
Differential Forms in Physics I
Stokes’s Theorem
In what follows we attempt to showcase the elegance and usefulness of the language of differ-
ential forms and the exterior derivative as it applies to certain areas of physics. In this first of
two papers we present Stokes’s Theorem in the language of differential forms, and show how
it generalizes the more basic treatments found in elementary vector calculus and undergraduate
electrodynamics; the follow-up paper will focus on Maxwell’s Equations. This is not an introduc-
tion to differential forms; the reader is assumed familiarity with the subject and a certain level of
“mathematical maturity” (mathematicians certainly love to throw around this phrase, and I make
no exception ©).

Our starting point is the definition of the wedge product ∧ and of the exterior derivative d. The
former is needed because, for a given k-form ω ∈ Ωk(M) and ℓ-form η ∈ Ωℓ(M) in some smooth
manifold M, it is not always the case that their tensor product ω ⊗ η is in Ωk+ℓ(M), whereas
ω ∧ η ∈ Ωk+ℓ(M).

Definition 1. Let M be a smooth manifold, denote by Tk(M) the space of all smooth covariant k-tensor
fields on M, and let Ωk(M) be the space of all smooth k-forms (smooth, alternating covariant k-tensor
fields) on M. Then we can define a projection, named the alternating map, Alt: Tk(M) → Ωk(M) given
by

Alt(T) =
1
k! ∑

π∈Sk

(sgn π) Tπ , (1)

where Sk is the symmetric group on k elements and Tπ is the tensor T with a permutation π applied on
its indices.

More explicitly, given vectors v1, . . . , vk ∈ X(M), equation (1) takes the form

(Alt(T))(v1, . . . , vk) =
1
k! ∑

π∈Sk

(sgn π)T(vπ(1), . . . , vπ(k)).

The notation used thus far is the one commonly used in math. One of our key objectives in these
notes is to bridge the gap between math and physics so, to that end, let us switch over to index
notation –the one most commonly used in relativistic physics. In index notation equation (1) is
written more compactly,

(Alt(T))µ1 ...µk = T[µ1 ...µk], (2)

where the brackets denote the antisymmetric parts of T ; i.e.,

T[µ1 ...µk] =
1
k!

ϵ̂µ1 ...µk Tµ1 ...µk , (3)

where we used Einstein summation and the Levi-Civita symbol ϵ̂, which is given by 1

ϵ̂µ1 ...µk =


+1 if (µ1 . . . µk) is an even permutation of 1, . . . , k,
−1 if (µ1 . . . µk) is an odd permutation of 1, . . . , k,
0 otherwise.

For instance,

T[ab] =
1
2

(Tab − Tba)

T[abc] =
1
3!

(Tabc + Tbca + Tcab − Tacb − Tcba − Tbac).

1Note that this is just a permutation symbol, not the Levi-Civita tensor ϵ =
√

gϵ̂ (in fact, we haven’t even introduced
a metric yet in our discussion). When using this symbol, since the metric is not involved, there is no change of sign
between the covariant and contravariant versions, i.e., ϵ̂µ1 ...µk = ϵ̂µ1 ...µk .
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Given the above definition, it is clear that Alt(T) = T ⇐⇒ T is an alternating/antisymmetric
k-tensor field (i.e., a k-form). When dealing with tensor products of these differential forms, it
turns out convenient to work with a slight modification of Alt. To motivate this, let us apply Alt
to a tensor product of a k-tensor T and an ℓ-tensor S:

Alt(T ⊗ S)µ1 ...µk+ℓ = T[µ1 ...µk
Sµk+1 ...µk+ℓ] =

1
(k + ℓ)!

ϵ̂µ1 ...µk+ℓTµ1 ...µk Sµk+1 ...µk+ℓ .

The factor (k + ℓ)! in the denominator is a bit inconvenient for calculations (the adopted con-
vention is, of course, a matter of personal preference); the modification to Alt, called the wedge
product, gets rid of this factor. It is introduced only for smooth forms.

