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Current measurements of the Higgs mass indicate that the Higgs potential develops a lower energy
state than the electroweak vacuum, which implies that the quantum phenomenon known as barrier
penetration (i.e., quantum tunneling) might lead to a disastrous decay of our universe’s vacuum ([17],
[23], [41]). However, one may be relieved to know that, at least according to the currently established
Standard Model parameters, our vacuum’s lifetime seems to greatly exceed the present age of the
Universe. Therefore our vacuum is in a region of metastability; it is in a false vacuum state.

On the first part of this thesis we study the bubble nucleation and decay of a scalar field that posseses
a multi-minima potential –one such minimum being a false vacuum and another the true, absolute
vacuum state. We shall investigate both the zero-temperature (instanton) and finite-temperature
(caloron) cases, where we will see how the effects of quantum tunnelling and thermal fluctuations enter
the picture of the false vacuum decay. We present results in up to three spatial dimensions, ignoring
gravitational effects and assuming spherical symmetry. Under such symmetry assumptions (and
incorporating gravity into the picture), the system of the Einstein Field Equations (EFE’s) coupled to
matter (by which we mean a massive scalar field) can be reduced to a 1+1D system, and whence it is
fairly understood. However, progress beyond spherical symmetry assumptions has been stifled due
to the extremely high refinements required to study the stages of nucleation and evolution, which are
magnified three-fold in full 3+1 codes. It is precisely the behaviour and evolution of these asymmetric
scalar fields in the presence of a gravitational field that we are ultimately interested in studying. This
is indeed quite the daunting task, which (unfortunately) we do not get to tackle in this thesis, but
nevertheless we study and lay down the foundations of rather sophisticated 3+1 integration schemes
in Part II. In particular, we shall present state-of-the-art numerical relativity (NR) techniques that we
intend to employ in future work, once computational resources become available. It is only through
the use of these advanced methods that we will be able to study the fully asymmetric settings, which
are much less understood.
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Preface

The present thesis covers material from two seemingly unrelated topics: numerical relativity and false
vacuum decay. The former is required in order to solve the Einstein Field Equations (EFE’s) of General
Relativity (GR) in the absence of significant symmetries, whilst the latter provides some insight into
the technicalities of first-order phase transitions in the very early universe. A prominent link between
these two active areas of investigation may be established by considering the relevance of scalar field
models to cosmology.

As proposed in [12], seeded bubble nucleation can be studied in a laboratory cold-atom analogue
of cosmological vacuum decay [25]. Whilst, traditionally, analogue systems have mostly been em-
ployed to test ideas in perturbative quantum field theory, there has been recent interest in using
such analogue “table-top” experiments on nonperturbative phenomena such as bubble nucleation.
Through “modelling the universe in the lab” we hope to gain a better understanding of the process
of vacuum decay and the role of the instanton. This is particularly relevant nowadays in light of the
recent measurements of the Higgs mass, which currently indicate that our universe’s vacuum is in a
region of metastability.

In semi-classical studies of the false vacuum decay, one considers the decay rate of an instanton,
i.e., of a field solution to the imaginary-time classical equations of motion. Such solutions are subject
to a quantum effect known as barrier penetration (or quantum tunneling), which is forbidden at the
classical level but are very much present in the quantum realm. It turns out that the nucleation and
decay of such scalar field solutions may just have played a significant role during first-order phase
transitions in the early universe; thus analysing the transition from vacuum decay to thermal decay of
these instantons is of great importance. Such transitions are associated with supercooled states and
the nucleation of bubbles. They arise in a wide range of applications, from the condensation of water
vapour to the vacuum decay of fundamental quantum fields. In cosmology, bubbles of a new matter
phase would produce huge density variations, and (unsurprisingly) first-order phase transitions have
been proposed as sources of gravitational waves [19, 32] and of primordial black holes [24, 31]. In a
cosmological context, the temperature is falling as the universe expands, and at some stage the rate
for the first-order phase transition becomes smaller than the rate of vacuum decay. New numerical
methods developed in this thesis will allow the vacuum-thermal crossover to be studied in detail for
the first time, since traditional shooting methods break down in the thermal case due to the lack of
rotational symmetry of the bubble.

On the other side of the spectrum, at the purely-classical level, we have scalar fields that obey the
(non-imaginary) classical equation of motion (i.e., the Klein Gordon equation). Such a classical field
solution may then be coupled with the EFE’s to study the scalar field’s behaviour under the influence of
gravity in many cosmologically-relevant scenarios. For instance, we may be interested in investigating
the gravitational collapse of cold dark matter (CDM) candidates known as axions (or axion-like particles
(ALP’s)). Two important situations that arise in such settings are the formation of galaxies from
dark matter and the collapse of black holes. The galaxy formation case can be analysed using just



x

Newtonian gravity with novel forms of scalar field matter (e.g., self-interacting or superfluid phonon
analogues). The black hole case, on the other hand, needs to be addressed with the full might of
Numerical Relativity (NR). Recent work on the non-rotating case [39] points the way to the new results
on the rotating case, which is the most interesting scenario since dark matter collapse inevitably
involves rotation. Part II of this thesis lays the foundation for future research work in which gravity will
be incorporated in order to study the full evolution of asymmetric scalar fields and their applications
to cosmology.

To summarise, the main objective of our work is to use both analytical techniques and numerical
modelling based on general relativity and scalar boson models to investigate the central role that
scalar fields play in solving the dark matter problem of cosmology. Nucleation and decay of scalar
field bubbles, as well as the dynamics of such fields in the presence of non-negligible gravitational
effects, are two cornerstones of modern cosmology that we are interested in investigating, mostly in
the fully asymmetric setting using numerical techniques. The novel investigations presented by [16]
hints at the bridge between the two topics covered on this thesis. The paper proposes an alternative
picture of vacuum decay, in which the classical evolution (as opposed to the instanton’s imaginary-
time evolution) of the field from some initial realization of the false vacuum fluctuations leads to the
emergence of bubbles. This method, however, has not yet been extended to the thermal decay. The
relaxation technique that we present on this thesis does apply to the thermal case, although this is in
the semi-classical, instanton picture. A numerical method that successfully tackles thermal decay in
the classical scene would be a nice extension to the work presented both in [16] and on this thesis.



Part I

Bubble Decay
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Chapter 1

Theoretical Background

Even though at the very beginning of the existence of our universe the structure of spacetime consisted
mostly of large scale homogeneity with only small-scale perturbative fluctuations, there is plenty of
evidence that suggests that, in occasion, non-perturbative effects may have also played an important
role during first-order phase transitions. Amongst the latter, the formation and decay of bubbles has
been of much interest to the cosmology community ever since the publication of the classical papers by
Coleman & Callan ([17], [23]). The presentation of this thesis consists of a novel numerical approach to
the semiclassical treatment of the false vacuum decay studied in these original papers, with particular
interest in the intersection of zero-temperature (vacuum) and finite nonzero-temperature (thermal)
nucleation. Both instances are described in terms of an instanton, i.e., a scalar field that is a solution
of the imaginary-time classical equations of motion (in the thermal case the field is also usually called
a caloron). The motivation for choosing to model an instanton over a classical scalar particle satisfying
the Klein-Gordon equation (c.f., Eq. (5.49)) is made clear in Figure 1.1: a classical particle does not
penetrate a potential barrier, whilst an instanton can be used to calculate the transition probability
for a quantum mechanical particle to undergo the phenomenon commonly known as tunneling, or
barrier penetration.
It is, in fact, this transition probability what we are ultimately interested in computing. The probability
of decay per unit time per unit volume, Γ/V, of the false vacuum (FV), is given by

Γ/V = Ae−B/h̄[1 +O(h̄)], (1.1a)

where A and B are quantities that reflect the underlying physics. As in the rest of this thesis, we are
using geometrised units (h̄ = c = kB = 1), 1 so we may write (1.1a) as

Γ/V ≈ Ae−B. (1.1b)

A numerical treatment of the coefficient B is the focus of the present work. Analytically, it is presented
in the original paper [23] as the total Euclidean action SE = iS:

B = SE =
∫ [1

2
∇̊aφ∇̊aφ + U(φ)

]
dτ d~x. (1.2)

Here the scalar field φ = φ(τ,~x) is the instanton, which varies in the spatial coordinates~x and imagi-
nary time τ = it, and ∇̊aφ is the spatial gradient Daφ plus the τ-gradient (in Cartesian coordinates,
∇̊aφ = ∂τφ + ∂~xφ). Meanwhile the quantity U is a multi-minima potential; for instance we may set

U(φ) =
1
2

λ2 sin2 φ− cos φ− 1, (1.3)

1Furthermore, in all the work presented in Part I we are ignoring gravitational effects, thus we are dealing with a flat
Riemannian metric.
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which exhibits a false vacuum at φFV ≡ π and the true vacuum at φTV ≡ 0 (see figure (1.1)). The
parameter λ shows a dependence on temperature in the thermal case (this shall be illustrated later
on in Chapter 2); in an early universe setting, this effect plays an important role in placing the field in
the false vacuum as the universe supercools. Moreover, we will suppose that at zero temperature the
potential barrier is still present, so in this case the temperature dependence of the potential plays
less of a role and we will take λ to be constant.

ϕTV = 0

QuantumTunneling

ϕFV=π
ϕ

-2

U

Figure 1.1: In classical field theory, the state for which φ = φTV is the unique classi-
cal state of lowest energy, and corresponds to the unique (true) vacuum state of the
quantum theory of the field. As for φ = φFV, however, the quantum and classical
theories differ in that for the latter φFV is a stable classical equilibrium state, whereas
for the quantum case φFV is rendered unstable by barrier penetration (i.e., quantum

tunneling). For this reason, in quantum theory φFV is known as a false vacuum.

We note that, since there may be multiple field solutions {φi} that satisfy the field equations, we
must sum the contributions to Γ/V of all such fields. At non-zero temperature,

Z = Tr(e−βĤ) =
∫

Dφ e−SE[φ], (1.4)

where Tr denotes a trace over all quantum states, Ĥ is a Hamiltonian operator, and

β ≡ h̄
kBT

=
1
T

(T = temperature). (1.5)

The thermal aspect of the bubble decay is represented by a periodicity imposed in the τ-coordinate,
with period β. At low temperatures, the size of the bubble is small compared to β and thermal
effects appear mostly through the form of the effective potential [37]. On the other hand, at higher
temperatures –provided the effective potential still has a potential barrier– the instanton solution
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becomes constant in the τ-direction. In between there is a cross-over region were instanton solutions
become distorted; we see this transition in detail in Figures 1.2 & 2.3). When the temperature is very
low (β is very large), the τ-direction is identical to the space directions, and we can expect that the
solution has O(D) symmetry (i.e., rotational symmetry of the full D-dimensional configuration).
Such a solution (shown on the left of Figs. 1.2 & 2.3) is said to describe quantum tunnelling. Conversely,
with increasing temperatures (decreasing β), the D-volume becomes “squeezed”, and this reshapes
the profile of the bubble solution (middle of Figs. 1.2 & 2.3). In this case we say that both quantum
tunnelling and thermal fluctuations play a role. Lastly, for very large T (even smaller β) the bubble
profile becomes very squeezed, and we expect that the solution only respects O(D− 1) symmetry. 2

Such classical thermal fluctuation is shown on the right of Figs 1.2 & 2.3.

Figure 1.2: Transition from vacuum to thermal case. The figure shows the nontrivial
bubble solution φb (here denoted φ̂) in various regimes: at zero (left), intermediate
(middle), and high (right) temperatures. The image is taken from [35]; our numerical

results shown in Fig 2.3 also show this transition.

We note that we shall not make any use whatsoever of the coefficient A in what follows; the interested
reader is advised to consult the original work [17], where it is shown that

A =
∣∣∣∣ det′ S′′E[φb]
det S′′E[φFV]

∣∣∣∣−1/2(SE[φb]
2π

)N/2

. (1.6)

Here φb is the bubble (or “bounce”) solution to the equations of motion presented below (c.f., Eq. (1.7)),
φFV is the value of the field in the false vacuum (= π), S′′E denotes the second functional derivative
of the Euclidean action (1.2), and lastly det′ denotes omission of N = n + 1 zero modes from the
functional determinant of the operator in the vacuum case and N = n zero modes for the thermal
case.

From variational principles, setting δSE = 0 yields the equation of motion

∇̊2φ− ∂φU = 0. (1.7)

2It is precisely because of this breaking of symmetry in the thermal case that we have endeavored to find a new numer-
ical technique that solves the equation of motion of the caloron, since the usual shooting methods found in the literature
are only applicable to the vacuum case (see full discussion on Chapter 2).
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Figure 1.3: Initial data (one spatial dimension; vacuum case) given by
Eq. (1.9), with R = v = 1 and e = 0. Because of the symmetry as-
sumptions on our bubble, there is no loss of generality in plotting just
one quadrant (x ≥ 0, τ ≥ 0). Note that away from the bubble, which
is caused by quantum fluctuations, the false vaccuum persists (this is
manifest in the boundary condition (1.8a) and limτ→±∞ φ = φFV =

π, which holds true in the vacuum case.).

