscate. (It is the locus of points (x, y) where x2 = 4y2(1 � y2), as you can check.) It is easy to

Figure 3.11: A figure-eight curve (lemniscate).

see that b is an injective smooth immersion because b0(t) never vanishes; but it is not a topological
embedding, because its image is compact in the subspace topology, while its domain (the open set
(�p, p)) is not. m

Example 58 (A Dense Curve on the Torus). Let T2 = S1 ⇥ S1 ✓ C2 denote the torus, and let a
be any irrational number. The map g : R ! T2 given by

g(t) =
⇣

e2pit, e2piat
⌘

is a smooth immersion because g0(t) never vanishes. It is also injective, because g(t1) = g(t2)
implies that both t1 � t2 and at1 � at2 are integers, which is impossible unless t1 = t2.
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Consider the set g(Z) = {g(n) | n 2 Z}. It follows from Dirichlet’s approximation theorem (see
below) that for every # > 0, there are integers n, m such that kan � mk < #. Using the fact that
keit1 � eit2k  kt1 � t2k for t1, t2 2 R (because the line segment from eit1 to eit2 is shorter than the
circular arc of length kt1 � t2k), we have

ke2pian � 1k = ke2pian � e2pimk  k2p(an � m)k < 2p#.

Therefore,

kg(n)� g(0)k =
���
⇣

e2pin, e2pian
⌘
� (1, 1)

��� =
���
⇣

1, e2pian
⌘
� (1, 1)

��� < 2p#.

Thus, g(0) is a limit point of g(Z). But this means that g is not a homeomorphism onto its image,
because Z has no limit point in R. In fact, it is not hard to show that the image set g(R) is actually
dense in T2:

Let (z1, z2) 2 T2 and choose s1, s2 2 R so that e2pis1
= z1 and e2pis2

= z2. Then

g(s1 + n) =
⇣

e2pis1
, e2pian e2pias1

⌘
,

so it remains to show that S = {e2pian | n 2 Z} is dense in S1 whenever a is irrational. Let # > 0;
then by Dirichlet’s approximation theorem, there exist integers n, m such that kna � mk < #. Let
q = na � m so that

e2piq = e2pian 2 S and q 6= 0 since a is irrational.

Any integer power of e2piq is also a member of S, and since # was arbitrary, we can approximate any
point on S1 by taking powers of e2piq , as desired. m

The preceding example depends heavily on the following elementary result from number
theory:

Lemma 34 (Dirichlet’s Approximation Theorem). Given a 2 R and any positive integer N,
there exist integers n, m with 1  n  N such that |na � m| < 1/N.

The following proposition gives a few simple sufficient criteria for an injective immersion
to be an embedding:
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Proposition 63. Suppose M and N are smooth manifolds (with or without boundary), and F : M !
N is an injective smooth immersion. If any of the following holds, then F is a smooth embedding.

a) F is an open or closed map.

b) F is a proper map.2

c) M is compact.

d) M has empty boundary and dim M = dim N.

Example 59. Let i : Sn ,! Rn+1 be the inclusion map. We have previously shown that i is smooth by
computing its coordinate representation with respect to graph coordinates. It is easy to verify in the
same coordinates that its differential is injective at each point, so it is an injective smooth immersion.
Moreover, because Sn is compact, i is a smooth embedding by part c) of the above proposition. m

Example 60. We now give an example of a smooth embedding that is neither an open nor a closed
map. Let X = [0, 1) and Y = [�1, 1], and let f : X ! Y be the identity map on X. Then f is a
smooth embedding, X is both open and closed (in X), but f (X) is neither open nor closed (in Y). m

Theorem 108 (Local Embedding Theorem). Suppose M and N are smooth manifolds (with or
without boundary), and F : M ! N is a smooth map. Then F is a smooth immersion if and only if
every point in M has a neighborhood U ✓ M such that F|U : U ! N is a smooth embedding.

Theorem 108 points the way to a notion of immersions that makes sense for arbitrary
topological spaces:

Definition 149. If X and Y are topological spaces, a continuous map F : X ! Y is called a topolog-

ical immersion if every point of X has a neighborhood U such that F|U is a topological embedding.

Thus, every smooth immersion is a topological immersion; but, just as with embeddings,
a topological immersion that happens to be smooth need not be a smooth immersion (see
Example 56 above).

] t

2 Recall that if X and Y are topological spaces, a map F : X ! Y (continuous or not) is said to be proper if for
every compact set K ✓ Y, the preimage F�1(K) is compact as well.
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3.5.3 Submersions

Definition 150. If p : M ! N is any continuous map, a section of p is a continuous right inverse
for p, i.e., a continuous map pS : N ! M such that p � pS = IdN:

M

N

p

✏✏

pS

^^

A local section of p is a continuous map pS : U ! M defined on some open subset U ✓ N and
satisfying the analogous relation p � pS = IdU.

Theorem 109 (Local Section Theorem). Suppose M and N are smooth manifolds and p : M !
N is a smooth map. Then p is a smooth submersion if and only if every point of M is in the image
of a smooth local section of p.

This theorem motivates the following definition:

Definition 151. If p : X ! Y is a continuous map, we say that p is a topological submersion if
every point of X is in the image of a (continuous) local section of p. (The preceding theorem shows
that every smooth submersion is a topological submersion).

Example 61. For an example of a smooth map that is a topological submersion but not a smooth
submersion, consider f (x) = x3 at x = 0. m

Proposition 64 (Properties of Smooth Submersions). Let M and N be smooth manifolds, and
suppose p : M ! N is a smooth submersion. Then p is an open map, and if it is surjective it is a
quotient map.

