
Differential Forms in Physics II
Maxwell’s Equations
These notes are a follow-up to the previous notes on Stokes’s Theorem and differential forms;
refer to that paper for definitions and discussions that will be useful here. In this monograph we
rewrite Maxwell’s Equations in the language of differential forms, showcasing yet again (as in
the Stokes’s Theorem paper) the elegance and usefulness of the latter. Being verse in both math
and physics lingo can be quite advantageous, and this is in fact the point we are trying to drive
home through this series of brief monographs.

Our starting point is Maxwell’s Equations, as they are written in elementary electrodynamics
treatments (in geometrized Gaussian units (c = µ0 = ϵ0 = 1)):

∇⃗ · E⃗ = 4πρ (Gauss)

∇⃗ · B⃗ = 0

∇⃗ × E⃗ +
∂B⃗
∂t

= 0 (Faraday)

∇⃗ × B⃗ − ∂E⃗
∂t

= 4π J⃗ (Ampère)

(1a)

(1b)

(1c)

(1d)

where the 3-vectors E⃗ and B⃗ are the electric and magnetic field, respectively, and ρ and J⃗ are the
charge density and current density, respectively. Now, Maxwell’s Equations are the correct theory of
electricity and magnetism (and therefore of light), and Special Relativity was invented to explain
certain properties of light; whence these equations are relativistically correct. However, one major
drawback is the equations’ dependence on the choice of a frame (i.e., chart, in math lingo), since
neither E⃗ nor B⃗ are frame-independent, geometric entities in four-dimensional spacetime. What
we need then is a purely geometric object that transcends coordinates and reference frames (i.e., a
tensor field) that encapsulates both E⃗ and B⃗. Hence we introduce the electromagnetic tensor field
(often referred to as the Faraday tensor field), F̃, as a (0

2) tensor field

F̃ = Fµνdxµ ⊗ dxν. (2)

Following the abstract index notation tradition, it is customary to write F̃ as Fab. 1 The com-
ponents of Fab on a Lorentz frame (i.e., a Riemann normal coordinates chart) {xµ} are given
by 2

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , (3)

where (E1, E2, E3) and (B1, B2, B3) are the components of the 3-vectors E⃗ and B⃗, respectively. The
corresponding contravariant (2

0) tensor field Fab = gacgbdFcd has components Fµν = ηµαηβνFαβ in

1In this notation, letters a − h and o − z are used for 4-dimensional spacetime indices that run from 0 to 3, whereas
the letters i − n are reserved for 3-dimensional spatial indices that run from 1 to 3. Lowercase Greek letters are reserved
for components in a chosen basis (see, e.g., Wald’s text for reference).

2Be aware that, as customary in relativistic physics, our Lorentzian signature of the metric tensor is (− + ++); in
electrodynamics and particle physics references the usual signature is (+ −−−).
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a Lorentz frame given by 34

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (4)

It is obvious from (3) and (4) that both Fab and Fab are antisymmetric; i.e., Fab = −Fba and
Fab = −Fba. In particular, Fab is a 2-form, and so we may rewrite (2) as

F̃ =
1
2

Fµν dxµ ∧ dxν = F|µν|dxµ ∧ dxν. (5)

(Vertical bars wrapping the indices indicate that we are summing over a strictly-increasing se-
quence; refer to the first paper for clarification on the notation.)

Note that, in terms of the electromagnetic tensor field, the divergence ∂νFµν yields two of the
original Maxwell’s equations:

∂νF0ν = ∂0

=0︷︸︸︷
F00 +∂iF0i = ∂1F01 + ∂2F02 + ∂3F03

= ∂1E1 + ∂2E2 + ∂3E3

= ∂iEi .

∂νFiν = ∂0Fi0 + ∂jFij

= ∂t(−Ei) + ∂1Fi1 + ∂2Fi2 + ∂3Fi3

= −∂tEi −∂1B3 + ∂1B2 + ∂2B3 − ∂2B1 − ∂3B2 + ∂3B1︸ ︷︷ ︸
=ϵ̂

ij
k Bk

,j

= ϵ̂
ij

kBk
,j − ∂tEi .