(From a quantum theory perspec-
tive, solutions to this equation of
motion may be thought of as crit-
ical points of the action (1.2).) The
term containing the gradient of
the potential makes what would
otherwise be a straightforward
computation (a simple Laplacian)
into an equation that is actually
very difficult to tackle head on;
we must thus resort to numerical
methods. In light of the ineffective-
ness of shooting methods when
dealing with thermal fluctuations,
we have developed from scratch
a new relaxation scheme that has
proven effective in both the vac-
uum and thermal cases. We shall
present all our results in the follow-
ing chapter, for up to three spatial
dimensions. 3

In the vacuum case, the field approaches the false vacuum value φFV = π as τ → ±∞, whilst in
the thermal case an initial thermal ensemble is represented by solutions that are periodic in τ with
periodicity β = 1/T. Thus we may sum up the boundary conditions for the PDE (1.7) as 4

lim
‖~x‖→∞

φ = φFV = π (1.8a)

∂~xφ(τ,~xmin) = 0 (1.8b)
∂τφ(τmax,~x) = ∂τφ(τmin,~x) = 0. (1.8c)

In our numerical implementations we shall use τmin = ~xmin = 0 and~xmax = 12, whilst τmax will be
varied in order to consider a range of different temperatures. An approximate bubble solution (see
Figure 1.3) we shall use later is given by 5

φ =
π

2

(
2 + tanh

d−R

v
− tanh

d + R

v

)
, (1.9)

whereRand v are the radius and wall thickness (i.e., width), respectively, of the bubble. Moreover, we
have d =

√
aτ2 + b~x2, with the parameters a = 1− e2 and b = 1 + e2 determined by the ellipticity

0 ≤ e ≤ 1.

3In all cases we assume rotational symmetry of the spatial coordinates; the full 3+1 asymmetric case will be consid-
ered in future developments which shall include gravity.

4A bit of thought should convince the reader that the last condition (1.8c) suits both the vacuum and thermal cases.
5This approximation is the “guess” that we use as initial conditions for the relaxation technique we will present in the

next chapter.
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In the case where e = 0 we shall refer to our field as the non-static instanton and for e = 0.99 (where
the field is (nearly) independent of τ) we will call it the quasi-static instanton (these are the instances
of most importance to our work). In the special case when the field is completely independent of τ
(i.e., it is fully static, e = 1) the equation of motion (1.7) (in Cartesian coordinates) reduces to

∂2
~xφ− ∂φU = 0 (1.10)

or, in one spatial dimension,
d2φ

dx2 − ∂φU = 0. (1.11)

Here we can easily find a closed-form solution: we have

dφ

dx
=
√

2U, (1.12)

with the solution bouncing off the potential at φr = arccos(1− 2/λ2). 6 The action (1.2) is then
reduced to

SE = 2β
∫ φFV

φr

√
2U dφ, (1.13)

which can be obtained in closed-form,

SE = 4β

[√
λ2 − 1− 1

λ
log (

√
λ2 − 1 + λ)

]
. (1.14)

Finding such a nice, exact solution for (1.10) in higher spatial dimensions is not feasible, except for
when the potential barrier is relatively large (large λ) in the so-called thin-wall approximation ([1],
[23]). Thus, in the general case, we must turn to numerical solutions; this is precisely what set out to
accomplish in the next chapter.

6U(φr) = 1
2 λ2 (1− cos2 φr

)
− cos φr − 1 = 1

2 λ2
[

1−
(

1− 2
λ2

)2
]
−
(

1− 2
λ2

)
− 1 = 0.
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Chapter 2

Numerical Results

A thorough comparison of the theory of bubble nucleation with the proposed table-top experiments
in laboratory Bose-Einstein condensates ([16], [25]) requires precise numerical modeling. Such compu-
tations of bubble nucleation rates in cosmology are usually obtained using shooting methods (e.g., [6],
[38]), an option that is viable thanks to the O(D) symmetry enjoyed by the instanton solution in
the vacuum case; under such symmetry assumptions the equation of motion can be reduced to an
ODE that is easily solved using such methods. This symmetry, however, is not a feature present in
the thermal case (as we clearly saw on Fig. 1.2), and as a consequence we need to find an alterna-
tive approach [1]. We do, indeed, present in what follows a new numerical method that is valid for
calculating nucleation exponents for both thermal and vacuum decay.

2.1 Relaxation Methods
The numerical method we employ in our work is a kind of relaxation technique. In the typical relaxation
method we start with a guessed solution that satisfies the required boundary conditions and then is
gradually modified to satisfy the difference equation within a given tolerance. The classic example is
an elliptic PDE such as the Laplace equation (say, in two spatial dimensions),

D2ϕ = ∂2
x ϕ + ∂2

y ϕ = 0 (2.1)

which, using standard FDM techniques with equidistant spacing h = ∆x = ∆y, is rewritten as

ϕ(x + h, y)− 2ϕ(x, y) + ϕ(x− h, y)
h2 +

ϕ(x, y + h)− 2ϕ(x, y) + ϕ(x, y− h)
h2 = 0. (2.2)

Rearranging, and writing in standard FDM notation (ϕi,j ≡ ϕ(x, y); ϕi±1,j ≡ ϕ(x ± h, y);
ϕi,j±1 ≡ ϕ(x, y± h)), we have

ϕi,j =
ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1

4
. (2.3)

This shows the rather surprising property of the solution to Laplace’s equation at any given point on
the grid given as the average of the values at the four neighbouring points. From (2.3) we may find an
iterative scheme for finding solutions to the Laplace equation.
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As we alluded to above, we start with some initial ansatz/guess, 1 and then sweep across the grid
updating the value at each point (per Eq. (2.3)). This process is then repeated over and over until we
converge to a solution. How do we know we have reached the desired solution? When the change
from one iteration to the next is less than some specified tolerance, we declare the solution converged
and break the loop. Of course, in theory we would like this change in solution to be zero, but such
exact nature is not amenable to numerical computations. Instead we settle for a residual

r :=
ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1

4
− ϕi,j

to reach a small-enough threshold r ≤ ε at which the loop breaks. Intuitively, we may recast this as
an evolution-boundary-value problem; start by turning (2.1) into a heat equation

∂t ϕ = ∂2
x ϕ + ∂2

y ϕ. (2.4)

Then, writing ϕn
i,j to denote the value of the function ϕ at the grid point (x, y) = (ih, jh) at time step

t = n, the FDA of Eq. (2.4) is

ϕn+1
i,j − ϕn

i,j

∆t
=

ϕn
i+1,j + ϕn

i−1,j + ϕn
i,j+1 + ϕn

i,j−1 − 4ϕn
i,j

h2 . (2.5)

If we now choose (for simplicity) time stepping ∆t = h2/4, we end up with

ϕn+1
i,j =

ϕn
i+1,j + ϕn

i−1,j + ϕn
i,j+1 + ϕn

i,j−1

4
, (2.6)

which is precisely the iteration described by (2.3), though now with a “time” label. In other words, we
can think of our relaxation ploy as a time evolution scheme that searches for a steady-state configura-
tion that satisfies Laplace’s equation.

As to how exactly we perform the sweep across the grid, there are quite a few options to work with.
Our implementation will be the so-called Jacobi method, in which we compute all the new values
for φ at all grid points before moving on to the next iteration. Admittedly, a method such as the
Gauss-Seidel relaxation –in which we immediately use the updated values to compute the new values
at the neighbouring points– is much faster than using Jacobi, but the latter suffices for our needs in
the problem at hand.

K;9NAB8CAM:<J

Back to our main task. By using τ = it instead of coordinate time t, our equation of motion (1.7)
is treated as a boundary value problem (BVP) as opposed to an initial value problem (IVP). In such
setting, a relaxation scheme is quite appropriate; thus we proceed by introducing an extra “time”
dimension s and an auxiliary scalar Φ(s, τ, x). At this point we may naïvely attempt to solve Eq. (1.7)
by using a relaxation method as discussed above:

dΦ
ds

= OF , (2.7a)

1The final solution should not depend on the initial values we guess, but the solution may converge more rapidly if
we start with a good ansatz from the onset (i.e., if our guess is reasonably close to the final solution).
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where F [Φ] ≡ −S′E[Φ] is the residual

F = ∇̊2Φ− ∂ΦU, (2.8)

and the operatorO is introduced to ensure that the scheme converges to the desired solution φb
(i.e., to ensure that lims→∞ Φ(s, τ, x) = φb(τ, x)). The simplest such operator is the identity operator,
which yields

dΦ
ds

= F . (2.7b)

We now proceed using one spatial dimension, writing Φn
i,j for the value of the field Φ at the grid

point (τ, x) = (ih, jh) at the time step s = n. Discretising (2.7b),

Φn+1
i,j −Φn

i,j

∆s
=

Φn
i+1,j + Φn

i−1,j + Φn
i,j+1 + Φn

i,j−1 − 4Φn
i,j

h2 − λ2

2
sin (2Φn

i,j) + sin Φn
i,j (2.9a)

or, rearranging,

Φn+1
i,j = ς

[
Φn

i+1,j + Φn
i−1,j + Φn

i,j+1 + Φn
i,j−1

]
+ Φn

i,j [1− 4ς]

− ∆s
[

λ2

2
sin (2Φn

i,j) + sin Φn
i,j

]
(2.9b)

with
ς ≡ ∆s

h2 . (2.10)

Thus, Equation (2.9b) yields an expression for Φ at the the next “s” time step in terms of the current
“s” time step; since this is an explicit scheme, we need to be mindful of the Courant-Friedrichs-Lewy
(CFL) condition (we have found that ς . 1/2 works). However, there is a problem with this particular
relaxation method: regardless of which value we pick for ς, the algorithm does not remain stable for
long (this has to do with the spectrum of F ; more on this shortly). Hence, after not many interations,
Eq. (2.9b) will always relax to a vacuum state, be it the false or the true vacuum (whether we end up
with φFV or φTV depends heavily on the length of the potential barrier, and hence on the parameter
λ).

K;9NAB8CAM:<J

The procedure just presented outlines the methodology we are to employ in our work. However,
moving forward there are a couple of changes that need to be made, as evident by the instability of
Eq. (2.9b). Let us examine the response of the field near the solution Φb under the effect of a slight
perturbation δΦ:

dΦ
ds

=
d
ds

(Φb + δΦ) =
dΦb
ds︸︷︷︸
=0

+
d(δΦ)

ds
=

d(δΦ)
ds

. (2.11)

Hence the behaviour of the system close to the bubble solution Φb is governed by a second-order
operator F ′[Φb] ≡ δF [Φb]/δΦ (≡ −S′′E[Φb]), which is given from Eq. (2.7a) by

d(δΦ)
ds

= OF ′δΦ. (2.12)
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Now, choosingO in such a way thatOF ′ has a positive spectrum leads to convergence in a neigh-
bourhood of the solution Φb. However note that, since the operator F ′ has negative eigenvalues, we
are barred from choosingO to be a multiple of the identity (as we did earlier). Two obvious choices
that fulfill the positive spectrum requirement ofOF ′ areO = (F ′)−1 andO = (F ′)†. The former
gives convergence, but it requires a matrix inversion step that may itself be problematic due to small
eigenvalues of F ′. That leaves (F ′)† as the best choice, which we denote by ∆†; its action on F is
given by

∆†F ≡ (F ′)†F = −∇̊2F + ∂2
ΦUF . (2.13)

We plug this back into Eq. (2.7a):

dΦ
ds

= ∆†F . (2.14a)

However, we are not entirely out of the woods just yet; as the von Neumann stability analysis that
we will perform shortly reveals, the choice O = ∆† requires a very small numerical relaxation
time step (∆s ∼ O(h4); c.f.,Proposition 1). How do we get around this problem? It turns out that
recasting (2.14a) as a second-order, damped-oscillator equation in relaxation time,

d2Φ
ds2 + k

dΦ
ds

= ∆†F (2.14b)

provides a stable algorithm that only requires ∆s ∼ O(h2) (c.f.,Proposition 2) for stability (provided
we use central differencing for the relaxation time derivatives). We now comment on the damping
coefficient k: the convergence of (2.14b) is related to the eigenvalue spectrum of F ′[φ]. If we consider
a single mode with eigenvalue η, then the amplitude δφη of the mode decays exponentially,

δφη ∝ e−ks+
√

k2−|η|2s. (2.15)

For large values of |η|, the convergence is determined by k, and for small |η| by |η|2/(2k). Thus, the
optimal value of k would be k ≈ |ηmin|, where ηmin is the eigenvalue with smallest modulus. In
practice we ended up only using k = 1 in our code.

Finite-differencing Eq. (2.14b), we get

Φn+1
i,j = 1

1+ k
2 ∆s

{
2Φn

i,j −Φn−1
i,j

[
1− k

2∆s
]

+ ∆†F (Φn
i,j)∆s2

}
. (2.16)

This algorithm has proven to be quite robust in all cases tested. Note that the Φn−1
i,j term mandates

that we know the value of the field Φ at the s = −1 step; we set Φ−1
i,j = Φ0

i,j, since the solutions are
damped oscillations and this boundary condition fixes the phase of the oscillation.

2.1.1 von Neumann Analysis

The von Neumann stability analysis of a time-dependent PDE is based on the assumptions that the
PDE has constant coefficients (or at the very least the coefficients vary so slowly as to be considered
constant), and that the PDE is subject to periodic boundary conditions. Despite the latter, the analysis
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actually proves useful even in cases where the boundary conditions are nonperiodic, so we may apply
it in all our cases of interest (static, quasi-static, thermal, vacuum). Throughout this subsection we
will suppress the spatial dimension for clarity, since the expressions dependent on τ are identical to
the expressions dependent on x; i.e., a stability analysis on Φ(s, τ) is trivially extended to Φ(s, τ, x).
To that end we shall write Φn

i in place of Φn
i,j.

The analysis is usually written in terms of the roundoff error

εn
i ≡ Φ̃n

i −Φn
i , (2.17)

where Φn
i is our numerical solution and Φ̃n

i is the finite-precision solution. Then for periodic boundary
conditions over some domain [0, L], the error can be represented as a discrete Fourier series

ε(s, τ) = ∑
m

Ameιωmτ , (2.18)

where ωm = (2πm)/L is the wave number. (Note also that we are using ι to denote the imaginary
number

√
−1 to avoid any confusions with the index i.) In our grid then (2.18) takes the form

εn
i = ∑

m
An

meιωmτi , (2.19)

where An
m is the value of the Fourier coefficient Am at n∆s, i.e., at the “time step” n. Moving forward

we shall focus our analysis only on one term of the full series, since (by the linearity of our FDAs) it
is enough to consider the growth of error of a single Fourier harmonic term. Moreover, instead of
writing everything in terms of the error ε, we shall instead write out the analysis in terms of the actual
numerical solution Φ(s, τ). Hence, from now on we will replace (2.19) with

Φn
i = Aneιωτi . (2.20)

The von Neumann stability criterium states that the FDA of the PDE being analysed is stable, provided
that

|α|≤ 1, (2.21)

where α is the amplification factor

α ≡ An+1

An . (2.22)

We are now ready to prove the following stability claims we made earlier:

Proposition 1. The numerical relaxation time step ∆s of the FDA (2.14a) is of order∼ O(h4).