The next three theorems provide important tools that we will use frequently when study-
ing submersions. They demonstrate that surjective smooth submersions play a role in
smooth manifold theory analogous to the role of quotient maps in topology:
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Theorem 110 (Characteristic Property of Surjective Smooth Submersions). Suppose M and
N are smooth manifolds, and p : M ! N is a surjective smooth submersion. For any smooth
manifold S (with or without boundary), a map F : N ! S is smooth if and only if F � p is smooth:

M

N S//
F

✏✏

p

��

F � p

Side Note from Topology: Recall that if p : X ! Y is a map, a subset U ✓ X is said
to be saturated with respect to p if U is the entire preimage of its image under p, i.e., if
U = p�1 (p(U)). Given y 2 Y, the fiber of p over y is the set p�1(y). Thus, a subset of X is
saturated if and only if it is a union of fibers.

Theorem 111 (Passing Smoothly to the Quotient). Suppose M and N are smooth manifolds
and p : M ! N is a surjective smooth submersion. If S is a smooth manifold (with or without
boundary) and F : M ! S is a smooth map that is constant on the fibers of p, then there exists a
unique smooth map eF : N ! S such that eF � p = F:

M

N S//eF

✏✏

p

��

F

Theorem 112 (Uniqueness of Smooth Quotients). Suppose that M, N1, and N2 are smooth
manifolds, and p1 : M ! N1 and p2 : M ! N2 are surjective smooth submersions that are constant
on each other’s fibers. Then there exists a unique diffeomorphism F : N1 ! N2 such that F �p1 = p2:

M

N1 N2//
F

⌅⌅

p1

⇢⇢

p2
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3.5.4 Smooth Covering Maps

Recall from topology the notion of covering maps (for more on this subject, check Subsec-
tion §??):

Definition 152. Suppose E and X are topological spaces. A map p : E ! X is called a covering

map if E and X are connected and locally path-connected, p is surjective and continuous, and each
point p 2 X has a neighborhood U that is evenly covered by p, meaning that each component of
p�1(U) is mapped homeomorphically onto U by p. In this case, X is called the base of the covering,
and E is called a covering space of X. If U is an evenly covered subset of X, the components of
p�1(U) are called the sheets of the covering over U.

In the context of smooth manifolds, it is useful to introduce a slightly more restrictive
type of covering map:

Definition 153. If E and M are connected3 smooth manifolds (with or without boundary), a map
p : E ! M is called a smooth covering map if p is smooth and surjective, and each point in M
has a neighborhood U such that each component of p�1(U) is mapped diffeomorphically onto U by
p. In this context we also say that U is evenly covered by p and that the space M is called the
base of the covering, while E is called a covering manifold of M. If E is simply connected, it is
called the universal covering manifold of M.

Remark: To distinguish this new definition from the previous one, we often call an ordi-
nary (not necessarily smooth) covering map a topological covering map. A smooth covering
map is, in particular, a topological covering map. But as with other types of maps we have
studied in this chapter, a smooth covering map is more than just a topological covering map
that happens to be smooth: the definition requires in addition that the restriction of p to
each component of the preimage of an evenly covered set be a diffeomorphism, not just a
smooth homeomorphism.

Proposition 65 (Properties of Smooth Coverings). We have the following properties of smooth
coverings:

] t

3 Note that here we make no mention of path-connectedness, since, as you may well recall, connectedness =)
path-connectedness in manifolds.
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a) Every smooth covering map is a local diffeomorphism, a smooth submersion, an open map, and
a quotient map.

b) An injective smooth covering map is a diffeomorphism.

c) A topological covering map is a smooth covering map if and only if it is a local diffeomorphism.

Because smooth covering maps are surjective smooth submersions, all of the previous
results about smooth submersions can be applied to them. For example, Theorem 111 is a
particularly useful tool for defining a smooth map out of the base of a covering space.

For smooth covering maps, the local section theorem can be strengthened:

Proposition 66 (Local Section Theorem for Smooth Covering Maps). Suppose E and M are
smooth manifolds (with or without boundary), and p : E ! M is a smooth covering map. Given
any evenly covered open subset U ✓ M, any q 2 U, and any p in the fiber of p over q, there exists
a unique smooth local section pS : U ! E such that pS(q) = p.

Proposition 67 (Covering Spaces of Smooth Manifolds). Suppose M is a connected smooth
n-manifold, and p : E ! M is a topological covering map. Then E is a topological n-manifold, and
has a unique smooth structure such that p is a smooth covering map.

Proposition 68 (Covering Spaces of Smooth Manifolds with Boundary). Suppose M is a
connected smooth n-manifold with boundary, and p : E ! M is a topological covering map. Then
E is a topological n-manifold with boundary such that ∂E = p�1(∂M), and it has a unique smooth
structure such that p is a smooth covering map.

Corollary 32 (Existence of a Universal Covering Manifold). If M is a connected smooth man-
ifold, there exists a simply connected smooth manifold eM, called the universal covering manifold

of M, and a smooth covering map p : eM ! M. The universal covering manifold is unique in the
following sense: if eM0 is any other simply connected smooth manifold that admits a smooth covering
map p0 : eM0 ! M, then there exists a diffeomorphism F : eM ! eM0 such that p0 � F = p.

There are not many simple criteria for determining whether a given map is a smooth
covering map, even if it is known to be a surjective local diffeomorphism. The following
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proposition gives one useful sufficient criterion. (It is not a necessary condition, however;
see Problem 4 � 11 on [Lee, 2013, p. 96].)

Proposition 69 (Covering Spaces of Smooth Manifolds with Boundary). Suppose E and M
are nonempty connected smooth manifolds (with or without boundary). If p : E ! M is a proper
local diffeomorphism, then p is a smooth covering map.

h[YnabXcamZ\g

3.6 Submanifolds

In this section we will explore smooth submanifolds, which are smooth manifolds on their
own right, that happen to be subsets of other smooth manifolds. As you will soon discover,
the situation is quite a bit more subtle and complex than the analogous theory of topological
spaces/subspaces. I should mention that, even though we will not discuss it in these notes,
there is a very celebrated result known as Whitney’s Embedding Theorem that you should def-
initely check out after you’re done with this section. You can read it on [Lee, 2013, Chapter
6], or just look it up somewhere online. The theorem basically states that abstract manifolds
are not so abstract after all! It turns about that every manifold can be embedded into some
ambient Euclidean space! This is a beautiful theorem that you should definitely investigate,
but first you need to make sure that you thoroughly understand the content on this section
so hang on cowboy, not so fast!