Definition 2. The wedge product of a k-form ω ∈ Ωk(M) and an ℓ-form η ∈ Ωℓ(M is a map
∧: Ωk(M) × Ωℓ(M) → Ωk+ℓ(M), given by

∧ (ω, η) = ω ∧ η ≡ (k + ℓ)!
k! ℓ!

Alt(ω ⊗ η). (4)

Thus, in a chart {xi}, a general k-form ω is expressed as

ω =
1
k!

ωj1 ...jk dxj1 ∧ . . . ∧ dxjk ≡ ω|j1 ...jk | dxj1 ∧ . . . ∧ dxjk ,

where (as we shall always do) we used Einstein summation, and the vertical bars placed on
the indices in the second equality indicates that the sum is to be done over a strictly-increasing
sequence J = j1, . . . , jk with ji > ji−1. This is justified by the fact that dxji ∧ dxjk = −dxjk ∧ dxji

and dxji ∧ dxji = 0.

Definition 3. Let M be a smooth manifold, denote by Ωk(M) the space of all smooth k-forms on M, and
consider a strictly-increasing sequence J = j1, . . . , jk with ji > ji−1. The exterior derivative is a map
d: Ωk(M) → Ωk+1(M) that satisfies, for any k-form ω,

dω = d(ωJdx J) = d
(

ω|j1 ...jk | dxj1 ∧ . . . ∧ dxjk
)

= ∂iω|j1 ...jk |dxi ∧ dxj1 ∧ . . . ∧ dxjk . (5)

Example 1. If ω is a 1-form, (5) yields 2

dω = d(ωjdxj) = ∑
i,j

∂iωj dxi ∧ dxj

= ∑
i<j

∂iωj dxi ∧ dxj + ∑
i>j

∂iωj dxi ∧ dxj︸ ︷︷ ︸
=−dxj∧dxi

= ∑
i<j

(
∂iωj − ∂jωi

)
dxi ∧ dxj.

Theorem 1 (Existence and Uniqueness of Exterior Differentiation). Suppose M is a smooth man-
ifold with or without boundary. There are unique operators d: Ωk(M) → Ωk+1(M) for all k, called
exterior differentiation, satisfying the following four properties:

2For clarity, on this particular example we use explicit summation.
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• d is linear over R.

• If ω ∈ Ωk(M) and η ∈ Ωℓ(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη. (6)

• For f ∈ Ω0(M) = C∞(M), d f is the differential of f , given by d f (X) = X f .

• d ◦ d = 0.

In any smooth coordinate chart, d is given by (5).

Definition 4. A k-form ω is said to be

• exact if ω is the exterior derivative of some (k − 1)-form η, i.e., ω = dη;

• closed if the exterior derivative of ω vanishes, i.e., dω = 0. 3

Note that, by the last property of Theorem 1, for any k-form θ we have d2θ = d(dθ) = 0; thus
every exact form is closed. The question of whether every closed form is exact is answered by
the Poincaré Lemma, which states that in a star-shaped (i.e., a contractible) domain every closed
form is indeed exact (for general domains this result fails).

Theorem 2 (Stokes’s Theorem). Let M be an oriented smooth n-manifold with boundary, and let ω be
a compactly supported smooth (n − 1)-form on M. Then

∫
M

dω =
∫

∂M
ω (7)

Example 2. Let M be a smooth manifold and suppose γ: [a, b] → M is a smooth embedding, so that the
image S = γ([a, b]) is an embedded 1-submanifold with boundary in M . If we give S the orientation such
that γ is orientation-preserving, then for any smooth function f ∈ C∞(M), Stokes’s theorem says that∫

γ
d f =

∫
[a,b]

γ∗d f =
∫

S
d f =

∫
∂S

f = f (γ(b)) − f (γ(a)). (8)

The following corollaries are straightforward consequences of Stokes’s Theorem:

Corollary 1 (Integrals of Exact Forms). If M is a compact oriented smooth manifold without boundary,
then the integral of every exact form over M vanishes:∫

M
dω = 0 if ∂M = ∅. (9)