Proposition 2. The numerical relaxation time step ∆s of the FDA (2.14b) is of order∼ O(h2).

Note what the propositions actually state; we are not doing a full stability analysis, but rather search-
ing for some guidance to determine what ∆s steps might work with the code. A more thorough
analysis is outside our scope. To that end in the proofs we shall use a truncated ∆†F term; expand-
ing (2.13), we have

∆†F = −∂4
τΦ− ∂4

xΦ + Υ(U), (2.23a)
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where Υ(U) is an expression containing gradients of the potential that we exclude from our stability
analysis. Moreover, the gradient−∂4

xΦ is also excluded because of the omission of the spatial coordi-
nate (we discussed the grounds for doing this at the beginning of this subsection). Hence we shall
work instead with

∆†F = −∂4
τΦ. (2.23b)

Proof of Proposition 1. Equation (2.14a) is now written as

dΦ
ds

= −∂4
τΦ, (2.24)

which FDA is
Φn+1

i −Φn−1
i

2∆s
= −

Φn
i+2 − 4Φn

i+1 + 6Φn
i − 4Φn

i−1 + Φn
i−2

h4 . (2.25)

Writing Σ ≡ ∆s/h4 and rearranging, we get

Φn+1
i = −2Σ

{
Φn

i+2 − 4Φn
i+1 + 6Φn

i − 4Φn
i−1 + Φn

i−2
}

+ Φn−1
i , (2.26)

and then using (2.20),

An+1eιωτi = −2Σ {Aneιωτi+2 − 4Aneιωτi+1 + 6Aneιωτi − 4Aneιωτi−1 + Aneιωτi−2}
+ An−1eιωτi . (2.27)

We now divide both sides by Aneιωτi , noting that eιωτi±1 = eιωτi e±ιωh and that An−1/An =
An/An+1 = α−1:

α = −2Σ
{

e2ιωh − 4eιωh + 6− 4e−ιωh + e−2ιωh
}

+
1
α

. (2.28)

Then we multiply through by α, and use the identities

cos ϕ =
eιϕ + e−ιϕ

2
and cos (2ϕ) = 2 cos2 ϕ− 1, (2.29)

to get

α2 = −2αΣ
{(

e2ιωh + e−2ιωh
)
− 4

(
eιωh + e−ιωh

)
+ 6
}

+ 1

= −2αΣ {2 cos (2ωh)− 8 cos (ωh) + 6} + 1

= −4αΣ
{

2 cos2 (ωh)− 4 cos (ωh) + 2
}

+ 1

= −8αΣ
{

cos2 (ωh)− 2 cos (ωh) + 1
}

+ 1

= −8αΣ [cos (ωh)− 1]2 + 1. (2.30)

The sinusoidal term comes up again in our analysis; let us denote it as

Θ ≡ [cos (ωh)− 1]2. (2.31)
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Thus we have an equation quadratic in α,

α2 + 8ΣΘα− 1 = 0. (2.32)

Our goal is not to solve this equation, but rather use the von Neumann stability criterion (2.21) to find
the order of ∆s. Plugging in either 1 or−1 for α in (2.32) does not help since the whole expression
vanishes. Let us instead use, say α = 9/10. Then

81
100

+
720
100

ΣΘ = 1 =⇒ ∆s =
19h4

720Θ
.

This shows that ∆s ∼ O(h4), as we set out to prove.

Proof of Proposition 2. Now we check for the stability of the damped-oscillator equation (2.14b):

d2Φ
ds2 + k

dΦ
ds

= −∂4
τΦ, (2.33)

which FDA is

Φn+1
i − 2Φn

i + Φn−1
i

∆s2 + k
Φn+1

i −Φn−1
i

2∆s
= −

Φn
i+2 − 4Φn

i+1 + 6Φn
i − 4Φn

i−1 + Φn
i−2

h4 . (2.34)

We can rewrite this (c.f., (2.16)) as

Φn+1
i =

1
1 + k

2∆s

{
2Φn

i −Φn−1
i

[
1− k

2
∆s
]
−
(
Φn

i+2 − 4Φn
i+1 + 6Φn

i − 4Φn
i−1 + Φn

i−2
)

ς2
}

=
1

1 + k
2∆s

{
Φn

i

[
2− 6ς2

]
−Φn−1

i

[
1− k

2
∆s
]

+
(
4(Φn

i+1 + Φn
i−1)−Φn

i+2 −Φn
i−2
)

ς2
}

,

(2.35)

where ς is given by (2.10). As before we write everything as Fourier harmonic terms,

An+1eιωτi =
1

1 + k
2∆s
{Aneιωτi

[
2− 6ς2

]
− An−1eιωτi

[
1− k

2
∆s
]

+

(4(Aneιωτi+1 + Aneιωτi−1)− Aneιωτi+2 − Aneιωτi−2) ς2} (2.36)

which, dividing by Aneιωτi , becomes

α =
1

1 + k
2∆s
{2− 6ς2 − 1

α

[
1− k

2
∆s
]

+
(

4(eιωh + e−ιωh)− (e2ιωh + e−2ιωh)
)

ς2}. (2.37)

Mutiplying through by α and using (2.29) and (2.31), we get the following quadratic equation after
rearranging terms:

α2
(

1 +
k
2

∆s
)
− 2

(
1− 2ς2Θ

)
α + 1− k

2
∆s = 0. (2.38)

Letting α = 1 makes the whole expression vanish; let us instead try α = −1:(
1 +

k
2

∆s
)

+ 2
(

1− 2ς2Θ
)

+ 1− k
2

∆s = 0 =⇒ ∆s =
h2
√

Θ
.

Thus we have shown that ∆s ∼ O(h2), which makes (2.14b) the more desirable algorithm.
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2.2 Results & Conclusions
We now show all the relevant numerical results obtained from the equation of motion of our instanton.
Let us start with the the Euclidean action of the field (1.2). In the 1+1D case, we have

SE =
∫ {1

2

[
(∂τΦ)2 + (∂xΦ)2

]
+ U

}
dτ dx. (2.39a)

To numerically evaluate this double integral we implement a 2D composite Simpson method (see § C.1)
which, for uniform grid spacing h, is given by the Frobenius inner product 2

SE ≈
h2

9
S⊗F L ≡

h2

9

τmax

∑
i=τmin

xmax

∑
j=xmin

Sij Lij. (2.40)

Here S is the Simpson coefficient matrix (c.f., Eq. (C.20)) andLij is the FDA of the Lagrangian

L =
1
2

[
(∂τΦ)2 + (∂xΦ)2

]
+ U. (2.41)

The extension of this calculation to two and three spatial dimensions (withO(D) symmetry) is straight-
forward. In these cases the action (1.2), rewritten in spherical coordinates, takes the form

S2D
E = 2π

∫ {1
2

[
(∂τΦ)2 + (∂rΦ)2

]
+ U

}
r dτ dr (2.39b)

S3D
E = 4π

∫ {1
2

[
(∂τΦ)2 + (∂rΦ)2

]
+ U

}
r2 dτ dr, (2.39c)

where r ≡
√

∑i(xi)2 is the radial coordinate. The only other consideration that we must take into
account is how the gradients ∇̊aΦ change when written in the new coordinates. In such cases the
residual (2.8) is written as

F (Φ)2D = ∂2
τΦ + ∂2

r Φ +
1
r

∂rΦ− ∂ΦU (2.42a)

F (Φ)3D = ∂2
τΦ + ∂2

r Φ +
2
r

∂rΦ− ∂ΦU. (2.42b)

To work around the coordinate singularity at r = 0 we Taylor-expand Φ in a neighbourhood of r = 0,

Φ(s, τ, r) = Φ(s, τ, 0) + (r− 0)���
���

�:0
∂rΦ(s, τ, 0) +

(r− 0)2

2!
∂2

r Φ(s, τ, 0) + O(r3)

≈ Φ(s, τ, 0) +
r2

2
∂2

r Φ(s, τ, 0), (2.43)

2Of course, since in our code we are using only one quadrant of the whole grid, (2.40) must be multiplied by 4 in order
to get the full action.
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where ∂rΦ(s, τ, 0) vanished because of the boundary condition (1.8b). Taking the r-derivative of this
expression, 3

∂rΦ(s, τ, r) ≈ ∂r

(
Φ(s, τ, 0) +

r2

2
∂2

r Φ(s, τ, 0)
)

=
���

���
��:0

∂r[Φ(s, τ, 0)] + r ∂2
r Φ(s, τ, 0) +

r2

2 ��
���

���
�:0

∂r[∂2
r Φ(s, τ, 0)]

= r ∂2
r Φ(s, τ, 0). (2.44)

Hence, in a neighbourhood of r = 0, we have

1
r

∂rΦ(s, τ, r) ≈ ∂2
r Φ(s, τ, 0).

Thus, we rewrite (2.42) as

F (Φ)2D =

{
∂2

τΦ + 2∂2
r Φ− ∂ΦU if r = 0,

∂2
τΦ + ∂2

r Φ + 1
r ∂rΦ− ∂ΦU otherwise;

(2.42c)

F (Φ)3D =

{
∂2

τΦ + 3∂2
r Φ− ∂ΦU if r = 0,

∂2
τΦ + ∂2

r Φ + 2
r ∂rΦ− ∂ΦU otherwise.

(2.42d)

Figure 2.1 shows the relation between action and temperature for both non-static and quasi-static
initial conditions, in all three dimensional cases. Two curious observations are a) that we did not find
any evidence for a non-static solution with higher action than the quasi-static solution, and b) that
the critical temperature at which the transition takes place decreases with increasing dimensions.

0.05 0.10 0.15 0.20 0.25
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Figure 2.1: The plots show the dependence of the Euclidean action on temperature for
non-static and quasi-static instantons. From left to right we show one, two, and three

spatial dimensions. In all cases λ = 1.2.

3Do note the subtlety in notation; ∂rΦ(s, τ, 0) vanished because of the boundary condition (1.8b), whereas
∂r[Φ(s, τ, 0)] vanishes because we are taking the r-derivative of a constant expression (Φ(s, τ, 0)).
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Figure 2.2: At T = 0.125, the non-static instanton (left) becomes distorted in the
imaginary time direction. In the middle figure we show the quasi-static instanton at
that very same temperature. Pushing the non-static field to a higher temperature T =
0.17 breaks its O(2) symmetry even further and its profile (right) becomes identical

to the quasi-static field shown in the middle.

Let us inspect the situation closer near the critical transitional temperature.. .Consider, for instance,
the 1+1D case (left canvas on Fig. 2.1). At around T = 0.125 the non-static instanton is becoming
distorted and is starting to look a lot like the quasi-static bubble. If we push the temperature just a bit
further to, say, T = 0.17, the profiles of the non-static and quasi-static fields become indistinguish-
able (see Fig. 2.2). Focusing strictly on the non-static instanton, we see this transition from vacuum to
thermal fluctuations on Figure 2.3 (compare this figure to Fig. 1.2).

Figure 2.3: Transition from vacuum to thermal case of the non-static (e = 0) instan-
ton, and the breaking of its O(2) symmetry (one spatial dimension). The figure shows
minimum [T ≈ 0.04] (left), medium [T = 0.125] (middle), and high [T = 0.25]
(right) temperatures. We can see how the rotational symmetry of the bubble is bro-

ken as temperatures increase. In all cases λ = 1.2.

The action also shows a dependence on the height of the potential barrier, which is given by the
parameter λ; we show this relation on Fig. 2.4. We can quantify this relation through a least squares
fitting; let us consider the case with quasi-static initial conditions. From our data (see Table 2.1) we
can infer an ansatz SE ≈ α/(2T) for some constant α; let us instead absorb this factor of 2 in α and
proceed with a fitting for the ansatz

SE =
α

T
. (2.45)
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T SE
x0 0.0416667 13.8767 y0
x1 0.0454545 12.7177 y1
x2 0.05 11.567 y2
x3 0.0555556 10.4083 y3
x4 0.0625 9.25161 y4
x5 0.0714286 8.09933 y5
x6 0.0833333 8.09933 y6
x7 0.1 5.78424 y7
x8 0.125 4.62776 y8
x9 0.166667 3.47151 y9

x10 0.25 2.31488 y10

Table 2.1: Relation between action and temperature for the quasi-static, 1+1D instan-
ton.
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Figure 2.4: The plots show the dependence of the Euclidean action on temperature
for non-static and quasi-static instantons with different potential barrier heights ( left:

λ = 1.2; right: λ = 1.4).

Then, via a least-squares fitting (§ C.2), α is furnished from

α =
∑i

yi
xi

∑i x−2
i

. (2.46)

Figure 2.5 shows the fitting of α with the action of quasi-static instanton for all three dimensional
cases, as well as the (surprisingly linear!) relation between α and the potential barrier parameter λ.

This brings us to the conclusion of our study. We have investigated the cross-over regime of bubble
nucleation, where the tunnelling instantons that dominate the nucleation rate lose one degree of
symmetry in the presence of non-zero temperatures. The numerical results were obtained using a
new relaxation technique that is amenable to both vacuum and thermal ensembles, and we found
that the distorted instantons merge smoothly into quasi-static instantons.
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Figure 2.5: Least-squares fitting for SE = α/T (left). This value of α is saved for differ-
ent values of λ, from which we discover a surprisingly linear relation between α and
λ (right), and consequently shows λ’s dependence on T. The figure shows results for

one (top), two (middle), and three (bottom) spatial dimensions.