3.6.1 Embedded Submanifolds

Definition 154. Suppose M is a smooth manifold (with or without boundary). An embedded

submanifold (also called regular submanifold) of M is a subset S ✓ M that is a manifold (without
boundary) in the subspace topology, endowed with a smooth structure with respect to which the
inclusion map S ,! M is a smooth embedding.
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Definition 155. If S is an embedded submanifold of M, the difference dim M � dim S is called the
codimension of S in M, and the containing manifold M is called the ambient manifold for S.
An embedded hypersurface is an embedded submanifold of codimension 1. (The empty set is an
embedded submanifold of any dimension).

The easiest embedded submanifolds to understand are those of codimension 0. Recall
that for any smooth manifold M we defined an open submanifold of M to be any open
subset with the subspace topology and with the smooth charts obtained by restricting those
of M.

Proposition 70 (Open Submanifolds). Suppose M is a smooth manifold. The embedded subman-
ifolds of codimension 0 in M are exactly the open submanifolds.

The next few propositions demonstrate several other ways to produce embedded sub-
manifolds:

Proposition 71 (Images of Embeddings as Submanifolds). Suppose M is a smooth manifold
(with or without boundary), N is a smooth manifold, and F : N ! M is a smooth embedding. Let
S = F(N). With the subspace topology, S is a topological manifold, and it has a unique smooth
structure making it into an embedded submanifold of M with the property that F is a diffeomorphism
onto its image.

Proof. If we give S the subspace topology that it inherits from M, then the assumption that
F is an embedding means that F can be considered as a homeomorphism from N onto S,
and thus S is a topological manifold. We give S a smooth structure by taking the smooth
charts to be those of the form

�
F(U), j � F�1�, where (U, j) is any smooth chart for N;

smooth compatibility of these charts follows immediately from the smooth compatibility
of the corresponding charts for N. With this smooth structure on S, the map F is a diffeo-
morphism onto its image (essentially by definition), and this is obviously the only smooth
structure with this property. The inclusion map S ,! M is equal to the composition of a
diffeomorphism followed by a smooth embedding:

S F�1
�! N F�! M,

and therefore it is a smooth embedding.
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Since every embedded submanifold is the image of a smooth embedding (namely its own
inclusion map), the previous proposition shows that embedded submanifolds are exactly
the images of smooth embeddings.

Proposition 72 (Slices of Product Manifolds). Suppose M and N are smooth manifolds. For
each p 2 N, the subset M ⇥ {p} (called a slice of the product manifold) is an embedded submanifold
of M ⇥ N diffeomorphic to M.

Proof. The set M ⇥ {p} is the image of the smooth embedding x 7! (x, p).

Proposition 73 (Graphs as Submanifolds). Suppose M is a smooth m-manifold (without bound-
ary), N is a smooth n-manifold (with or without boundary), U ✓ M is open, and f : U ! N is a
smooth map. Let G( f ) ✓ M ⇥ N denote the graph of f :

G( f ) = {(x, y) 2 M ⇥ N | x 2 U, y = f (x)}.

Then G( f ) is an embedded m-dimensional submanifold of M ⇥ N (see Figure 3.12).

Figure 3.12: A graph is an embedded submanifold.

Proof. Define a map g f : U ! M ⇥ N by

g f (x) = (x, f (x)) . (3.4)

It is a smooth map whose image is G( f ). Because the projection pM : M ⇥ N ! M satisfies
pM � g f (x) = x for x 2 U, the composition d(pM)(x, f (x)) � d(g f )x is the identity on Tx M
for each x 2 U. Thus, d(g f )x is injective, so f is a smooth immersion. It a homeomorphism
onto its image because pM|G( f ) is a continuous inverse for it. Thus, G( f ) is an embedded
submanifold diffeomorphic to U.
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Recall the following proposition from topology:

Proposition 74 (Sufficient Conditions for Properness). Suppose X and Y are topological spaces,
and F : X ! Y is a continuous map.

a) If X is compact and Y is Hausdorff, then F is proper.

b) If F is a closed map with compact fibers, then F is proper.

c) If F is a topological embedding with closed image, then F is proper.

d) If Y is Hausdorff and F has a continuous left inverse (i.e., a continuous map G : Y ! X such
that G � F = IdX), then F is proper.

e) If F is proper and A ✓ X is a subset that is saturated with respect to F, then F|A : A ! F(A)
is proper.

Definition 156. An embedded submanifold S ✓ M is said to be properly embedded if the inclusion
S ,! M is a proper map.

Proposition 75. Suppose M is a smooth manifold (with or without boundary) and S ✓ M is an
embedded submanifold. Then S is properly embedded if and only if it is a closed subset of M.

Corollary 33. Every compact embedded submanifold is properly embedded.

Proof. Compact subsets of Hausdorff spaces are closed.

Graphs of globally defined functions are common examples of properly embedded sub-
manifolds:

Proposition 76 (Global Graphs Are Properly Embedded). Suppose M is a smooth manifold,
N is a smooth manifold (with or without boundary), and f : M ! N is a smooth map. With the
smooth manifold structure of Proposition 73, G( f ) is properly embedded in M ⇥ N.

Proof. Proof. In this case, the projection pM : M ⇥ N ! M is a smooth left inverse for
the embedding g f : M ! M ⇥ N defined by equation (3.4) above. Thus g f is proper by
Proposition 74.
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As Theorem 113 below will show, embedded submanifolds are modeled locally on the
standard embedding of Rk into Rn, identifying Rk with the subspace

{(x1, . . . , xk, xk+1, . . . , xn) | xk+1 = · · · = xn = 0} ✓ Rn.