But ∂iEi and ϵ̂
ij

kBk
,j − ∂tEi are precisely the index-notation versions of ∇⃗ · E⃗ and ∇⃗ × B⃗ − ∂tE⃗,

respectively. 5 Thus, introducing the 4-vector Ja = (ρ, J⃗), we have rewritten two of Maxwell’s
Equations ((1a) and (1d)) as

∂bFab = 4π Ja,

and consequently, via minimal coupling,

∇bFab = 4π Ja (6)

3gab is the Lorentzian metric of curved spacetime (General Relativity); ηab is the Minkowskian metric of spacetime
(Special Relativity).

4Having chosen a Lorentz frame, we can set gµν(P) = ηµν(P), at some specific event (i.e., at some specific point) P . This
Equivalence Principle is loosely stated in physics lingo as “In any local inertial frame (i.e., a Lorentz frame) the physical
laws must reduce to those in Minkowski spacetime” (this principle suggests the simple rule known as minimal coupling;
ηab ↔ gab, ∂a ↔ ∇a). This is as good as it gets in a general curved spacetime; in a neighborhood of P it is not true
that gµν = ηµν, only at P . Loosely speaking, in a general curved spacetime “gravity never truly goes away.” More
rigorously, what this means is that, even in normal coordinates where at P the Christoffel symbols vanish (Γa

bc(P) = 0),
the gradients of these symbols in a neighborhood of P do not completely vanish in curved spacetimes (∂dΓa

bc ̸= 0).
As a consequence the curvature never truly vanishes in curved spacetimes, even when choosing local Lorentz frames
(Rd

abc = ∂bΓd
ac − ∂cΓd

ab + Γe
acΓd

eb − Γe
abΓd

ec = ∂bΓd
ac − ∂cΓd

ab).
5 ϵ̂

ij
k may look weird to the reader in this form; rest assured that we are not “lowering an index” in the traditional

sense (i.e., contracting with the metric tensor), since ϵ̂ is not a tensor. This is merely a convenient notation consistent with
Einstein summation.
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As for the remaining two equations, consider expanding ∂[µFνρ],

3∂[µFνρ] = 3 · 1
6
(
∂µFνρ + ∂ρFµν + ∂νFρµ − ∂νFµρ − ∂ρFνµ − ∂µFρν

)
= 3 · 1

6
(
2∂µFνρ + 2∂ρFµν + 2∂νFρµ

)
= ∂µFνρ + ∂ρFµν + ∂νFρµ.

For clarity, we first consider the spatial part (set, say, µ = 1, = 2, ρ = 3):

∂1F23 + ∂3F12 + ∂2F31 = ∂1B1 + ∂3B3 + ∂2B2 = ∂iBi .

Now include one temporal index (say, µ = 0):

∂0Fij + ∂jF0i + ∂iFj0 = ∂0F12 + ∂0F23 + ∂0F31 + ∂2F01 + ∂3F02 + ∂1F03 + ∂1F20 + ∂2F30 + ∂3F10

= ∂tB3 + ∂tB1 + ∂tB2−∂2E1 − ∂3E2 − ∂1E3 + ∂1E2 + ∂2E3 + ∂3E1

= ∂tBi + ϵ̂
ij

kEk
,j .

But from (1b), ∂iBi = 0, and from (1c), ∂tEi + ϵ̂
ij

kEk
,j = 0; hence

3∂[µFνρ] = ∂µFνρ + ∂ρFµν + ∂νFρµ = ∂iBi︸︷︷︸
=0

+ ∂tBi + ϵ̂
ij

kEk
,j︸ ︷︷ ︸

=0

= 0.

Thus, we have
∂[aFbc] = 0

and consequently, via minimal coupling,

∇[aFbc] = 0 (7)

So we have rewritten the original Maxwell’s Equations (1) as two manifestly covariant, nice-
looking equations ((6) & (7)). The latter are the form most widely used in relativistic physics
treatments; howevever, our goal here is to link mathematics and physics by rewriting these equa-
tions in the language of differential forms. The reader may wonder why the need to go further;
after all, it is undeniable that equations (6) & (7) are already in the most convenient possible
form for calculations in a chosen set of coordinates. However, the greatest physical insights do
not always (in fact, rarely) come from plugging and chugging components and analyzing the
results; a broader, more abstract view may very well help to spot potentially hidden details. For
instance, electromagnetism itself is a gauge theory, and the geometrical interpretation of such
theories is very much a point of emphasis in contemporary, advanced treatments of theoretical
physics. Any physicist working on gauge theories knows how crucial it is to be verse on the
mathematical language of differential forms, fiber bundles, Lie algebras and Lie groups, etc . . .