Corollary 2 (Integrals of Closed Forms over Boundaries). Suppose M is a compact oriented smooth
manifold with boundary. If ω is a closed form on M, then the integral of ω over ∂M vanishes:∫

∂M
ω = 0 if dω = 0 on M. (10)

3Note that due to the result from Example 1, one often finds in the literature that a 1-form is closed if it satisfies
∂iωj = ∂jωi .
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Equation (7) showcases the elegance of differential forms; we illustrate this elegance/usefulness
further in the following discussion:

The Euclidean metric gE
ij on R3 yields an index-lowering isomorphism ♭:X(R3) → Ω1(R3) (usu-

ally called the flat isomorphism in the math literature) given by ♭(X j) = gE
ijX

j = Xi for any vector

field Xi ∈ X(R3). 4 Just as exterior differentiation increases the rank of the differential form by
one, there is another important operation on differential forms that decreases the rank by one,
namely the interior multiplication iv: Ωk(M) → Ωk−1(M) by a vector field v ≡ vi; this operation
is given by

ivω(w1, . . . , wk−1) = ω(v, w1, . . . , wk−1), (11)

where ω ∈ Ωk(M) and v, w1, . . . , wk−1 ∈ X(M). In other words, ivω is obtained from ω by
inserting v into the first slot. 5 We use this interior multiplication to construct another map
β:X(R3) → Ω2(R3) given by

β(X) = iX (dx1 ∧ dx2 ∧ dx3). (12)

Lastly, we define another smooth bundle isomorphism ∗: C∞(R3) → Ω3(R3) by

∗ ( f ) = f dx1 ∧ dx2 ∧ dx3. (13)

The relationships amongst all of these operators and how they relate to d are summarized in the
following commutative diagram:

The language of elementary vector calculus requires three different operators (grad, curl, and
div) to represent operations that merely require one operator (d) in the language of differential
forms. 6 7 This is illustrated in the vector calculus versions of Stokes’s Theorem: For some smooth
vector field A = Ai ∈ X(R3),

• for n = 2 we have ∫
V2

curl(A) · dΣ =
∫

∂V2
A · dl, (14)

where V2 ⊆ R2 is a compact bounded region, ∂V2 is the 1-dimensional closed curve that
bounds it, and the last integral is a line integral around that curve. Also, dΣ is the infinites-
imal vectorial surface area on V2.

• for n = 3 (this case is usually referred to in the physics literature as Gauss’s Theorem) we
have ∫

V3

div(A) dV =
∫

∂V3

A · dΣ, (15)

where dV = dx1 ∧ dx2 ∧ dx3 (usually just written dV = dx1dx2dx3) is the volume element,
V3 ⊆ R3 is a compact bounded region, ∂V3 is its closed 2-dimensional boundary surface,
and dΣ is the infinitesimal vectorial surface area on ∂V3.

4Of course there is also an an index-raising isomorphism ♯: Ω1(R3) → X(R3) (usually called the sharp isomorphism)
given by ♯(Xj) = gE ijXj = Xi . These two isomorphisms are called the musical isomorphisms in the math literature.

5By convention, we interpret ivω to be zero when ω is a 0-covector (i.e., a number).
6Also, curl only makes sense in three dimensions, whereas the generalization (d) applies to any arbitrary dimension.
7Also, note how the rules curl ◦ grad = 0 and div ◦ curl = 0 come from the fundamental property d ◦ d = 0.
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We now derive (14) (and leave (15) as a trivial, muscle-flexing exercise to the reader) from the
more succinct and elegant (7). Before doing so, we need to point out a nuisance that is usually
encountered in both physics and elementary vector calculus texts. In these references it is quite
common to ignore the difference between vectors and covectors (1-forms) thereby paying no heed
to the placement of indices (up or down). This is partly justified by the fact that in Cartesian coor-
dinates the Euclidean metric leaves intact the components of vectors and covectors, so the musical
isomorphisms presented earlier do not have any effect whatsoever on these components. Despite
this equality of components in the Euclidean case, such index-placement-agnostic behavior can
be a slippery slope, and we do not encourage it. For instance, the infinitesimal vectorial surface
area dΣ can be written dΣ = ndΣ = ndx1dx2, where “n is the unit normal to the infinitesimal
surface area dΣ = dx1dx2 of the parallelogram spanned by the legs dx1 and dx2" . . . this is what
you would find in an elementary physics text; in reality the parallelogram is actually spanned by
the vectors dual to dx1 and dx2, namely ∂1 and ∂2.