Somewhat more generally:

Definition 157. If U is an open subset of Rn and k 2 {0, . . . , n}, a k-dimensional slice of U (or
simply a k-slice) is any subset of the form

S = {(x1, . . . , xk, xk+1, . . . , xn) 2 U | xk+1 = ck+1, . . . , xn = cn}

for some constants ck+1, . . . , cn. (When k = n, this just means S = U.)

Definition 158. Let M be a smooth n-manifold, and let (U, j) be a smooth chart on M. If S is a
subset of U such that j(S) is a k-slice of j(U), then we say that S is a k-slice of U.

Remark: Although in general we allow our slices to be defined by arbitrary constants
ck+1, . . . , cn, it is sometimes useful to have slice coordinates for which the constants are all
zero, which can easily be achieved by subtracting a constant from each coordinate function.

Definition 159. Given a subset S ✓ M and a nonnegative integer k, we say that S satisfies the
local k-slice condition if each point of S is contained in the domain of a smooth chart (U, j) for
M such that S \ U is a single k-slice in U. Any such chart is called a slice chart for S in M, and
the corresponding coordinates (x1, . . . , xn) are called slice coordinates.

Theorem 113 (Local Slice Criterion for Embedded Submanifolds). Let M be a smooth n-
manifold. If S ✓ M is an embedded k-dimensional submanifold, then S satisfies the local k-slice
condition. Conversely, if S ✓ M is a subset that satisfies the local k-slice condition, then with the
subspace topology, S is a topological manifold of dimension k, and it has a smooth structure making
it into a k-dimensional embedded submanifold of M.

Proof. ()) First suppose that S ✓ M is an embedded k-dimensional submanifold. Since
the inclusion map S ,! M is an immersion, the rank theorem shows that for any p 2 S
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there are smooth charts (U, j) for S (in its given smooth manifold structure) and (V, y)
for M, both centered at p, in which the inclusion map i

��
U : U ! V has the coordinate

representation
(x1, . . . , xk) 7! (x1, . . . , xk, 0, . . . , 0).

Choose # > 0 small enough that both U and V contain coordinate balls of radius # centered
at p, and denote these coordinate balls by U0 ✓ U and V0 ✓ V. It follows that U0 = i(U0) is
exactly a single slice in V0. Because S has the subspace topology, the fact that U0 is open in
S means that there is an open subset W ✓ M such that U0 = W \ S. Setting V1 = V0 \ W,
we obtain a smooth chart

⇣
V1, y

��
V1

⌘
for M containing p such that V1 \ S = U0, which is a

single slice of V1.

(() Conversely, suppose S satisfies the local k-slice condition. With the subspace topol-
ogy, S is Hausdorff and second countable, because both properties are inherited by sub-
spaces. To see that S is locally Euclidean, we construct an atlas. The basic idea of the con-
struction is that if (x1, . . . , xn) are slice coordinates for S in M, we can use (x1, . . . , xk) as
local coordinates for S.

For this proof, let p : Rn ! Rk denote the projection onto the first k coordinates. Let
(U, j) be any slice chart for S in M (see Figure 3.13), and define

V = U \ S, bV = p � j(V), y = p � j
��
V : V ! bV.

Figure 3.13: A chart for a subset satisfying the k-slice condition.

By definition of slice charts, j(V) is the intersection of j(U) with a certain k-slice A ✓
Rn defined by setting xk+1 = ck+1, . . . , xn = cn, and therefore j(V) is open in A. Since
p|A is a diffeomorphism from A to Rk, it follows that bV is open in Rk. Moreover, y is a

XcamZ\g g

f 248



3.6. Submanifolds Chapter 3. Smooth Manifolds
h [a\ g

homeomorphism because it has a continuous inverse given by j�1 � j
�� bV , where j : Rk ! Rn

is the map
j(x1, . . . , xk) = (x1, . . . , xk, ck+1, . . . , cn)

Thus S is a topological k-manifold, and the inclusion map i : S ,! M is a topological embed-
ding.

To put a smooth structure on S, we need to verify that the charts constructed above are
smoothly compatible. Suppose (U, j) and (U0, j0) are two slice charts for S in M, and let
(V, y), (V 0, y0) be the corresponding charts for S. The transition map is given by y0 � y�1 =
p � j0 � j�1 � j, which is a composition of four smooth maps (see Figure 3.14)

Figure 3.14: Smooth compatibility of slice charts.

Thus the atlas we have constructed is in fact a smooth atlas, and it defines a smooth
structure on S. In terms of a slice chart (U, j) for M and the corresponding chart (V, y) for
S, the inclusion map S ,! M has a coordinate representation of the form

(x1, . . . , xk) 7! (x1, . . . , xk, ck+1, . . . , cn),

which is a smooth immersion. Since the inclusion is a smooth immersion and a topological
embedding, S is an embedded submanifold.

Notice that the local slice condition for S ✓ M is a condition on the subset S only; it does
not presuppose any particular topology or smooth structure on S. As we will see later on
on Theorem 118, the smooth manifold structure constructed in the preceding theorem is the
unique one in which S can be considered as a submanifold, so a subset satisfying the local
slice condition is an embedded submanifold in only one way.
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Example 62 (Spheres as Submanifolds). For any n � 0, Sn is an embedded submanifold of
Rn+1, because it is locally the graph of a smooth function: the intersection of Sn with the open subset
{x : xi > 0} is the graph of the smooth function

xi = f (x1, . . . , xi�1, xi+1, . . . , xn+1),

where f : Bn ! R is given by f (u) =
p

1 � kuk2. Similarly, the intersection of Sn with {x | xi <
0} is the graph of � f . Since every point in Sn is in one of these sets, Sn satisfies the local n-slice
condition and is thus an embedded submanifold of Rn+1. The smooth structure thus induced on Sn

is the same as the one we have previously defined in class: in fact, the coordinates for Sn determined
by these slice charts are exactly the graph coordinates previously defined. m

If M is a smooth manifold with nonempty boundary and S ✓ M is an embedded subman-
ifold, then S might intersect ∂M in very complicated ways, so we will not attempt to prove
any general results about the existence of slice charts for S in M in that case. However, in
the special case in which the submanifold is the boundary of M itself, the boundary charts
for M play the role of slice charts for ∂M in M, and we do have the following result:

Theorem 114. If M is a smooth n-manifold with boundary, then with the subspace topology, ∂M
is a topological (n � 1)-dimensional manifold (without boundary), and has a smooth structure such
that it is a properly embedded submanifold of M.