Part II

Basics of 3+1 Numerical Relativity





Conventions & Notation

Metric signature “Mostly plus” (− + · · ·+)
Einstein summation “Downstairs” and “upstairs” indices are summed over,

e.g., Xiei = ∑i Xiei
Index convention Standard convention whereby the letters a− h and o− z are used for

4-dimensional spacetime indices that run from 0 to 3, whereas the letters
i− n are reserved for 3-dimensional spatial indices that run from 1 to 3.
Lowercase Greek letters are reserved for components in a chosen basis
(see [50] for reference).

Dimensionless units G = c = h̄ = 1 (unless otherwise stated)
Cosmological constant Λ = 0
Riemann curvature R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z
(In components) Rd

abc = ∂bΓd
ac − ∂cΓd

ab + Γe
acΓd

eb − Γe
abΓd

ec
Ricci tensor R(X, Y) = 〈 f a, R(ea, Y)X〉 ( f a is a basis covector and ea is a basis vector)
( In components) Rab = Rd

adb = ∂dΓd
ab − ∂bΓd

ad + Γe
abΓd

ed − Γe
adΓd

eb = 2Γd
a[b,d] + 2Γd

e[dΓe
b]a

Ricci scalar R = gabRab = Rb
b = 2gab

(
Γd

a[b,d] + Γd
e[dΓe

b]a

)
Einstein tensor Gab = Rab − 1

2 Rgab
Einstein field equations Gab = 8πTab
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Chapter 3

The ADM Formalism

The present chapter introduces the Cauchy 3+1 formalism of numerical relativity (NR), which provides
an intuitive and efficient approach to solving the equations of the gravitational field. These equations,
which are known as the Einstein Field Equations (EFEs), are nonlinear coupled partial differential
equations (PDEs) which, with the exception of a few idealised cases characterised by high degrees
of symmetry, simply cannot be obtained analytically;1 we need a computer to do the heavy lifting
for us. That being said, computers (for better or worse) lack a sense of humour; if you feed them
nonsense, they will calculate nonsense. Therefore, we will not get too far in cracking the mysteries of
the universe if we are not capable of somehow prescribing the right numerical recipe to the machine.

There are in fact quite a few different variations of recipes that we can cook with, in order to cast
Einstein’s equations in a convenient form for numerical purposes. These schemes can be roughly
distinguished by the level set of hypersurfaces adopted to the foliation of the ambient spacetime
(more on this later) and whether this spacetime is the physical one or a “larger” one where the physical
description is obtained a posteriori by a rather straightforward restriction. A notion of “time” is then
defined by a chosen foliation of the spacetime (physical or not) which is parametrised by a global
parameter t. The character of the normal vector field∇at (normal to the t = constant surfaces)
characterises the different approaches. For instance, the so-called Cauchy approach corresponds to
∇at being timelike, whilst the characteristic approach is characterised by∇at being null.

Whilst different approaches are naturally suited for different problems (and thus it is a good idea
to be verse in all variations!), it is ultimately the 3+1 implementation the one that is arguably the most
powerful one across the board, and as such it shall be the preferred flavour to be used in our future
work on the evolution of (asymmetric) scalar fields in the presence of a gravitational field.

3.1 Basics of the 3+1 Setting
In General Relativity (GR), the evolution of the gravitational field can be posed as an initial value
problem (or Cauchy problem) with constraints (see the original breakthrough paper [26]). In this so-
called “3+1 formalism,” the EFEs can be determined in two steps:

i) specify the spacetime metric tensor gab and its time-derivative ∂tgab (actually, it will be related
quantities) for some initial 3D spacelike hypersurface Σ0 that has a fixed time coordinate
x0 = t = constant;

1Even in cases where there are high levels of symmetry we run into major problems! A textbook example of this issue
is the question of the non-perturbative stability of the Kerr solution –it is still unknown whether the exterior Kerr solution
is stable; a difficulty that arises due to the high non-linearity of the EFE’s, which defies perturbative approaches.
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ii) provided that we can obtain expressions for second-time derivatives of the 4-metric gab at
all points on the hypersurface from the EFEs, we then integrate forward in time the metric
quantities from step i).

However, even though this seems like a straightforward proposal, we immediately face the problem
that in GR –unlike in other standard dynamical systems– space and time are two sides of the same
coin; these two entities are treated on equal footing. This makes the space-time split that we are so
accostumed to seeing in non-relativistic Cauchy problems a much more complicated endeavour. A
further complication is the constraints of the system; while the EFEs consist of ten coupled PDEs, not
all of them are evolution equations:

By the (contracted) Bianchi identities,

0 = ∇b G(4) ab

= ∂0 G(4) a0 + ∂i G(4) ai + G(4) bc Γ(4) a
bc + G(4) ab Γ(4) c

bc,

we get
∂t G(4) a0 = −∂i G(4) ai − G(4) bc Γ(4) a

bc − G(4) ab Γ(4) c
bc. (3.1)

The quantities Γ(4) a
bc are the so-called Christoffel symbols (or connection coefficients) of the 4-metric gab.

Here (and throughout this paper) we use the convention of identifying the time-component with the
zeroth index, as well as the widely adopted Einstein summation convention (refer to the Conventions
page for details). Because there is no third-time derivatives (or higher) on the RHS of (3.1), this implies
that there are no second-time derivatives contained in G(4) a0, and thus the four equations

G(4) a0 = 8πTa0 (3.2)

do not yield any information whatsoever on how the fields evolve in time. Instead, they function as
four constraints that must be satisfied from the onset on the initial hypersurface at x0 = t (and remain
satisfied throughout the entire evolution!) if we are to have a physically-meaningful system. Thus,
we can see that the only true dynamical (evolution) equations are encoded in the remaining six field
equations

G(4) ij = 8πTij. (3.3)

We will see later on that certain projections of (3.2) and (3.3) onto the hypersurfaces will indeed yield
the desired constraint and evolution equations of the system.

Hence, according to our discussion above, our first order of business is to somehow find a way to define
the role played by space and time, as (somewhat) separate entities. Of course, by this we do not mean
“forget about GR and go back to Newtonian/Galilean gravity!” It turns out that there is a special class
of spacetimes, known as globally hyperbolic spacetimes, that will allow us this sought-after time/space
split. First recall that a Cauchy surface is a spacelike hypersurface Σ embedded in an ambient manifold
M such that each causal curve without endpoint inM intersects Σ exactly once. An equivalent
way of saying this is that a Cauchy surface for a spacetimeM is an achronal subspace Σ ⊂ M (i.e., a
subspace Σ in which no two points are timelike-related) which is transversed by every inextendible
causal curve inM. Now we properly define the concept of global hyperbolicity:
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Definition 1. A spacetimeM is said to be globally hyperbolic if it admits a Cauchy surface. Equivalently,
M is globally hyperbolic if it satisfies the strongly causal condition (i.e., if every p ∈ M has arbitrarily small
neighborhoods U in which every every causal curve with endpoints in U is entirely contained in U) and if the
“causal diamonds” J+(p)∩ J−(q) are compact for all p, q ∈ M. 2

The notion of global hyperbolicity is a crucial feature in Lorentzian geometry that ensures the exis-
tence of maximal causal geodesic segments. Physically, this condition is closely connected to the
issue of classical determinism and the strong cosmic censorship conjecture [46]. Even though this
is by no means a condition satisfied a priori by all spacetimes, the 3+1 formalism assumes that all
physically reasonable spacetimes are of this type. This assumption is justified by the desire to have
“nice” chronological/causal features in our spacetime (i.e., no grandfather paradox or any similar patho-
logical behavior). Moreover, the use of global hyperbolicity allows us to foliate our full 4D spacetime
M in such a way that we can stack 3D spacelike Cauchy slices along a universal time axis, by virtue of
M having topology Σ×R. This is certainly not the only way to foliateM, but it is the most suitable
option for the 3+1 formalism.

3.2 Spacetime Slicing and 3+1 Adapted Coordinates
Keeping in mind the specific foliation described in the previous section, we can now determine the
geometry of the region of spacetime contained between two adjacent hypersurfaces Σt and Σt+dt
from just three basic ingredients (refer to figure 3.1):

I The 3D metric γij (metric induced on Σ: γab ≡ ι∗gab, where ι: Σ ↪→M is the embedding of
Σ intoM) that measures proper distances within the hypersurface itself:

dl2 = γij dxidxj.

The hypersurface is then said to be

– spacelike ⇐⇒ γab is positive definite; i.e., it has signature (+, +, +)︸ ︷︷ ︸
our case

;

– timelike ⇐⇒ γab is Lorentzian; i.e., it has signature (−, +, +);

– null ⇐⇒ γab is degenerate; i.e., it has signature (0, +, +).

(We will shortly justify why we express the spatial metric both as 3D object (γij) and a 4D object
(γab).)

II The lapse of proper time between the hypersurfaces, as measured by observers whose worldlines
extend along the direction normal to the hypersurfaces (these observers are usually referred to
as Eulerian observers):

dτ = α(t, xi)dt,

where α is known as the lapse function (this is denoted as N by some references, e.g., [27], [40]).
2Here we used standard notation, where J+(p) = {q ∈ M | p ≤ q} and J−(p) = {q ∈ M | q ≤ p} are the

causal future and causal past, respectively, of p ∈ M.
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Figure 3.1: Two adjacent spacelike hypersurfaces. (Image from [2])

III The relative velocity βi between the Eulerian observers:

xi
t+dt = xi

t − βi(t, xi)dt, for Eulerian observers.

This 3-vector βi measures how much the coordinates are shifted as we move from one slice to
the next, and it is therefore conventionally named as the shift vector. (It is also denoted Ni in
the literature.)

Note that, as we alluded to earlier, the foliation ofM is not unique, and neither is the coordinates
shift; α determines “how much slicing” is to be done, whilst βi dictates how the spatial coordinates
propagate from one hypersurface to the next. In fact, the latitude to choose a lapse function and shift
vector demonstrates the gauge freedom that is inherent to the formulation of GR, a covariant theory.

From the universal time function t (given by the foliation), we have the vector field∇at that is every-
where normal to the t = constant hypersurface Σ. In fact,∇at is

• timelike ⇐⇒ Σ is spacelike︸ ︷︷ ︸
our case

;

• spacelike ⇐⇒ Σ is timelike;

• null ⇐⇒ Σ is null.

We use the 4-metric gab to normalise∇at:

ωa =
∇at
‖∇at‖ =

∇at√
±∇at∇at

,

where the correct sign is

+ for a timelike Σ (spacelike∇at);

− for a spacelike Σ (timelike∇at)︸ ︷︷ ︸
our case

.

Thus, choosing the appropriate sign, we set the lapse function α to be

α ≡ (−∇at∇at)−1/2 so that ωa = α∇at.
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Then we define the future-pointing timelike unit normal na to the slice Σ to be 3

na ≡ −ωa = −α∇at. (3.4)

We think of na as the 4-velocity of an Eulerian observer, i.e., an observer whose worldline is always
normal to the spatial slices (note that it is indeed unit timelike: nana = (−α∇at)(−α∇at) =
α2∇at∇at = α2(−α−2) = −1).

Now, having defined the unit normal, we can see that the three scalar quantities that yield the spatial
components of the shift vector, βi, are given by

βi = −α
(
~n · ~∇xi

)
. (3.5)

These three scalar quantities can then be used to form a full 4-vector βa (orthogonal to na, by con-
struction) which, in the adapted 3+1 coordinates we are about to introduce, will have components
βµ = (0, βi) (we will show this soon). 4 This shift vector βa will measure the amount by which the
spatial coordinates are shifted within a slice with respect to the normal vector (i.e., they determine
how the coordinates evolve in time). A linear combination of βa and the unit normal na define (see
figure 3.2) the time vector ta as

ta ≡ αna + βa. (3.6)

Figure 3.2: Simple Pythagorean triangulation that shows equation (3.6). Here we can
see how the normal vector αna and the time vector ta connect points on two neigh-
bouring spatial slices, whilst βa resides in a slice and measures their difference. (Im-

age from[8])

This time vector is dual to∇at: for any spatial shift vector βa,

ta∇at = (αna + βa)∇at = αna∇at︸ ︷︷ ︸
=1

+ βa∇at︸ ︷︷ ︸
=0

= 1. (3.7)

The relevance of this duality will be evident from the following discussion. Note that ta is nothing but
the vector tangent to the time lines, i.e., the congruence of lines of constant spatial coordinates xi. In
the standard 3+1 coordinates, which we now present, ta is our timelike basis vector ea

(0) = ta (ta is a
natural candidate to be the basis vector ea

(0) precisely because of the duality (3.7)). The remaining three

3The minus sign is chosen to ensure that na is always future-pointing.
4Recall abstract index notation (see “Conventions” page for reference).
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spatial basis vectors ea
(i) are tangent to a particular slice Σt (i.e., they satisfy ea

(i)∇at = 0). Moreover,
they are Lie dragged along ta,

L~t ea
(i) = 0,

as illustrated in figure 3.3. (Note that some references (e.g., [27]) use a normal evolution vector ma ≡
αna in place of ta to Lie drag the hypersurfaces. This is justified by the fact that ma is also dual to∇at
(note that in (3.7) the term βa∇at does not contribute).)