Without further ado, let us write the equations’ final mold in terms of differential forms. Upon
close inspection of (7) and its derivation, we notice that this is in fact the index-notation version
of the differential dF̃: For any k-form ω, its differential dω in index-notation is given by

(dω)a1 ...ak+1 = (k + 1)∂[a1 ωa2 ...ak+1].

In our case,
(dF)abc = 3∂[aFbc] = 0 (8)

which, in index-free-notation is precisely

dF̃ = 0 (7 ⊛)
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However, let us not be lazy and derive (7 ⊛) using mathematical (index-free) notation, for the
mathematically-inclined reader who is still not very comfortable with index gymnastics (be sure
to refer back to Part I (Stokes’s Theorem) if something in the notation is unclear). First a warning
regarding the orientation of differential forms in Lorentzian signature: In spacetime, the temporal
index always goes first given a choice of (right-handed or left-handed) spatial orientation; time-
orientation is a whole different ball of wax. For example, whilst the reader might be tempted
to claim that dx3 ∧ dx0 ∧ dx1 is a correct right-handed orientation, (s)he must keep in mind that
x0 is a time coordinate, so the only indices that must be considered for the orientation are the
spatial ones (in this example the correct orientation is therefore dx0 ∧ dx3 ∧ dx1).

Let us get right to it; from (5),

dF̃ = d
(

F|µν|dxµ ∧ dxν
)

= ∂ρF|µν|dxρ ∧ dxµ ∧ dxν

= ∂0F12 dx0 ∧ dx1 ∧ dx2 + ∂0F23 dx0 ∧ dx2 ∧ dx3 + ∂0F13 dx0 ∧ dx1 ∧ dx3

+ ∂1F23 dx1 ∧ dx2 ∧ dx3 + ∂1F02 dx1 ∧ dx0 ∧ dx2 + ∂1F03 dx1 ∧ dx0 ∧ dx3

+ ∂2F01 dx2 ∧ dx0 ∧ dx1 + ∂2F03 dx2 ∧ dx0 ∧ dx3 + ∂2F13 dx2 ∧ dx1 ∧ dx3

+ ∂3F01 dx3 ∧ dx0 ∧ dx1 + ∂3F02 dx3 ∧ dx0 ∧ dx2 + ∂3F12 dx3 ∧ dx1 ∧ dx2

= (∂0F12 − ∂1F02 + ∂2F01)dx0 ∧ dx1 ∧ dx2 + (∂0F23 − ∂2F03 + ∂3F02)dx0 ∧ dx2 ∧ dx3

+ (−∂0F13 + ∂1F03 − ∂3F01)dx0 ∧ dx3 ∧ dx1 + (∂1F23 − ∂2F13 + ∂3F12)dx1 ∧ dx2 ∧ dx3

=
(

∂tB3 + ∂1E2 − ∂2E1
)

dx0 ∧ dx1 ∧ dx2 +
(

∂tB1 + ∂2E3 − ∂3E2
)

dx0 ∧ dx2 ∧ dx3

+
(

∂tB2 − ∂1E3 + ∂3E1
)

dx0 ∧ dx3 ∧ dx1 +
(

∂1B1 + ∂2B2 + ∂3B3
)

dx1 ∧ dx2 ∧ dx3.

The green part is the divergence ∂iBi, which vanishes from (1b), whilst the orange part is precisely
the components of ∂tBi + ϵ̂

ij
kEk

,j , which also vanish ((1c)). Hence, the lengthy algebra above
proves (7 ⊛), using the differential forms treatment.

!△Word of Warning !△ Something quite irritating that (unfortunately) is quite ubiquitous in the
physics literature, is the claim of the “existence of some electric potential” Ã whose differential is
F̃; i.e., F̃ = dÃ (Fab = 2∂[a Ab], in coordinates). Usually the potential Ã is introduced and then
equations such as dF̃ = 0 follow trivially from the property that d ◦ d = 0. Howevever, there
is one glaring problem with this argument, and if you followed closely our discussion of exact
and closed forms on Part I you will immediately see the issue: whilst F̃ is indeed closed, as we
just proved with the messy algebra above, the Poincaré Lemma states that every closed form is
exact only in contractible spaces. If we are dealing with a simply-connected manifold (as per
usual in electrodynamics; Minkowski spacetime), then the aforementioned assumption of an
electric potential is not ill-founded. Moreover, if we are considering a local problem, then global
topological considerations can also be disregarded (i.e., the existence of such potential is always
guaranteed locally, regardless of the manifold’s topology). However, since the existence of such
potential does not hold water in a general manifold (say, a manifold “with holes”; e.g., a circle or
a torus) we do not find this claim to be good taste and abstain from it.