3.6.2 Level Sets

Definition 160. If F : M ! N is any map and c is any point of N, we call the set F�1(c) a level

set of F (see Figure 3.15). (In the special case when N = Rk and c = 0, the level set F�1(0) is
usually called the zero set of F).

Example 63. It is easy to find level sets of smooth functions that are not smooth submanifolds. For
instance, consider the three smooth functions Q, F, Y : R2 ! R defined by

Q(x, y) = x2 � y, F(x, y) = x2 � y2, Y(x, y) = x2 � y3.

Although the zero set of Q (a parabola) is an embedded submanifold of R2 (because it is the graph
of the smooth function f (x) = x2), it can be shown that neither the zero set of F nor that of
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Figure 3.15: A level set.

Figure 3.16: Level sets may or may not be embedded submanifolds.

Y is an embedded submanifold (I’ll leave this to you as an exercise; try solving Problem 5-11
from [Lee, 2013]). In fact, without further assumptions on the smooth function, the situation is
about as bad as could be imagined: as it has been previously stated on Theorem 104 in Section §3.3,
every closed subset of M can be expressed as the zero set of some smooth real-valued function. m

Theorem 115 (Constant-Rank Level Set Theorem). Let M and N be smooth manifolds, and
let F : M ! N be a smooth map with constant rank r. Each level set of F is a properly embedded
submanifold of codimension r in M.

Corollary 34 (Submersion Level Set Theorem). If M and N be smooth manifolds and F : M !
N is a smooth submersion, then each level set of F is a properly embedded submanifold whose
codimension is equal to the dimension of N.

Proof. The proof follows trivially by the fact that every smooth submersion has constant
rank equal to the dimension of its codomain.
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This last result should be compared to the corresponding result in linear algebra: if
L : Rm ! Rr is a surjective linear map, then the kernel of L is a linear subspace of codi-
mension r by the rank-nullity law. The vector equation Lx = 0 is equivalent to r linearly
independent scalar equations, each of which can be thought of as cutting down one of the
degrees of freedom in Rm, leaving a subspace of codimension r. In the context of smooth
manifolds, the analogue of a surjective linear map is a smooth submersion, each of whose
(local) component functions cuts down the dimension by one.

Corollary 34 can be strengthened considerably, because we need only check the submer-
sion condition on the level set we are interested in.

Definition 161. If F : M ! N is a smooth map, a point p 2 M is said to be a regular point

of F if dFp : Tp M ! TF(p)N is surjective; it is a critical point of F otherwise. (This means, in
particular, that every point of M is critical if dim M < dim N, and every point is regular if and
only if F is a submersion.)

Definition 162. A point c 2 N is said to be a regular value of F if every point of the level set
F�1(c) is a regular point; c is called a critical value otherwise. (In particular, if F�1(c) = ∆, then
c is a regular value.

Definition 163. A level set F�1(c) is called a regular level set if c is a regular value of F; in other
words, a regular level set is a level set consisting entirely of regular points of F (points p such that
dFp is surjective).

Corollary 35 (Regular Level Set Theorem). Every regular level set of a smooth map between
smooth manifolds is a properly embedded submanifold whose codimension is equal to the dimension
of the codomain.

It is worth noting that the previous corollary also applies to empty level sets, which are
both regular level sets and properly embedded submanifolds.

Example 64 (Spheres). Now we can give a much easier proof that Sn is an embedded submanifold of
Rn+1. The sphere is a regular level set of the smooth function f : Rn+1 ! R given by f (x) = kxk2,
since d fx(v) = 2 Âi xivi which is surjective (except at the origin, but obviously the origin is not a
point on the sphere). m
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Not all embedded submanifolds can be expressed as level sets of smooth submersions.
However, the next proposition shows that every embedded submanifold is at least locally
of this form:

Proposition 77. Let S be a subset of a smooth m-manifold M. Then S is an embedded k-submanifold
of M if and only if every point of S has a neighborhood U in M such that U \ S is a level set of a
smooth submersion F : U ! Rm�k.

Proof. ()) First suppose S is an embedded k-submanifold. If (x1, . . . , xm) are slice coordi-
nates for S on an open subset U ✓ M, then the map F : U ! Rm�k given in coordinates by
F(x) = (xk+1, . . . , xm) is easily seen to be a smooth submersion, one of whose level sets is
S \ U (see Figure 3.17).

Figure 3.17: An embedded submanifold is locally a level set.

(() Conversely, suppose that around every point p 2 S there is a neighborhood U and
a smooth submersion F : U ! Rm�k such that S \U is a level set of F. Then by the submer-
sion level set theorem (Corollary 34), we have that S \U is an embedded submanifold of U,
so it satisfies the local slice condition; it follows that S is itself an embedded submanifold
of M.

Definition 164. If S ✓ M is an embedded submanifold, a smooth map F : M ! N such that S is
a regular level set of F is called a defining map for S. In the special case when N = Rm�k (so that
F is a real-valued or vector-valued function), it is usually called a defining function.

For instance, from Example 64, we have that f (x) = kxk2 is a defining function for the
sphere. More generally:
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Definition 165. If U is an open subset of M and F : U ! N is a smooth map such that S \ U is a
regular level set of F, then F is called a local defining map (or local defining function) for S.

Proposition 77 says that every embedded submanifold admits a local defining function
in a neighborhood of each of its points. In specific examples, finding a (local or global)
defining function for a submanifold is usually just a matter of using geometric information
about how the submanifold is defined together with some computational ingenuity. Here
is an example:

Example 65 (Surfaces of Revolution). Let H be the half-plane {(r, z) | r > 0}, and suppose
C ✓ H is an embedded 1-dimensional submanifold. The surface of revolution determined by C is the
subset SC ✓ R3 given by

SC =

⇢
(x, y, z) :

✓q
x2 + y2, z

◆
2 C

�
.