Figure 3.3: As a consequence of spatial basis vectors ea
(i) being Lie dragged from slice to

slice along the coordinate congruence ta, these basis vectors connect points with the
same spatial coordinates on different slices (for instance, in this figure, they connect
the unprimed labeled points on the bottom slice with their primed counterparts that

lie on the top slice). (Image from[8])

K;9NAB8CAM:<J

We digress for a moment to introduce a crucial object: the spatial projection operator

Pa
b ≡ δa

b + nanb. (3.8)

This operator projects a 4D tensor onto a spatial slice. For instance, if we take an arbitrary 4-vector va,
and hit it with the projection operator,

va︸︷︷︸
arbitrary, 4D

Pa
b7 −→ Pa

b vb︸ ︷︷ ︸
purely spatial

we get a purely spatial object that lies entirely on a hypersurface. We can check that this is indeed the
case: first expand Pa

b vb,

Pa
b vb = (δa

b + nanb)vb = va + nanbvb,

and then contract with the normal,

(Pa
b vb)na = (va + nanbvb)na

= vana + nananbvb

= vana + (−1)vbnb (since na is normalised and timelike)
= vana − vana = 0. (relabeling indices)

Since there is no contribution whatsoever along na, we conclude that Pa
b vb is indeed purely spatial.
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In a similar vein, to project higher rank tensors onto a spatial hypersurface, each free index of such
tensors is to be contracted with a projection operator (e.g., for a rank-2 tensor Tab, we hit it with two
projections, one for each free index: P c

a P d
b Tcd). Now that this is clear, we see how we get the induced

metric (expressed as a full 4D object, γab) from the projection onto a slice of the spacetime metric
gab:

γab ≡ P c
a P d

b gcd = (δa
b + nanb) (δ

a
b + nanb) gcd = gab + nanb.

So we have our spatial metric ,
γab = gab + nanb. (3.9)

and, similarly, the inverse spatial metric,

γab = gacgbdγcd = gab + nanb. (3.10)

Hence, γab is a projection tensor that discards components of 4D geometric objects that lie along
na; we use it to calculate distances between points that belong to the same spatial hypersurface.
We can think of γab as first computing four-dimensional distance (with gab), and then eliminating
(with nanb) the timelike contribution to the 4D distance calculation. We may check that γab is purely
spatial by contracting with the normal na:

naγab = nagab + nananb = nb − nb = 0.

Now, from (3.9) we see that, if we raise only one index of the spatial metric γab,

γa
b = ga

b + nanb = δa
b + nanb,

we find out that our projection operator is merely the spatial metric with one raised index

Pa
b = γa

b .

Therefore, from now on we will exclusively use γa
b to denote the spatial projection operator; i.e., we

rewrite (3.8) as
γa

b = δa
b + nanb. (3.11)

We can now see that the shift vector βa is nothing but the projection of ta onto a hypersurface:

γa
btb = (δa

b + nanb)(αnb + βb) = αδa
bnb + δa

b βb + αna nbnb︸︷︷︸
=−1

+na nbβb︸︷︷︸
=0

= βa. (3.12)

This provides us with a coordinate-free expression for the shift vector.

K;9NAB8CAM:<J

Thus far we have been writing objects in a coordinate-free matter for the most part. Now we use
the standard 3+1 coordinates basis that we declared above to write out explicit components of these
objects. First off, since ta is aligned with the basis vector ea

(0) whilst all remaining (spatial) coordinates
remain constant along ta, we get

tµ = eµ
(0) = δ

µ
0 = (1, 0, 0, 0). (3.13)
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This means that any Lie derivative along ta will reduce to a partial derivative with respect to t:L~t = ∂t
(we will use this later!). Then, as discussed earlier, the remaining three spatial basis vectors ea

(i) reside
on a particular slice Σt, so that

0 = ∇atea
(i)

by (3.4)
======== −α−1naea

(i) =⇒ naea
(i) = 0.

But then, since the ea
(i) are the spatial basis vectors, they must span the hypersurface Σt. Hence the

condition naea
(i) = 0 means that the covariant spatial components of the normal vector must vanish,

i.e.,
ni = 0. (3.14)

Now, since objects that are purely spatial must vanish (by construction) when contracting with the
normal, Eq. (3.14) implies that timelike contravariant components of spatial tensors must vanish. 5

For example, contract the shift vector with the normal,

0
by construction
================ naβa = n0β0 + niβ

i︸︷︷︸
= 0 by (3.14)

= n0︸︷︷︸
6=0

β0 =⇒ β0 = 0.

Combining this with (3.5), we can conclude that, in the adapted coordinates,

βµ = (0, βi), (3.15)

as we alluded to earlier. Also, note that from the definition of the time vector (3.6), we have

na =
ta

α
− βa

α
.

Combining this with (3.13) and (3.15), we can get the contravariant components of na in the adapted
coordinates:

n0 = α−1 t0︸︷︷︸
=1

−α−1 β0︸︷︷︸
=0

= α−1,

whilst
ni = α−1 ti︸︷︷︸

0

−α−1βi = −α−1βi.

Thus we have found
nµ = (α−1,−α−1βi), (3.16)

and since na is unit timelike,

−1 = nana
by (3.14)
========= n0n0 =⇒ n0 = − 1

n0 = −α.

5 Even though this rationale does not apply to covariant components of spatial tensors (as we can see from (3.16), the
contravariant spatial components of the normal are generally nonzero), any contribution along the timelike direction
is killed off when contracting with the normal by the condition that nik Ti1 ,...,ik ,...in = 0 for any purely spatial tensor
Ti1 ,...in . Therefore all the information about spatial tensors is effectively contained in their spatial components. We will use this
fact throughout.
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Hence, combining this with (3.14), we have all covariant components of the normal in the adapted
coordinates

nµ = (−α, 0, 0, 0). (3.17)

Now, from (3.9),
γij = gij + ninj︸︷︷︸

=0

= gij, (3.18)

so that the spatial metric on Σ is just the spatial part of the spacetime 4-metric gab. Note also that, even
though the covariant components do not necessarily vanish (γ0µ = g0µ + n0nµ = g0µ + n0n0 =
g0µ + α2 6= 0, in general), any contribution to the timelike direction can be safely ignored since
naγab = 0 (see footnote 5). On the other hand, timelike components of spatial contravariant tensors
do vanish (see discussion below equation (3.14)), so we must have γa0 = 0. Therefore, from (3.10), we
get the components of the inverse spacetime metric in these adapted coordinates:

gab = γab − nanb

g0a = −n0na =⇒ g00 = −α−2 & g0i = α−2βi

gij = γij − ninj = γij − (−α−1βi)(−α−1βj) = γij − α−2βiβj.

In matrix form,

gµν =
(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)
. (3.19)

Now, by the condition gabgbc = δa
c , we can invert (3.19) to write the spacetime metric in 3+1 coordi-

nates:

gµν =
(
−α2 + βkβk βi

β j γij

)
. (3.20)

The covariant components βi shown above come from lowering with the spatial metric, i.e., βi =
γikβk. We will always use the spatial metric to raise/lower indices of spatial objects, because γij and
γij are inverses of each other in the adapted coordinates:

γikγkj = (gik + nink)(gkj + nknj)

= gikgkj + giknknj + ninkgkj + ninknknj

= δi
j + ni nj︸︷︷︸

=0

+ni nj︸︷︷︸
=0

−ni nj︸︷︷︸
=0

= δi
j .

From (3.20) we see that the line element of the full spacetime metric in 3+1 coordinates is given by

ds2 =
(
−α2 + βiβ

i
)

dt2 + 2βi dtdxi + γij dxidxj. (3.21)

3.3 3D Curvature
The EFEs relate contractions of the 4D Riemann tensor (namely, the Ricci tensor and the Ricci scalar)
to the energy-momentum tensor (these contractions are encoded in the Einstein tensor G(4)

ab).
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However, given our interest in the 3+1 formalism, we need to find a way to translate these four-
dimensional (spacetime) quantities into three-dimensional (spatial) objects. As the reader may have
wisely guessed, the projection operator (3.11) will play a key role in accomplishing this task. These
projections will allow us to distinguish between properties that are intrinsic to the 3D geometry
from those that are extrinsic (i.e., that depend on the embedding into the ambient 4D manifold). To
elaborate further, we start with the following crucial definition:

Definition 2. The spatial connection D intrinsic to a hypersurface Σ satisfies the following: Let X, Y(a) ∈
X(Σ) be vector fields on Σ (sections of the tangent bundle Σ→ TΣ) and let ω(a) ∈ X∗(Σ) be 1-forms on
Σ (sections of the cotangent bundle Σ→ T∗Σ). Then for any (a

b) tensor field T ∈ T a
b (Σ), the map

DT :X∗(Σ)× . . .×X∗(Σ)︸ ︷︷ ︸
a times

×X(Σ)× . . .×X(Σ)︸ ︷︷ ︸
b + 1 times

→ C∞(Σ)

given by
DT(ω1, . . . , ωa, Y1, . . . , Yb, X) = DXT(ω1, . . . , ωa, Y1, . . . , Yb)

defines an ( a
b+1) tensor field, which we will call the spatial covariant derivative. It can be shown also that D

is torsion-free and compatible with the 3D metric, i.e., Dcγab = 0.

In a coordinate chart,

(DT)i1...ia
j1...jbc = DcTi1...ia

j1...jb

= ∂cTi1...ia
j1...jb

+
a

∑
d=1

Ti1...e...ia
j1...jb

Γid
ec −

b

∑
d=1

Ti1...ia
j1...e...jb

Γe
jdc, (3.22)

where
Γa

bc =
1
2

γad(∂cγdb + ∂bγdc − ∂dγbc). (3.23)

For instance, take a (1
1) tensor field Ta

b ; then its covariant spatial derivative with respect to the~e(c)
basis vector (i.e., the geometric object that shows how much Ta

b varies as it is transported along
congruence lines of~e(c)) is the (1

2) tensor field given by

(DT)a
bc = Ta

b;c = DcTa
b = ∂cTa

b + Te
b Γa

ec − Ta
e Γe

bc.

(The semicolon notation is commonly used in the GR literature to denote covariant differentiation.
Instead, a comma is used for the standard partial derivative in flat space; e.g., Ta

b,c ≡ ∂cTa
b .) Having

defined the above, it is not hard to show that the spatial covariant derivative is furnished by projecting
all indices present in a 4D covariant derivative∇ (connection of the ambient manifoldM) onto Σ;
that is,

DaTi1...ib
j1...jc = γ d

a γi1
k1

. . . γ
ib

kb
γ `1

j1
. . . γ `c

jc ∇dTk1...kb
`1...`c

. (3.24)

For a simple example, consider again a (1
1) tensor field Ta

b . Then,

DaTb
c = γ d

a γb
eγ

f
c ∇dTe

f .

Now equipped with the spatial covariant derivative, we define the 3D Riemann tensor associated with
γij by requiring that



33

> (Ricci identity) for any spatial vector va,

2D[aDb]vc = Rc
dabvd; (3.25)

> (Purely spatial tensor) the contraction with the normal vanishes

Rd
cband = 0. (3.26)

The brackets used on the indices in Eq. (3.25) are common notation in GR; they are used to denote the
antisymmetric part of a tensor T :

T[µ1...µk] =
1
k!

ε̂µ1...µk Tµ1...µk , (3.27)

where the Levi-Civita symbol ε̂ is given by

ε̂µ1...µk =


+1 if (µ1 . . . µk) is an even permutation of 1, . . . , k;
−1 if (µ1 . . . µk) is an odd permutation of 1, . . . , k;
0 if there are any repeated indices in 1, . . . , k.

Similarly, to denote the symmetric part of a tensor T we use parentheses on the indices:

T(µ1...µk) =
1
k!

σ̂µ1...µk Tµ1...µk , (3.28)

where σ̂ is given by

σ̂µ1...µk =

{
+1 for any permutation (µ1 . . . µk) of 1, . . . , k;
0 if there are any repeated indices in 1, . . . , k.

For example,

T[ab] =
1
2

(Tab − Tba)

T(ab) =
1
2

(Tab + Tba)

T[abc] =
1
3!

(Tabc + Tbca + Tcab − Tacb − Tcba − Tbac)

T(abc) =
1
3!

(Tabc + Tbca + Tcab + Tacb + Tcba + Tbac).

Now back to the topic at hand. It is not hard to show that, in a coordinate basis, the Riemann tensor
takes the form

Rd
abc = ∂bΓd

ac − ∂cΓd
ab + Γe

acΓ
d
eb − Γe

abΓd
ec, (3.29)

where the Christoffel symbols Γc
ab are the connection coefficients of the spatial metric (c.f., Eq. (3.23)). More-

over, a contraction of Eq. (3.29) yields the 3D Ricci tensor

Rab = Rd
adb = ∂dΓd

ab − ∂bΓd
ad + Γe

abΓd
ed − Γe

adΓd
eb

= 2Γd
a[b,d] + 2Γd

e[dΓe
b]a, (3.30)
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Figure 3.4: Kab yields information about the bending of the slice in the ambient space-
time by measuring how much the normal varies from point to point on said slice; i.e.,
it measures the change of the normal vector under parallel transport within a slice.

(Image from[8])

and yet a further contraction provides the 3D Ricci scalar:

R = Ra
a = γabRab = 2γab

(
Γd

a[b,d] + Γd
e[dΓe

b]a

)
. (3.31)

The 3D Riemann tensor (3.29) is a quantity that measures the curvature intrinsic to a specific hypersur-
face by measuring how much a vector deviates from its initial position after being parallely transported
along a closed loop (equivalently, it measures curvature by calculating how much covariant (second)
derivatives do or do not commute (see Ricci identity (3.25)). That is all fun and games, but we also
want to know how our hypersurfaces are embedded in the ambient spacetime; therefore we must be
able to compute geometric features that are not intrinsic to the slice. We start by defining a crucial
object, the extrinsic curvature tensor: 6

Kab = −γ c
a γ d

b ∇cnd. (3.32)

Note that Kab is merely a projection of gradients of the normal vector onto a slice; it measures how
much na varies as we move from point to point on a particular slice (see figure 3.4). Let us now expand:

Kab = −γ c
a γ d

b ∇cnd

= −
[
(δ c

a + nanc)(δ d
b + nbnd)∇cnd

]
= −

[
(δ c

a δ d
b + nancδ d

b + δ c
a nbnd + nancnbnd)∇cnd

]
= −[∇anb + nanc∇cnb + nb nd∇and︸ ︷︷ ︸

=0

+nanbnc nd∇cnd︸ ︷︷ ︸
=0

]

= −∇anb − nanc∇cnb.