All that remains now is to show the validity of the inhomogeneous equations (6) in terms of
differential forms. In what follows we shall consider the Levi-Civita tensor ϵ (not the symbol ϵ̂

we used in Part I; this is the actual tensor ϵ ≡
√
|g|ϵ̂), given in coordinates by 6

ϵµ1 ...µk =


+1 if (µ1 . . . µk) is an even permutation of 1, . . . , k,
−1 if (µ1 . . . µk) is an odd permutation of 1, . . . , k,
0 otherwise.

6g ≡ det g (= det gab, in abstract index lingo); this is fairly standard notation.
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This being a tensor, its indeces can be raised/lowered with the metric; thus,

ϵ−1 = ϵµ1 ...µk = gµ1ν1 . . . gµkνk ϵν1 ...νk = g−1ϵ.

Definition 1. Let (M, g) be a (pseudo)Riemannian n-dimensional manifold M with metric tensor g, and
let ω ∈ Ωk(M). Then Hodge star operator, ⋆, is a map ⋆: Ωk(M) → Ωn−k(M), given by 7

⋆ω = ⋆

(
1
k!

ωµ1 ...µk dxµ1 ∧ . . . ∧ dxµk

)
=

1
k! (n − k)!

ωµ1 ...µk gµ1ν1 . . . gµkνk ϵν1 ...νn dxνk+1 ∧ . . . ∧ dxνn

=
1

k! (n − k)!
ωµ1 ...µk ϵ

µ1 ...µk
νk+1 ...νn dxνk+1 ∧ . . . ∧ dxνn . (9)

Thus, in a chart {xµ},

(⋆ω)µ1 ...µn−k =
1
k!

ϵ
ν1 ...νk

µ1 ...µn−k ων1 ...νk . (10)

Thus, the Hodge operator takes k-forms to their dual (n − k)-forms in an n-dimensional (pseudo)
Riemannian manifold. In our case, n = 4 and F̃ is a 2-form, so its dual ⋆F̃ is also a 2-form. Let us
now expand ⋆F̃ and see what it looks like in coordinates:

(⋆F)µν =
1
2

ϵ
ρσ

µν Fρσ =
1
2

ϵαβµν gραgσβFρσ =
1
2

ϵαβµν Fαβ.

From the antisymmetry of both ϵ and F, we gather that ϵαβµν Fαβ = ϵβαµν Fβα; we will use this
below. Now consider first the temporal components,

(⋆F)01 =
1
2

ϵαβ01 Fαβ =
1
2

(
2 ϵ2301 F23

)
= ϵ0123 F23 = F23

(⋆F)02 =
1
2

ϵαβ02 Fαβ =
1
2

(
2 ϵ1302 F13

)
= −ϵ0123 F13 = −F13

(⋆F)03 =
1
2

ϵαβ03 Fαβ =
1
2

(
2 ϵ1203 F12

)
= ϵ0123 F12 = F12,

and now the spatial components,

(⋆F)12 =
1
2

ϵαβ12 Fαβ =
1
2

(
2 ϵ0312 F03

)
= ϵ0123 F03 = F03

(⋆F)13 =
1
2

ϵαβ13 Fαβ =
1
2

(
2 ϵ0213 F02

)
= −ϵ0123 F02 = −F02

(⋆F)23 =
1
2

ϵαβ23 Fαβ =
1
2

(
2 ϵ0123 F01

)
= F01,

and the remaining components follow from the antisymmetry of F. Putting all this together, and
referring to (4), we have gathered all the components of ⋆F̃:

(⋆F)µν =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 . (11)

Our last order of business is to compute the differential d ⋆ F̃. As we saw with the calculation of
dF̃ above, the algebra of can get pretty messy . . . Fortunately, we have already done all the heavy
lifting! As we derived in the proof of (7 ⊛), the differential of a 2-form ω is given by

dω = (∂0ω12 − ∂1ω02 + ∂2ω01)dx0 ∧ dx1 ∧ dx2 + (∂0ω23 − ∂2ω03 + ∂3ω02)dx0 ∧ dx2 ∧ dx3