The set C is called its generating curve (see Figure 3.18).

Figure 3.18: A surface of revolution.

If j : U ! R is any local defining function for C in H, we get a local defining function F for SC
by

F(x, y, z) = j

✓q
x2 + y2, z

◆
,
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defined on the open subset

eU =

⇢
(x, y, z) :

✓q
x2 + y2, z

◆
2 U

�
✓ R3.

A computation shows that the Jacobian matrix of F is

DF(x, y, z) =
✓

x
r

∂j

∂r
(r, z)

y
r

∂j

∂r
(r, z)

∂j

∂z
(r, z)

◆
,

where we have written r =
p

x2 + y2. At any point (x, y, z) 2 SC, at least one of the components
of DF(x, y, z) is nonzero, so SC is a regular level set of F and is thus an embedded 2-dimensional
submanifold of R3.

For a specific example, the doughnut-shaped torus of revolution is the surface of revolution ob-
tained from the circle (r � 2)2 + z2 = 1. It is a regular level set of the function F(x, y, z) =⇣p

x2 + y2 � 2
⌘2

+ z2, which is smooth on R3 minus the z-axis. m

3.6.3 Immersed Submanifolds

Definition 166. Suppose M is a smooth manifold (with or without boundary). An immersed sub-

manifold of M is a subset S ✓ M endowed with a topology (not necessarily the subspace topology)
with respect to which it is a topological manifold (without boundary), and a smooth structure with
respect to which the inclusion map S ,! M is a smooth immersion. (As in the case of embedded
submanifolds, we define the codimension of S in M to be dim M � dim S).

Note that every embedded submanifold is also an immersed submanifold. Because im-
mersed submanifolds are the more general of the two types of submanifolds, we adopt
the convention that the term smooth submanifold without further qualification means an im-
mersed one, which includes an embedded submanifold as a special case. Similarly, the term
smooth hypersurface without qualification means an immersed submanifold of codimension
1.

Immersed submanifolds often arise in the following way:
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Proposition 78 (Images of Immersions as Submanifolds). Suppose M is a smooth manifold
(with or without boundary), N is a smooth manifold, and F : N ! M is an injective smooth immer-
sion. Let S = F(N). Then S has a unique topology and smooth structure such that it is a smooth
submanifold of M and such that F : N ! S is a diffeomorphism onto its image.

The following observation is sometimes useful when thinking about the topology of an
immersed submanifold:

Proposition 79. Suppose M is a smooth manifold and S ✓ M is an immersed submanifold. Then
every subset of S that is open in the subspace topology is also open in its given submanifold topology,
and the converse is true if and only if S is embedded.

Proposition 80 (Sufficient Conditions for Immersed Submanifolds to be Embedded). Sup-
pose M is a smooth manifold (with or without boundary), and S ✓ M is an immersed submanifold.
If any of the following holds, then S is embedded.

a) S has codimension 0 in M.

b) The inclusion map S ,! M is proper.

c) S is compact.

Although many immersed submanifolds are not embedded, the next proposition shows
that the local structure of an immersed submanifold is the same as that of an embedded
one:

Proposition 81 (Immersed Submanifolds Are Locally Embedded). If M is a smooth manifold
(with or without boundary), and S ✓ M is an immersed submanifold, then for each p 2 S there exists
a neighborhood U of p in S that is an embedded submanifold of M.

Proof. By Theorem 108 from Section §3.5, we have that each p 2 S has a neighborhood U in
S such that the inclusion i

��
U : U ,! M is an embedding.

Remark: It is important to be clear about what this proposition does and does not say:
given an immersed submanifold S ✓ M and a point p 2 S, it is possible to find a neigh-
borhood U of p (in S) such that U is embedded; but it may not be possible to find a
neighborhood V of p (in M) such that V \ S is embedded (see Figure 3.19).

XcamZ\g g

f 256



3.6. Submanifolds Chapter 3. Smooth Manifolds
h [a\ g

Figure 3.19: An immersed submanifold is locally embedded.

Definition 167. Suppose S ✓ M is an immersed k-dimensional submanifold. A local parametriza-

tion of S is a continuous map Y : U ! M whose domain is an open subset U ✓ Rk, whose image is
an open subset of S, and which, considered as a map into S, is a homeomorphism onto its image. It is
called a smooth local parametrization if it is a diffeomorphism onto its image (with respect to the
smooth manifold structure of S). If the image of Y is all of S, it is called a global parametrization.

Proposition 82. Suppose M is a smooth manifold (with or without boundary), S ✓ M is an
immersed k-submanifold, i : S ,! M is the inclusion map, and U is an open subset of Rk. A map
Y : U ! M is a smooth local parametrization of S if and only if there is a smooth coordinate
chart (V, j) for S such that Y = i � j�1. Therefore, every point of S is in the image of some local
parametrization.

3.6.4 Restricting Maps to Submanifolds

Given a smooth map F : M ! N, it is important to know whether F is still smooth when
its domain or codomain is restricted to a submanifold. In the case of restricting the domain,
the answer is easy:

Theorem 116 (Restricting the Domain of a Smooth Map). If M and N are smooth manifolds
(with or without boundary), F : M ! N is a smooth map, and S ✓ M is an immersed or embedded
submanifold (see Figure 3.20), then F

��
S : S ! N is smooth.

Proof. The inclusion map i : S ,! M is smooth by definition of an immersed submanifold.
Since F

��
S = F � i, the result follows.
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Figure 3.20: Restricting the domain.