On the fourth equality we claimed that nd∇and = 0 from the the following fact:

∇a(

=−1︷︸︸︷
nbnb)︸ ︷︷ ︸
=0

= nb∇anb + nb∇anb

6The minus sign is merely a convention in the NR community. In the cosmology community the sign is usually posi-
tive!
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=⇒ 0 = nb∇anb + nb∇agbcnc︸ ︷︷ ︸
= nbgbc∇anc = nc∇anc

=⇒ nb∇anb = −nb∇anb

=⇒ nb∇anb = 0.

Hence, once we expand (3.32) we have

Kab = −∇anb − nanc∇cnb. (3.33)

This form is obviously more practical for computations, so it shall be the one we use hereafter (along
with (3.37); see below). Note that since na is regarded as the 4-velocity of some Eulerian observer, we
may consider the quantity nc∇cnb to be the 4-acceleration ab of such Eulerian observer:

ab ≡ nc∇cnb. (3.34)

Now expand (3.34):
aa = nb∇bna = nb∇b (−α∇at)︸ ︷︷ ︸

def of na

= −nb∇bα ∇at︸︷︷︸
=− 1

α na

−αnb∇b∇at︸ ︷︷ ︸
=∇a∇bt

=
1
α

nanb∇bα− αnb∇a

(
−1

α
nb

)
=

1
α

nanb∇bα + α
1
α

nb∇anb︸ ︷︷ ︸
=0

+α nbnb︸︷︷︸
=−1

∇a
1
α︸︷︷︸

=−α−2∇aα

=
1
α

nanb∇bα− α

(
− 1

α2∇aα

)
=

1
α

(
nanb∇bα +∇aα

)
=

1
α

(
(δ b

a + nanb)∇bα
)

=
1
α

γ b
a ∇bα =

1
α

Daα

= Da log α.

This shows that ab is actually the spatial gradient of the logarithm of the lapse function:

aa = Da log α. (3.35)

Now, since it will come in handy later, we take yet another spatial derivate of this quantity:

Daab = DaDb log α

= Da

(
1
α

Dbα

)
=

1
α

DaDbα + Da

(
1
α

)
Dbα

=
1
α

DaDbα− 1
α2 Daα Dbα =

1
α

DaDbα− 1
α

Daα︸ ︷︷ ︸
=Da log α

1
α

Dbα︸ ︷︷ ︸
=Db log α

=
1
α

DaDbα− aaab. (3.36)
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We will use both(3.35) and (3.36) later when computing a certain projection of the 4D Riemann tensor.
It is important to make sure that Kab is indeed a purely spatial object:

naKab = na(−∇anb − nanc∇cnb)
= −na∇anb − nananc∇cnb

= −na∇anb + na∇anb = 0. (after relabelling)

Thus, we are allowed to discard timelike components (we discussed this earlier) and focus exclusively
on the spatial components Kij ( we will certainly use this fact later). Another key property of Kab is its
symmetry (Kab = Kba); we prove this by writing it as the Lie derivative of the spatial metric along the
normal direction: 7

Kab = −1
2
L~nγab. (3.37)

Proof. We expand using the definition of the Lie derivative:

L~nγab = nc∇cγab + γac∇bnc + γcb∇anc

= nc∇c(nanb) + gac∇bnc + gcb∇anc

= ncna∇cnb + ncnb∇cna +∇bna +∇anb

= (γ c
a − g c

a )∇cnb + (γ c
b − g c

b )∇cna +∇bna +∇anb

= γ c
a ∇cnb + γ c

b ∇cna = −2Kab.

Here we used the fact that∇cgab = 0 and the identity nc∇anc = 0. Another (more compact)
computation shows the same result:

L~nγab = L~n(gab + nanb) = 2∇(anb) + naL~nnb + nbL~nna

= 2
(
∇(anb) + n(aab)

)
= −2Kab.

Since na is a timelike vector, equation (3.37) illustrates the intuitive interpretation of the extrinsic
curvature as a geometric generalisation of the “time derivative” of the spatial metric γab, i.e., the
“velocity” of the spatial metric as seen by the Eulerian observers. However,L~n is not a natural time
derivative, since na is not dual to the surface 1-form∇at = ∇at, i.e., their dot product is not unity:

na∇at = −α∇at∇at︸ ︷︷ ︸
=−α−2

= α−1.

Instead, recall that the time vector ta = αna + βa is in fact dual to∇at, as we showed via equation (3.7).
Thus we can use ta to rewrite (3.37) as a more natural time derivative of the metric:

Kab = −1
2
L~nγab = −1

2
L~t−~β

α

γab

= − 1
2α

(
L~tγab −L~βγab

)
= − 1

2α

(
∂tγab −L~βγab

)
, (3.38)

where on the last line we used the fact that, in the adapted coordinates,L~t reduces to ∂t.
7This is in fact taken as the definition of Kab in many references!
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3.4 ADM Evolution & Constraints
The twelve quantities {γij, Kij} encode all the geometric data, both intrinsic and extrinsic, of the 3D
hypersurfaces. Thus, in our efforts to pose the EFEs as a Cauchy problem we need to determine the
evolution of this system (c.f., Eq. (3.3)), starting with some initial data {γ(0)

ij , K(0)
ij } that is prescribed

on an initial slice Σt=0. However, we recall that this data cannot be arbitrary, as constraints must be
satisfied at the initial slice and throughout the entire time-evolution (c.f., Eq. (3.2)). In this section we
derive both the evolution and constraint equations, in the ADM formalism. A conformal reformula-
tion of these equations will be presented in the next chapter, when we discuss the so-called BSSN
formalism.

Let us start by rewriting Eq. (3.38) as

∂tγab = L~βγab − 2αKab. (3.39)

Since –as we have previously discussed– the entire content of any spatial tensor is available from its
spatial components alone, we can drop the timelike components and expand:

∂tγij = L~βγij − 2αKij

= βk Dkγij︸ ︷︷ ︸
=0

+Di(γkjβ
k) + Dj(γikβk)− 2αKij

= Diβ j + Djβi − 2αKij.

Hence, Eq. (3.39) boils down to

∂tγij = 2D(iβ j) − 2αKij. (3.40)

This is our sought-after evolution equation of the spatial metric. While we are at it, let us also present a
useful contraction of this equation that will come in handy later. Per usual convention, we denote the
determinant of the spatial metric by γ ≡ det γij. Then,

∂t log
√

γ =
1
2

∂t log γ =
1
2

1
γ

∂tγ

=
1
2

Tr
(

γij∂tγkl

)
=

1
2

γij∂tγij

=
1
2

γij (−2αKij + Diβ j + Djβi
)

(By (3.40))

= −αK + Diβ
i. (3.41)

Here we used Jacobi’s formula: For an invertible matrix A,

d
dt

[det A(t)] = det A(t) · Tr
[

A−1(t) · d
dt

A(t)
]

. (3.42)

We note that to derive the evolution of the spatial metric we did not use the EFEs at all. That all
changes for the derivation of the evolution of the extrinsic curvature –as well as for the constraints.–
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Our starting point is to cast the EFEs in 3+1 form, which can be achieved by contracting them with
the projection operator γa

b and with the normal vector na. There are only three unique types of
contractions (all other projections vanish identically thanks to the symmetries of the Riemann tensor):

> Normal projection (1 equation):

nanb( G(4)
ab − 8πTab ) = 0. (3.43)

> Projection onto the hypersurface (6 equations):

γ a
c γ b

d ( G(4)
ab − 8πTab ) = 0. (3.44)

> Mixed projection (3 equations):

γ b
c

[
na( G(4)

ab − 8πTab )
]

= 0. (3.45)

These expressions come about by using the celebrated Gauss-Codazzi, Codazzi-Mainardi, and Ricci
equations, which are given, respectively, by the following:

γ e
a γ

f
b γ

g
c γ h

d R(4)
e f gh = Rabcd + KacKbd − KadKcb

γ e
a γ

f
b γ

g
c nh R(4)

e f gh = DbKac − DaKbc

γ
q

a γ r
b ncnd R(4)

qcrd = L~nKab +
1
α

DaDbα + K c
b Kac.

(3.46a)

(3.46b)

(3.46c)

These three important equations are proven in gory detail in Appendix A. Note how Eqs. (3.46a)
and (3.46b) depend exclusively on the spatial metric, the extrinsic curvature, and their spatial deriva-
tives; they will give rise to the constraint equations. On the other hand, Eq. (3.46c) will yield the
evolution equation for the extrinsic curvature, which we will show last.

Without further ado then, let us now derive the constraint equations from contractions of (3.46a)
and (3.46b). Starting with (3.46a), first raise an index and then contract (all with the 3-metric γab):

γpaγ e
a γ

f
b γ

g
c γ h

d R(4)
e f gh = γpaRabcd + γpaKacKbd − γpaKadKcb

γpeγ
f

b γ
g

c γ h
d R(4)

e f gh = Rp
bcd + Kp

cKbd − Kp
dKcb

γ
f

b γ h
d γeg R(4)

e f gh = Rbd + KKbd − Kc
dKcb, (3.47)

where on the third line we contracted (again, with γab) on indices p and c, and we introduced the
trace of the extrinsic curvature K ≡ Ka

a . Now, a further contraction yields

γpbγ
f

b γ h
d γeg R(4)

e f gh = γpbRbd + γpbKKbd − γpbKc
dKcb

γp f γegγ h
d R(4)

e f gh = Rp
d + KKp

d − Kc
dK p

c

γ f hγeg R(4)
e f gh = R + K2 − Kc

pK p
c . (3.48)
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Here we again contracted on indices p and d on the last line. Now note that

Kc
pK p

c = Kc
pγprKcr = KcrKcr,

and we can also expand on the left hand side of (3.48) as

γ f hγeg R(4)
e f gh = (g f h + n f nh)(geg + neng) R(4)

e f gh

= (g f hgeg + n f nhgeg + nengg f h + n f nhneng) R(4)
e f gh

= g f hgeg R(4)
e f gh + n f nhgeg R(4)

e f gh + nengg f h R(4)
f ehg

+ n f nhneng R(4)
e f gh︸ ︷︷ ︸

=0 by symmetries of R(4)
e f gh

= g f h R(4)
f h + n f nh R(4)

f h + neng R(4)
eg

= R(4) + 2n f nh R(4)
f h. (by relabeling)

Thus we can rewrite (3.48) as

R(4) + 2nanb R(4)
ab = R + K2 − KabKab.

Yet we can do better. . . Close inspection of the left hand side tells us that the Einstein tensor is lurking
somewhere:

R(4) + 2nanb R(4)
ab = − nana︸︷︷︸

since nana = −1

R(4) + 2nanb R(4)
ab

= −gabnanb R(4) + 2nanb R(4)
ab

= 2nanb
(

R(4)
ab −

1
2

R(4) gab

)
= 2nanb G(4)

ab .

Then, by means of the EFEs, G(4)
ab = 8πTab , we get

R + K2 − KabKab = 2nanb G(4)
ab

R + K2 − KabKab = 16πnanbTab .

Defining the total energy density ρ (as measured by a normal observer na) as

ρ ≡ nanbTab , (3.49)

we end up with
R + K2 − KabKab = 16πρ. (3.50)

This is the so-called Hamiltonian constraint which, after dropping timelike components, we write as

R + K2 − KijKij = 16πρ. (3.51)
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Now on to find the remaining constraint equation; we use (3.46b), raise an index and then contract
(all with the 3-metric γab):

γrcγ d
a γ e

b γ
f

c np R(4)
de f p = γrcDbKac − γrcDaKbc

γ d
a γ e

b γr f np R(4)
de f p = DbK r

a − DaK r
b (Since Da is compatible with γab)

γ d
a γe f np R(4)

de f p = DbK b
a − DaK, (3.52)

where on the last line we contracted on indices r and b. Then expanding the left hand side of (3.52)

γ d
a γe f np R(4)

de f p = γ d
a

(
ge f + nen f

)
np R(4)

de f p

= γ d
a npge f R(4)

de f p + γ d
a nen f np R(4)

de f p︸ ︷︷ ︸
= 0 by symmetries of R(4)

abcd

= −γ d
a npge f R(4)

ed f p = −γ d
a np R(4)

dp.

So, plugging back into (3.52), we get

DbK b
a − DaK = −γ d

a np R(4)
dp. (3.53)

Yet we want to bring in the Einstein tensor to the scene, so we can push a bit further and expand the
right hand side of (3.53):

−γ d
a np R(4)

dp = −(γ d
a np R(4)

dp −
1
2

γ d
a npgdp︸ ︷︷ ︸

=γapnp=0

R(4) ) = −γ d
a np G(4)

dp.

Then, once again invoking the EFEs, G(4)
ab = 8πTab , we get

DbK b
a − DaK = −γ d

a np G(4)
dp

DbK b
a − DaK = −γ d

a np8πTdp .

Defining the momentum density Sa (as measured by a normal observer na) by

Sa ≡ −γ b
a ncTbc , (3.54)

we end up with the momentum constraints

DbK b
a − DaK = 8πSa. (3.55)

As usual we now drop the timelike components,

DjK
j

i − DiK = 8πSi,
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and then raise indices

γki
(

DjK
j

i − DiK
)

= γki8πSi

Dj

(
K jk − γjkK

)
= 8πSk,

where we used the compatibility of D with γab. This leaves (3.55) in the final form

Dj

(
Kij − γijK

)
= 8πSi. (3.56)

Both (3.51) and (3.56) are constraints that need to be satisfied and respected on each time slice Σ.
They are restrictions placed on γab and Kab so that the spatial slices “fit nicely” when embedded into
the ambient spacetimeM. We will discuss further the initial data problem on § 5.1.