+ (−∂0ω13 + ∂1ω03 − ∂3ω01)dx0 ∧ dx3 ∧ dx1 + (∂1ω23 − ∂2ω13 + ∂3ω12)dx1 ∧ dx2 ∧ dx3.
(12)

7The map is also often called the Hodge star dual, or just the Hodge dual.
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Plugging ⋆F̃ in place of ω yields

d ⋆ F̃ = (∂0(⋆F)12 − ∂1(⋆F)02 + ∂2(⋆F)01)dx0 ∧ dx1 ∧ dx2

+ (∂0(⋆F)23 − ∂2(⋆F)03 + ∂3(⋆F)02)dx0 ∧ dx2 ∧ dx3

+ (−∂0(⋆F)13 + ∂1(⋆F)03 − ∂3(⋆F)01)dx0 ∧ dx3 ∧ dx1

+ (∂1(⋆F)23 − ∂2(⋆F)13 + ∂3(⋆F)12)dx1 ∧ dx2 ∧ dx3

=
(

∂tE3 − ∂1B2 + ∂2B1
)

dx0 ∧ dx1 ∧ dx2 +
(

∂tE1 − ∂2B3 + ∂3B2
)

dx0 ∧ dx2 ∧ dx3

+
(

∂tE2 + ∂1B3 − ∂3B1
)

dx0 ∧ dx3 ∧ dx1 +
(

∂1E1 + ∂2E2 + ∂3E3
)

dx1 ∧ dx2 ∧ dx3. (13)

The green part is the divergence ∂iEi, which equals 4πρ from (1a), whilst the orange part is
precisely the components of ∂tEi − ϵ̂

ij
kBk

,j , which equal −4π J⃗ ((1d)). Do not fret about the
negative sign; the components on the last equality of (13) are in fact the components of a 3-form,
⋆ J̃, (multiplied by 4π) that is dual (via the Hodge operator) to the 1-form obtained from lowering
an index of the 4-current J = (ρ, J⃗): Using (9),

⋆ J̃ =
1

1! (4 − 1)!
ϵν

αβγ Jν dxα ∧ dxβ ∧ dxγ

=
1
6

ϵµαβγ gµν Jν dxα ∧ dxβ ∧ dxγ

= ϵµ|αβγ| Jµ dxα ∧ dxβ ∧ dxγ,

where, as we have done before, we use the antisymmetry of a differential form to sum only over
a strictly-increasing sequence the indices inside the vertical bars (thus avoiding repeating terms
and getting rid of the 1/3! coefficient). Hence we have

⋆ J̃ = ϵ3012 J3 dx0 ∧ dx1 ∧ dx2 + ϵ0123 J0 dx1 ∧ dx2 ∧ dx3

+ ϵ1023 J1 dx0 ∧ dx2 ∧ dx3 + ϵ2103 J2 dx1 ∧ dx0 ∧ dx3

= −ϵ0123 J3 dx0 ∧ dx1 ∧ dx2 + ϵ0123 ρ dx1 ∧ dx2 ∧ dx3

− ϵ0123 J1 dx0 ∧ dx2 ∧ dx3 − ϵ0123 J2 dx0 ∧ dx3 ∧ dx1

= −J3 dx0 ∧ dx1 ∧ dx2 + ρ dx1 ∧ dx2 ∧ dx3

−J1 dx0 ∧ dx2 ∧ dx3−J2 dx0 ∧ dx3 ∧ dx1

=
(

∂tE3 − ∂1B2 + ∂2B1

4π

)
dx0 ∧ dx1 ∧ dx2 +

(
∂1E1 + ∂2E2 + ∂3E3

4π

)
dx1 ∧ dx2 ∧ dx3

+
(

∂tE1 − ∂2B3 + ∂3B2

4π

)
dx0 ∧ dx2 ∧ dx3 +

(
∂tE2 + ∂1B3 − ∂3B1

4π

)
dx0 ∧ dx3 ∧ dx1. (14)

Thus, combining (13) and (14), we get the differential-forms-version of the inhomogeneous
Maxwell’s Equations (6),

d ⋆ F̃ = 4π ⋆ J̃ (6 ⊛)

Hence we have concluded our task. All of our hard work summed up in this tiny box:

dF̃ = 0
d ⋆ F̃ = 4π ⋆ J̃

Or, in the vacuum, with no electric source to consider (as per usual in GR),

dF̃ = 0
d ⋆ F̃ = 0
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