The starting point is to lower the index of A = Ai via the flat isomorphism ♭ to work exclusively
with differential forms, thus obtaining the 1-form Ã = Ai. From Example 1, the exterior derivative
of Ã is

dÃ = d(Ajdxj)

= ∑
i<j

(
∂i Aj − ∂j Ai

)
dxi ∧ dxj

= (∂1 A2 − ∂2 A1) dx1 ∧ dx2 + (∂1 A3 − ∂3 A1) dx1 ∧ dx3︸ ︷︷ ︸
=−dx3∧dx1

+ (∂2 A3 − ∂3 A2) dx2 ∧ dx3

= (∂1 A2 − ∂2 A1) dx1 ∧ dx2 + (∂2 A3 − ∂3 A2) dx2 ∧ dx3 + (∂3 A1 − ∂1 A3) dx3 ∧ dx1.

(We are color-coding for a reason; it will be evident soon) Thus, with M = V2 and ω = Ã, the
LHS of (7) is∫

V2

dÃ =
∫
V2

(∂1 A2 − ∂2 A1) dx1 ∧ dx2

+
��������������:0∫
V2

(∂2 A3 − ∂3 A2) dx2 ∧ dx3 +
��������������:0∫
V2

(∂3 A1 − ∂1 A3) dx3 ∧ dx1

=
∫
V2

(∂1 A2 − ∂2 A1) dx1dx2, (16)

where the last two integrals vanish because dx3 plays no part in the volume form of the 2-surface
V2. (We also dropped the wedge ∧ at the end, as it is customary when writing volume forms.)

On the other hand, from vector calculus and elementary physics we know that curl(A) expands
as

curl(A)︸ ︷︷ ︸
vector calculus lingo

= ϵ̂
ij

k Ak
,j︸ ︷︷ ︸

physics abstract index lingo

= (∂2 A3 − ∂3 A2)∂1 + (∂3 A1 − ∂1 A3)∂2 + (∂1 A2 − ∂2 A1)∂3.

Note the striking similarity between dÃ and curl(A) by looking at their matched colors; they are
essentially the same operation, although the former is purely in terms of smooth forms and the
latter in terms of their dual vectors. In Cartesian coordinates on Euclidean space Ai = Ai and,
moreover, ∂k is precisely the unit normal n to the infinitesimal surface dxidxj (i ̸= j ̸= k); i.e., for
i ̸= j ̸= k, ∂k is the vector field dual to dxi ∧ dxj. Hence, all of the vector calculus gibberish can be
entirely worked with the more elegant language of differential forms.
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Tackling the LHS of (14),∫
V2

curl(A) · dΣ =
∫
V2

curl(A) · n dΣ

=
∫
V2

(∂2 A3 − ∂3 A2, ∂3 A1 − ∂1 A3, ∂1 A2 − ∂2 A1) · (0, 0, 1) dx1dx2

=
∫
V2

(∂1 A2 − ∂2 A1) dx1dx2. (17)

This confirms the equality of the LHS of both (7) and (14). Straightforward calculations show the
rest:

• (RHS of (7)) ∫
∂V2

Ã =
∫

∂V2

Aidxi .

• (RHS of (14)) ∫
∂V2

A · dl =
∫

∂V2

gE
ij A

idxj =
∫

∂V2

Ajdxj,

where on the second equality we used the (geometric) definition of the dot product, which
is merely a contraction given by the metric tensor. Equality of the RHS of both (7) and (14)
has been established.

Showing the validity of (7) as a generalization of (15) is at this point a straightforward application
of everything we have discussed, so it is left to the reader.
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