K;9NAB8CAM:<J

Now, with the evolution of the metric and the constraints taken care of, we move on to find the last
key result from this chapter; the evolution equation of Kab. We start by considering its Lie derivative
along ta,

∂tKab = L~tKab = L
α~n+~βKab = αL~nKab +L~βKab.

In order to tackle the first term on the RHS, we use Ricci’s equation (3.46c)

γ e
a γ

f
b ncnd R(4)

ec f d = L~nKab +
1
α

DaDbα + K c
b Kac,

so that
∂tKab = α

(
γ e

a γ
f

b ncnd R(4)
ec f d −

1
α

DaDbα− K c
b Kac

)
+L~βKab. (3.57)

Now we should tidy up a bit. . . First recall that the EFEs G(4)
ab = 8πTab can be written in the following

equivalent way, by contracting with gab:

gab G(4)
ab = gab R(4)

ab −
1
2

R(4) gabgab︸ ︷︷ ︸
=4

= 8π gabTab︸ ︷︷ ︸
≡T

R(4) − 2 R(4) = 8πT =⇒ R(4) = −8πT

R(4)
ab = 8π

(
Tab −

1
2

Tgab

)
, (3.58)

where we defined the trace of the stress-energy tensor

T ≡ gabTab . (3.59)
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Now note that

γ e
a γ

f
b ncnd R(4)

ec f d = γ e
a γ

f
b (γcd − gcd) R(4)

ec f d

= γ e
a γ

f
b γcd R(4)

ec f d − γ e
a γ

f
b gcd R(4)

ced f

= γ e
a γ

f
b γcd R(4)

ec f d − γ e
a γ

f
b R(4)

e f

= Rab + KKab − KacKc
b︸ ︷︷ ︸

By (3.47) (contraction of (3.46a))

− 8πγ e
a γ

f
b

(
Te f −

1
2

Tge f

)
︸ ︷︷ ︸

By (3.58)

= Rab + KKab − KacKc
b − 8π γ e

a γ
f

b Te f︸ ︷︷ ︸
≡ Sab (spatial stress)

+4π γ e
a γ

f
b ge f︸ ︷︷ ︸

=γab

T︸︷︷︸
=gprTpr

= Rab + KKab − KacKc
b − 8πSab + 4πγab gprTpr

= Rab + KKab − KacKc
b − 8πSab + 4πγab(γpr − npnr)Tpr

= Rab + KKab − KacKc
b − 8πSab + 4πγab(γprTpr︸ ︷︷ ︸

=Sa
a≡S

− npnrTpr︸ ︷︷ ︸
=ρ

)

= Rab + KKab − KacKc
b − 8πSab + 4πγab(S− ρ). (3.60)

Here we defined the spatial stress
Sab ≡ γ c

a γ d
b Tcd, (3.61)

as well as its trace
S ≡ γabSab = Sa

a. (3.62)

Now, inserting the results obtained in (3.60) back into (3.57), we get

∂tKab = α

(
γ e

a γ
f

b ncnd R(4)
ec f d −

1
α

DaDbα− K c
b Kac

)
+L~βKab

= α(Rab + KKab − KacKc
b − 8π

(
Sab −

1
2

γab(S− ρ)
)
− 1

α
DaDbα

− K c
b Kac) +L~βKab

= α(Rab + KKab − 2KacKc
b)− 8πα

(
Sab −

1
2

γab(S− ρ)
)
− DaDbα +L~βKab.

Lastly, since the entire content of spatial tensors is available from their spatial components, we can
write our results as

∂tKij = α(Rij + KKij − 2KikKk
j)− 8πα

(
Sij −

1
2

γij(S− ρ)
)
− DiDjα

+ βkDkKij + 2Kk(iDj)β
k,

(3.63)

where we used
L~βKij = βkDkKij + KkjDiβ

k + KikDjβ
k.
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Equation (3.63) is the evolution of the extrinsic curvature, our last piece of the puzzle.

K;9NAB8CAM:<J

Now, in theory at least, once we have gravitational field data (γij, Kij) that satisfies the momentum
and Hamiltonian constraints on on some initial spatial slice, we may then integrate forward the evolu-
tion equations to obtain a spacetime that satisfies the EFE’s. 8 In practice, however, numerical stability
is highly dependent on gauge choice and initial data prescribed. Moreover, the ADM equations pre-
sented above are, in fact, not very stable with respect to constraint violations (this has to do with the
degree of hyperbolicity of the equations). We will touch on these issues again once we introduce the
BSSN formalism in Chapter 4. For now, let us present a useful contraction of (3.63), namely

∂tK = α
(

4π(ρ + S) + KijKij
)
− D2α + βi∂iK, (3.64)

where D2 = γijDiDj is the spatial Laplace operator. Let us prove this.

Proof of (3.64). In what follows we will use the Hamiltonian constraint (3.51). Moreover, since we want
to expand ∂tK = ∂t(γijKij) = γij∂tKij + Kij∂tγ

ij, we need the time evolution of the inverse spatial
metric. Note that since γijγjk = δi

k , we have ∂t(γijγjk) = 0, which implies

γjk∂tγ
ij = −γij ∂tγjk

=⇒ γlkγjk︸ ︷︷ ︸
=δl

j

∂tγ
ij = −γlkγij ∂tγjk

=⇒ ∂tγ
il = −γlkγij ∂tγjk. (3.65)

Now,

∂tK = ∂t(γijKij) = γij∂tKij + Kij∂tγ
ij

= γij[α(Rij + KKij − 2KikKk
j)− 8πα

(
Sij −

1
2

γij(S− ρ)
)
− DiDjα

+βkDkKij + KkjDiβ
k + KkiDjβ

k] + Kij[−γjkγim∂tγmk]

= α(R + K2 − KijKij︸ ︷︷ ︸
= 16πρ by (3.51)

−KijKij)− 8πα

(
S− 3

2
(S− ρ)

)
− D2α + βi DiK︸︷︷︸

=∂iK

+2KijDiβj

−Kmk(−2αKmk + Dmβk + Dkβm)

= α(16πρ− KijKij)− 8παS + 12παS− 12παρ− D2α + βi∂iK + 2KijDiβj

+2αKijKij − γnmγlkKnl (Dmβk + Dkβm)︸ ︷︷ ︸
=2KijDiβj

= α
(

4π(ρ + S) + KijKij
)
− D2α + βi∂iK.

8Of course, if matter is present, then we must also take into account the matter fields and specify them on the initial
hypersurface as well. Then we must use the matter evolution equations,∇aTab = 0, and integrate simultaneously with
the field evolution equations to build a spacetime. More on this on § 5.3.
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We will use this result later when we develop the BSSN formalism. In this formulation, instead of
evolving Kij, we first split it into its trace K and its traceless part. Then –after a suitable conformal
rescaling, in the case of the traceless part of Kij– we evolve these quantities instead of the full extrinsic
curvature itself.

ADM (à la York) Equations

> Evolution Equations:

∂tγij = 2D(iβ j) − 2αKij

∂tKij = α(Rij + KKij − 2KikKk
j)− 8πα

(
Sij −

1
2

γij(S− ρ)
)
− DiDjα

+ βkDkKij + 2Kk(iDj)β
k

> Constraint Equations:

R + K2 − KijKij = 16πρ

Dj

(
Kij − γijK

)
= 8πSi
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Chapter 4

Conformal Reformulation

The 3+1 ADM (à la York) decomposition of the EFEs presented in the previous chapter poses a very
straightforward, elegant formulation. Unfortunately, however, the EFEs as presented in this form are
not quite suitable for numerical implementations. Alas, we need to put in more work before we take a
crack at computing anything, since in practice one finds that this form of the 3+1 decomposition results
in large instabilities that develop during a computer simulation (this issue is known to be mainly
due to the fact that the EFEs in this ADM form are weakly hyperbolic; i.e., they are not well-posed. 1)
To get around this problem, in an effort to make the EFEs more strongly hyperbolic (i.e., more “wave-
like”), many modern NR codes utilize the so-called BSSN (aka BSSNOK) formalism which –together
with suitable gauge conditions for the lapse and shift– does admit a more robust computational
formulation of the EFEs.

Refinements to the already very successful BSSN formalism do exist. For instance, by further modify-
ing the BSSN equations through introducing a propagating Hamiltonian, we end up with a Z4-like
formulation of GR. The original Z4 system was introduced by Bona and collaborators in 2013 (see [14]
and, subsequently, [13]), and it has sprung a whole family of Z4-like systems ever since: consult [10]
for the conformal Z4 formalism (Z4c); for the conformal and covariant Z4 formalism (CCZ4) the reader
may refer to [5], and slight variations of the latter, such as the fully conformal and covariant Z4 formalism
(fCCZ4), can be found in [47]. As was demonstrated by Bernuzzi and Hilditch ([10]), there are instances
in which a conformal Z4 approach yields even more accurate results than BSSN, especially when
we consider non-vacuum spacetimes. 2 Since we are ultimately interested in modelling scalar fields
coupled to the EFEs, it seems highly likely that we will at some point implement a Z4-like formulation
in our modelling. However, for the time being we will stick to the more traditional BSSN equations.

4.1 The BSSN Formalism
In place of the ADM data {γij, Kij}, the BSSN formalism splits γij into a conformal factor χ and a
conformally-related metric γ̄ij, and it also splits Kij into its trace K and a traceless part Aij. Moreover,
three coefficients Γ̄i of the conformal metric are introduced as well. Then, it is these variables that are
evolved instead of the original ADM physical quantities. . . Long story short, the dynamical variables

1For more on the concept of hyperbolicity (in the numerical sense), see the detailed analysis on [48].
2In BSSN evolutions of matter spacetimes the Hamiltonian constraint, in particular, is largely violated. The constraint-

damping capabilities allowed by Z4-like formulations offers a solution to this problem, although ultimately it is the
propagation of constraints what seems to work best, as described by Bernuzzi and Hilditch. [10]
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that we consider in the BSSN formalism are

{χ, γ̄ij, Āij, K, Γ̄i}. (4.1)

We will present each of these quantities and their evolution equations in this chapter. Let us start by
considering a conformal rescaling of the spatial metric of the form

γij = ψ4γ̄ij, (4.2)

where ψ is some positive scaling factor called the conformal factor, and the background auxiliary met-
ric γ̄ij is known as the conformally-related metric (or simply conformal metric). It may seem unclear
at the moment why we scaled the spatial metric in this way, but later on we will see that, indeed, this
“trick” will actually yield a convenient and tractable system for the EFEs. May it suffice to say for now
though, that besides the mathematical convenience that such a conformal rescaling brings about,
there is also the fact that equivalence classes of conformally-related manifolds share some geometric
properties. For example, it can be shown that two strongly causal Lorentzian metrics g(1)

ab and g(2)
ab for

some manifoldM determine the same future and past sets at all points (events) if and only if the
two metrics are globally conformal, i.e., if g(1)

ab = Ψg(2)
ab , for some smooth function Ψ ∈ C∞(M) (see,

e.g., [9]).. In this case, both spacetimes (M, g(1)
ab ) and (M, g(2)

ab ) belong to the same conformal class
and share the same causal structure.

A somewhat natural choice for a representative object in a conformal equivalence class of spatial
metric tensors would be a metric γ̄ij whose determinant is the same as the determinant of a flat
metric fij, in any general chart. Thus, if we adopt a Cartesian coordinate system ( fij = δij), we can
always enforce that our conformal representative must have unit determinant, i.e., γ̄ = δ = 1.
Plugging this back into (4.2), we get

1 = det γ̄ij = det(ψ−4γij) = (ψ−4)3 det γij︸ ︷︷ ︸
≡γ

= ψ−12γ.

This would correspond to the choice ψ = γ1/12, so that γij = γ1/3γ̄ij. Any spatial metric γij in
this conformal class yields the same value of γ̄ij. However note that, since the determinant γ is
coordinate-dependent, the conformal factor ψ = γ1/12 is not a scalar field. In fact, γ̄ij is not a tensor
field, but rather a tensor density of weight−2/3; we show this now.

Definition 3. A (k
`) tensor density of weight ω ∈ Q is a quantity Ξi1,...,ik

j1,...,j`
that transforms under

a change of coordinates as

Ξ
i′1,...,i′k

j′1,...,j′`
= Jω ∂xi′1

∂xi1
· · · ∂xi′k

∂xik

∂xj1

∂xj′1
· · · ∂xj`

∂xj′`
Ξi1,...,ik

j1,...,j`
(4.3)

where J is the Jacobian J = det|∂xi′k/∂xik |.

According to this definition, then, a tensor field is nothing but a tensor density of weight zero. In our
case, we are interested in spatial tensor densities; these are regular (zero weight) tensors that multiply
a power of the determinant γ. In other words, a spatial tensor density τ of weight ω ∈ Q is an object

τ = γω/2 T , (4.4)
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where T is a tensor field. Since γ̄ij = γ−1/3γij, (4.4) shows that, indeed, γ̄ij is a tensor density of
weight−2/3, as we claimed earlier.

To get around this issue of tensor densities, we could introduce a background flat metric fij of Rieman-
nian signature (+, +, +) and set ψ ≡ (γ/ f )1/12, so that ψ becomes a scalar field in this manner,
and we could then use non-Cartesian coordinates. However, for our purposes of implementing the
standard BSSN formalism, it is convenient to stick to Cartesian coordinates; to see the implementation
of this extended BSSN formalism (where non-Cartesian coordinates are used), the reader is referred
to [27]. That being said, since we have chosen to deal with tensor densities in our treatment, we must
discuss the Lie derivative of a tensor density, which is given by

L~xτ = [L~xτ]ω=0 + ωτ ∂ixi, (4.5)

where the first term is the usual Lie derivative we would compute if τ had zero weight (i.e., if τ was
a tensor field rather than a tensor density). Likewise, the covariant derivative of a tensor density τ is
furnished by 3

∇cτ = [∇cτ]ω=0 −ωτ Γd
dc, (4.6)

where, again, the first term is the usual covariant derivative we would compute if τ had zero weight.
Using the expression (3.22) we see that, in coordinates, (4.6) expands as

(∇τ)i1...ia
j1...jbc = ∇cτi1...ia

j1...jb

= ∂cτi1...ia
j1...jb

+
a

∑
d=1

τi1...e...ia
j1...jb

Γid
ec −

b

∑
d=1

τi1...ia
j1...e...jb

Γe
jdc −ωτi1...ia

j1...jb
Γd

dc.