When the codomain is restricted, however, the resulting map may not be smooth, as the
following example shows:

Example 66. Let S ✓ R2 be the figure-eight submanifold (lemniscate), with the topology and smooth
structure induced by the immersion b : (�p, p) ! R2 defined by b(t) = (sin 2t, sin t). Define a
smooth map G : R ! R2 by G(t) = (sin 2t, sin t). (We are using the same formula that we used to
define b, but now the domain is extended to the whole real line instead of being just a subinterval.)
It is easy to check that the image of G lies in S. However, as a map from R to S, G is not even
continuous, because b�1 � G is not continuous at t = p. m

The next theorem gives sufficient conditions for a map to be smooth when its codomain
is restricted to an immersed submanifold. It shows that the failure of continuity is the only
thing that can go wrong:

Theorem 117 (Restricting the Codomain of a Smooth Map). Suppose M is a smooth manifold
(without boundary), S ✓ M is an immersed submanifold, and F : N ! M is a smooth map whose
image is contained in S (see Figure 3.21). If F is continuous as a map from N to S, then F : N ! S
is smooth.

This theorem is stated only for the case in which the ambient manifold M is a manifold
without boundary, because it is only in that case that we have constructed slice charts for
embedded submanifolds of M. But the conclusion of the theorem is still true when M has
nonempty boundary (see Problem 9 � 13 from [Lee, 2013]).

In the special case in which the submanifold S is embedded, the continuity hypothesis is
always satisfied:
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Figure 3.21: Restricting the codomain.

Corollary 36 (Embedded Case). Let M be a smooth manifold and S ✓ M be an embedded
submanifold. Then every smooth map F : N ! M whose image is contained in S is also smooth as a
map from N to S.

Proof. Since S ✓ M has the subspace topology, a continuous map F : N ! M whose image
is contained in S is automatically continuous into S, by the characteristic property of the
subspace topology.

Although the conclusion of the preceding corollary fails for some immersed submanifolds
such as the lemniscate, it turns out that there are certain immersed but nonembedded
submanifolds for which it holds. To distinguish them, we introduce the following definition:

Definition 168. If M is a smooth manifold and S ✓ M is an immersed submanifold, then S is said
to be weakly embedded in M if every smooth map F : N ! M whose image lies in S is smooth as
a map from N to S. (Be aware that weakly embedded submanifolds are called initial submanifolds

by some authors.)

Corollary 36 shows that every embedded submanifold is weakly embedded. It follows
from Example 66 that the lemniscate is not weakly embedded. However, the dense curve
on the torus is weakly embedded (see Problem 5-13 from [Lee, 2013]).

Using the preceding results about restricting maps to submanifolds, we can now prove
the promised uniqueness theorem for the smooth manifold structure on an embedded sub-
manifold:
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Theorem 118. Suppose M is a smooth manifold and S ✓ M is an embedded submanifold. The
subspace topology on S and the smooth structure described earlier in Theorem 113 are the only
topology and smooth structure with respect to which S is an embedded or immersed submanifold.

Proof. See proof on [Lee, 2013, p. 114].

Thanks to this uniqueness result, we now know that a subset S ✓ M is an embedded
submanifold if and only if it satisfies the local slice condition, and if so, its topology and
smooth structure are uniquely determined. Because the local slice condition is a local con-
dition, if every point p 2 S has a neighborhood U ✓ M such that U \ S is an embedded
k-submanifold of U, then S is an embedded k-submanifold of M .

Theorem 118 is false in general if S is merely immersed; but we do have the following
uniqueness theorem for the smooth structure of an immersed submanifold once the topol-
ogy is known:

Theorem 119. Suppose M is a smooth manifold and S ✓ M is an immersed submanifold. For the
given topology on S, there is only one smooth structure making S into an immersed submanifold.

It is certainly possible for a given subset of M to have more than one topology making
it into an immersed submanifold (Exercise!). However, for weakly embedded submanifolds
we have a stronger uniqueness result:

Theorem 120. If M is a smooth manifold and S ✓ M is a weakly embedded submanifold, then S
has only one topology and smooth structure with respect to which it is an immersed submanifold.

Lemma 35 (Extension Lemma for Functions on Submanifolds). Suppose M is a smooth
manifold, S ✓ M is a smooth submanifold, and f 2 C•(S).

a) If S is embedded, then there exist a neighborhood U of S in M and a smooth function ef 2
C•(U) such that ef

��
S = f .

b) If S is properly embedded, then the neighborhood U in part a) can be taken to be all of M.
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3.6.5 The Tangent Space to a Submanifold

Let M be a smooth manifold (with or without boundary), and let S ✓ M be an immersed or
embedded submanifold. Since the inclusion map i : S ,! M is a smooth immersion, at each
point p 2 S we have an injective linear map dip : TpS ! Tp M. In terms of derivations, this
injection works in the following way: for any vector v 2 TpS, the image vector ev = dip(v) 2
Tp M acts on smooth functions on M by

ev f = dip(v) f = v( f � i) = v( f
��
S).

Figure 3.22: The tangent space to an embedded submanifold.

We adopt the convention of identifying TpS with its image under this map, thereby think-
ing of TpS as a certain linear subspace of Tp M (see Figure 3.22). This identification makes
sense regardless of whether S is embedded or immersed.

There are several alternative ways of characterizing TpS as a subspace of Tp M. The first
one is the most general; it is just a straightforward generalization of a previous proposition:

Proposition 83. Suppose M is a smooth manifold (with or without boundary), S ✓ M is an
embedded or immersed submanifold, and p 2 S. A vector v 2 Tp M is in TpS if and only if there is a
smooth curve g : J ! M whose image is contained in S, and which is also smooth as a map into S,
such that 0 2 J, g(0) = p, and g0(0) = v.

The next proposition gives a useful way to characterize TpS in the embedded case (a nice
exercise would be to do Problem 5 � 20 from [Lee, 2013], which shows that this does not
work in the nonembedded case):
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Proposition 84. Suppose M is a smooth manifold, S ✓ M is an embedded submanifold, and p 2 S.
As a subspace of Tp M, the tangent space TpS is characterized by

TpS = {v 2 Tp M | v f = 0 whenever f 2 C•(M) and f
��
S = 0}.

If an embedded submanifold is characterized by a defining map, the defining map gives
a concise characterization of its tangent space at each point, as the next proposition shows:

Proposition 85. Suppose M is a smooth manifold and S ✓ M is an embedded submanifold. If
F : U ! N is any local defining map for S, then TpS = ker dFp : Tp M ! TF(p)N for each
p 2 S \ U.

When the defining function F takes its values in Rk, it is useful to restate the proposition
in terms of component functions of F.

Corollary 37. Suppose S ✓ M is a level set of a smooth submersion F = (F1, . . . , Fk) : M ! Rk.
A vector v 2 Tp M is tangent to S if and only if v F1 = · · · = v Fk = 0.
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essentially surjective functor, 185
Euclidean norm, 29
exhaustion function, 213
Extension Lemma for Smooth Functions, 212
exterior, 153
exterior of a set, 63
exterior/outer measure, 99

faithful functor, 185
fiber of a map, 234
figure-eight curve (lemniscate), 230, 252
fine topology, 80
finer/coarser topology, 154
finite-complement topology, 152
first-countable space, 173
full functor, 185
full rank, 225
full subcategory, 185
functor, 185
Fundamental Theorem of Calculus, 143

Generalized Intermediate Value Theorem, 84

XcamZ\g g

f 266



Index Index
h [a\ g

geometric tangent vector, 214
global differential, 224
global parametrization, 251
Global Rank Theorem, 229
global tangent map, 224
Gluing Lemma for Smooth Maps, 207
greatest lower bound, 8
grupoid, 186

Hölder’s Inequality, 33
Hardy space, 145
Hardy-Littlewood Maximal Function, 130
Hausdorff space, 167
Heine-Borel theorem, 93
Hilbert space, 144
homeomorphism, 79

immersed submanifold, 249
Implicit Function Theorem, 195
infimum, 8
interior, 153
interior of a set, 63
Inverse Function Theorem, 194
Inverse Function Theorem for Manifolds, 227
inverse image, 78
isolated point, 67
isometry, 80

Jacobian matrix, 191
jump discontinuity, 75

k-slice, 241
K-topology, 157
Kolmogorov space, 168
Kronecker’s delta, 90

lattice, 8

least upper bound, 8
Lebesgue density, 135
Lebesgue Differentiation Theorem, 133
Lebesgue measurable, 100
Lebesgue measure, 101
Lebesgue set, 136
level set, 244
limit infimum, 41
limit supremum, 41
Lindelöf space, 174
Littlewood’s three principles, 112
local defining map/function, 248
local diffeomorphism, 226
Local Embedding Theorem, 232
local parametrization, 251
locally compact space, 199
locally finite, 200
locally integrable function, 135
locally path-connected space, 198
lower bound, 7
lower-limit topology, 156
Lusin’s Theorem, 113

maximal/complete atlas, 203
meager subset, 67
measurable function, 107
measurable set, 101
measure, 98
measure zero, 100, 197
measure/measurable space, 99
metric, 24
metric space, 24
metrizable space, 152
Minkowski’s Inequality, 31, 34
monoidal category, 187
morphism, 182
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negative variation, 137
neighborhood, 36
Nested Interval Theorem, 64
Nested Set Theorem, 92
non-measurable set, 105
norm, 29
normal space, 176
normed vector space, 29

open ball, 34
open map, 169
open set, 57
order, 7
order topology, 159
ordered set, 7
orthogonal complement, 146
orthogonal projection, 146
oscillation of a function at a point, 191

paracompact space, 200
parallelogram law, 145
partial derivative, 192
partially ordered, 7
partition of unity, 211
path, 85
path-connected, 85
path-connected space, 198
pentagon identity, 187
perfect set, 65
positive variation, 137
precompact space, 199
product s-algebra, 104
product metric, 57
product space, 161
product topology, 159, 161
proper subspace, 82

properly embedded submanifold, 240
pullback metric, 25
punctured neighborhood, 74

quotient map, 169
quotient space, 172
quotient topology, 171

radial limit, 145
rank of a smooth map, 225
Rank Theorem, 228
ratio test, 49
refinement, 200
regular coordinate ball, 204
Regular Level Set Theorem, 246
regular point, 246
regular space, 175
regular value, 246
reversed path, 85
Riemann integrable function, 196
Riesz Representation Theorem, 148
Riesz’s Lemma, 138
ring of sets, 97
Rising Sun Lemma, 139
root test, 49

saturated subset, 234
saturated subset/subspace, 170
second-countable space, 174
section, 233
separable set/space, 67
separable space, 174
sequence, 12
Sequence Lemma, 163
sequential space, 175
sequentially compact space, 93
simple function, 107
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singular function, 77
slice chart, 241
slice coordinates, 241
smooth atlas, 201
smooth bump function, 211
smooth embedding, 229
smooth function, 205
smooth immersion, 226
smooth manifold, 203
Smooth Manifold Chart Lemma, 204
smooth map, 205
smooth partition of unity, 211
smooth structure, 203
smooth submersion, 226
smooth topological embedding, 230
smoothly compatible charts, 201
Sorgenfrey plane, 179
standard topology, 156
subbasis, 158
Submersion Level Set Theorem, 245
subsequence, 51
subspace topology, 164
supremum, 8
symmetric difference, 97
symmetric linear operator, 149

tangent bundle, 224
tangent space, 216
tangent space to a product manifold, 220
tangent space to an open submanifold, 218
tangent vector at a point, 216
Tchebychev inequality, 133
thick subset, 67
thin subset, 67
topological immersion, 232
topological quantum field theory, 189

topological space, 151
topological submersion, 233
topological subspace, 164
Topologist’s sine curve, 86
topology, 150
total variation, 137
totally bounded, 86
totally disconnected set/space, 83
transition map, 200
trivial topology, 151

uncountable, 15
unit, 97
unitary mapping, 146
universal covering manifold, 236
upper bound, 7

Vitali covering, 143
Vitali set, 105
volume of a closed/open k-cube, 195

weak-type inequality, 133
weakly embedded submanifold, 253

Young’s Inequality, 32

zero set, 82, 244
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