(4.7)

We will frequently encounter Lie and covariant derivatives of a tensor density in our work.

K;9NAB8CAM:<J

Before proceeding any further, we should comment on the choice of scaling factor. The fourth power
chosen for ψ turns out to be convenient for certain calculations, but otherwise it is arbitrary. In fact,
this particular factor is just one of the three most popular conformal factors found in the NR literature,
the other two being

χ = ψ−4 = γ−1/3 and φ = log ψ =
1
12

log γ,

turning (4.2) into

γij =
1
χ

γ̄ij, (4.8)

and
γij = e4φγ̄ij, (4.9)

3Note that the∇we are using for this discussion is not necessarily the connection of the 4D spacetimeM; this is a
rather general discussion, so∇ can be replaced by whatever affine connection.
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respectively. The choice of scaling factor is a matter of mathematical and computational convenience
(the physical interpretation must be the same regardless of which factor we choose). When dealing
with the initial data problem (§ 5.1) the factor ψ is the one widely used in the community, since it
puts the constraint equations in a nice elliptic form that we can solve. As for the evolution of the
system, on the other hand, the very succesful moving punctures method (see the landmark paper [18])
proposes χ as the preferred scaling factor, since it goes to zero at the black hole singularity (it is C4 at
the puncture), 4 and in doing so avoids singularity excision altogether.

Following the moving punctures method, we choose χ as our conformal factor when deriving the
evolution formulæ of the system. Henceforth, the conformal metric shall be given by

γ̄ij = χγij

γ̄ij = χ−1γij,

(4.10a)

(4.10b)

where the factor for the inverse metric follows naturally from the fact that

γ̄ijγ̄jk = (χ−1γij)(χγjk) = γijγjk = δi
k ,

so that γ̄ij and γ̄jk are, indeed, inverses of each other. Moreover, in the BSSN formulation, the confor-
mal factor is one of the dynamical variables that we need to take into account; therefore, let us now
derive its evolution equation. Recall the spatial metric evolution (c.f., Eq. (3.40)):

∂tγij = −2αKij + Diβ j + Djβi.

Using this and Jacobi’s formula (c.f., Eq. (3.42)), we get

∂tγ = γγij∂tγij

= γ
(
−2αK + 2Diβ

i
)

. (4.11)

Now, since Diβ
i = ∂iβ

i + Γi
ijβ

j, with

Γi
ij =

1
2

γik(∂iγjk + ∂jγik − ∂kγij)

=
1
2

γik∂jγik, (by relabeling)

we can insert this back into (4.11) to obtain

∂tγ = γ
(
−2αK + 2∂iβ

i +
(

γik∂jγik

)
βj
)

= γ

(
−2αK + 2∂iβ

i +
(

1
γ

∂jγ

)
βj
)

= 2γ
(

∂iβ
i − αK

)
+ βi∂iγ. (4.12)

4This is contrast to ψ, which yields aO(1/r) singularity, and φ, which isO(log r).
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Now this result, combined with our choice χ = ψ−4, yields

∂tχ = ∂tψ
−4

= −4ψ−5∂tψ

= −4ψ−5
[

1
6

ψ(∂iβ
i − αK) + βi∂iψ

]
= −2

3
ψ−4(∂iβ

i − αK)− 4ψ−5βi∂iχ
−1/4

=
2
3

χ(αK− ∂iβ
i)− βi4ψ−4ψ−1 ·

(
−1

4

)
χ−5/4∂iχ

=
2
3

χ(αK− ∂iβ
i) + βi · χ · χ1/4 · χ−1/4 · χ−1∂iχ

=
2
3

χ(αK− ∂iβ
i) + βi∂iχ. (4.13)

Thus we have the evolution of the conformal factor ,

∂tχ =
2
3

χ(αK− ∂iβ
i) + βi∂iχ. (4.14)
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Let us now introduce the traceless part of the extrinsic curvature, which we denote by Aij, and is given
by

Aij = Kij −
1
3

γijK. (4.15)

Note that Aij is indeed traceless: γij Aij = γij (Kij − 1/3γijK
)

= K − 1/3 · 3K = K − K = 0.
This way, the extrinsic curvature Kij is naturally split into its trace K and its traceless part Aij:

Kij = Aij +
1
3

γijK. (4.16)

Just as we rescaled the spatial metric in (4.10), we shall also rescale the traceless curvature Aij as

Āij = χAij

Āij = χ−1Aij

(4.17a)

(4.17b)

which, just as its conformally related Aij, is also traceless:

γ̄ij Āij = χγ̄ijKij −
1
3

γ̄ijγ̄ijK = χχ−1γijKij −
1
3
· 3K = K− K = 0.

√
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This rescaling of the conformal traceless curvature was first considered by Nakamura [42], therefore
we will refer to it as the Nakamura scaling of Aij (be aware that we shall use a different scaling for Aij
when we deal with the initial data problem (c.f., § 5.1)). This way the conformal version of Eq. (4.15) is

Āij = χKij −
1
3

γ̄ijK. (4.18)

We will refer to Āij as the conformal traceless curvature. We shall shortly derive its evolution equation
(spoiler alert: it is quite messy!), but first let us start with something simpler, such as rewriting the
evolution of the trace K in terms of the newly introduced conformal factors. Recall Eq. (3.64):

∂tK = α
(

4π(ρ + S) + KijKij
)
− D2α + βi∂iK.

Now from (4.18) we write Kij as

Kij = χ−1
(

Āij +
1
3

γ̄ijK
)

, (4.19)

and similarly,

Kij = γimγjnKmn

= γimγjnχ−1
(

Āmn +
1
3

γ̄mnK
)

= χ2γ̄imγ̄jnχ−1
(

Āmn +
1
3

γ̄mnK
)

= χ

(
Āij +

1
3

γ̄ijK
)

. (4.20)

This last equation, by the way, yields the contravariant version of the conformal traceless curva-
ture (4.18):

Āij = χ−1Kij − 1
3

γ̄ijK. (4.21)

Now, plugging Eqs. (4.19) and (4.20) back into (3.64), we get

∂tK = α
(

4π(ρ + S) + KijKij
)
− D2α + βi∂iK

= α

[
4π(ρ + S) +

(
χ−1

(
Āij +

1
3

γ̄ijK
))(

χ

(
Āij +

1
3

γ̄ijK
))]

− D2α + βi∂iK

= α[4π(ρ + S) + Āij Āij +
1
3

Āijγ̄
ijK︸ ︷︷ ︸

= 0 (tracelessness of Āij)

+
1
3

Āijγ̄ijK︸ ︷︷ ︸
= 0 (tracelessness of Āij)

+
1
9

γ̄ijγ̄
ij︸ ︷︷ ︸

=3

K2]− D2α + βi∂iK

= α

(
4π(ρ + S) + Āij Āij +

1
3

K2
)
− D2α + βi∂iK.
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And thus we have the evolution of the trace of the extrinsic curvature, which takes care of yet another
variable presented in (4.1),

∂tK = α

(
Āij Āij +

1
3

K2
)

+ 4πα(ρ + S)− D2α + βi∂iK. (4.22)

Note, however, that in this equation we are using covariant derivatives D of the lapse with respect to
the physical metric γij, even though we would like to write everything in this expression in terms of
the conformal metric γ̄ij. We will fix this issue later once we introduce the conformal connection D̄
of γ̄ij (c.f., Eq. (4.36)).

Now, before tackling the evolution of Āij, we need to clarify a few things. First note that

Kk
j = γkiKij = χγ̄kiKij = χγ̄kiχ−1

(
Āij +

1
3

γ̄ijK
)

= Āk
j + δk

jK.

We will use this in the calculations that follow, just as we will also use the notation [· · ·]TF to denote
the trace-free part of whatever object lies inside the brackets (e.g., [Kij]TF = Aij). In general, for a
tensor T in a D-dimensional metric g, we have [T]TF = T − g/D Tr(T) (we have already used this
when we defined Aij in (4.15)). Naturally, it follows that if T is already trace-free, then [T]TF = T .
Furthermore, we will also use the fact that the metric tensor does not contain any trace-free part (for
instance, for γ̄ij, we have [γ̄ij]TF = γ̄ij − γ̄ij/3 Tr(γ̄ij) = γ̄ij − γ̄ij/3 · 3 = 0). Lastly, we also note
that since Āij and χ−1 are tensor densities of weights−2/3 and 2/3, respectively (c.f., Eq. (4.4)),
their Lie derivatives are given by

L~β Āij = βk∂k Āij + Āik∂jβ
k + Ākj∂iβ

k − 2
3

Āij∂kβk, (4.23)

and
L~βχ−1 = βk∂kχ−1 +

2
3

χ−1∂kβk = −χ−2βk∂kχ +
2
3

χ−1∂kβk. (4.24)

Now we are (at last!) ready to calculate the evolution of Āij:

∂t Āij = ∂t(χAij) = χ∂t Aij + Aij∂tχ

= χ[∂tKij]TF + Aij∂tχ

= χ

α(Rij + KKij − 2KikKk
j)− 8πα(Sij −

1
2

γij︸︷︷︸
no TF

(S− ρ))− DiDjα +L~βKij


TF

+ χ−1Āij

[
2
3

χ(αK− ∂iβ
i) + βi∂iχ

]
= [αχRij + αχχ−1K

(
Āij +

1
3

γ̄ijK
)
− 2αχχ−1

(
Āik +

1
3

γ̄ikK
)(

Āk
j + δk

jK
)

. . .

· · · − 8παχSij − χDiDjα]TF + χ [L~βKij]TF︸ ︷︷ ︸
=L~β Aij

+
2
3

ĀijαK− 2
3

Āij∂kβk + Āijχ
−1βk∂kχ
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= [αχRij + αKĀij +
1
3

α γ̄ij︸︷︷︸
no TF

K2 − 2αĀik Āk
j − 2αKĀij −

2
3

αKĀij −
2
3

α γ̄ij︸︷︷︸
no TF

K2 . . .

· · · − 8παχSij − χDiDjα]TF + χ L~β Aij︸ ︷︷ ︸
=L~β(χ−1 Āij)

+
2
3

ĀijαK− 2
3

Āij∂kβk + Āijχ
−1βk∂kχ

=
[

αχRij + αKĀij − 2αĀik Āk
j − 2αKĀij −

2
3

αKĀij − 8παχSij − χDiDjα

]TF

+ χL~β(χ−1Āij) +
2
3

ĀijαK− 2
3

Āij∂kβk + Āijχ
−1βk∂kχ

=
[
αχRij − 8παχSij − χDiDjα

]TF − 2αĀik Āk
j − αKĀij −

2
3

αKĀij +
2
3

αKĀij

+ χχ−1L~β Āij + ĀijχL~βχ−1 − 2
3

Āij∂kβk + Āijχ
−1βk∂kχ

=
[
χ(αRij − 8παSij − DiDjα)

]TF − α(2Āik Āk
j + ĀijK) +L~β Āij

+ Āijχ

(
−χ−2βk∂kχ +

2
3

χ−1∂kβk
)
− 2

3
Āij∂kβk + Āijχ

−1βk∂kχ

=
[
χ(αRij − 8παSij − DiDjα)

]TF − α(2Āik Āk
j + ĀijK) +L~β Āij.

After all this mess(!) and evaluatingL~β Āij by (4.23), we arrive at our sought-after evolution of the
conformal traceless curvature.

∂t Āij =
[
χ(αRij − 8παSij − DiDjα)

]TF − α(2Āik Āk
j + ĀijK)

+ βk∂k Āij + Āik∂jβ
k + Ākj∂iβ

k − 2
3

Āij∂kβk.

(4.25)

Without the [· · ·]TF notation, we can write this as

∂t Āij = χ

[
(α
(

Rij −
1
3

γijR
)
− 8πα

(
Sij −

1
3

γijS
)
− (DiDjα−

1
3

γijD2α)
]

− α(2Āik Āk
j + ĀijK) + βk∂k Āij + Āik∂jβ

k + Ākj∂iβ
k − 2

3
Āij∂kβk.

Once again, just as it was the case for the evolution equation of K (4.22), we have covariant derivatives
D of the lapse with respect to the physical metric γij (moreover, this time we also have the 3D Ricci
tensor Rij of γij appearing in the expression). We will correct these problems soon by introducing
the conformal connection D̄ of γ̄ij and rewriting everything in terms of the conformal metric.
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The conformal traceless curvature Āij shows up in the evolution of the conformal metric γ̄ij, which
we shall now derive. To do so, we use Eq. (3.6) and the fact thatL~t = ∂t in our adapted coordinates to
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write
∂tγ̄ij = L~tγ̄ij = αL~nγ̄ij +L~βγ̄ij. (4.26)

To expand the second term on the RHS, we note that it is a Lie derivative of a tensor density of weight
−2/3; thus we use (4.5) to get

L~βγ̄ij = βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2
3

γ̄ij∂kβk. (4.27)

Better yet, we can write this Lie derivative in terms of the conformal connection D̄ (defined below; c.f.,
Eq. (4.32)). In this calculation we will need to expand the covariant derivative of γ̄ij using the formula
for the covariant derivative of a tensor density (c.f., Eq. (4.7)):

D̄kγ̄ij = ∂kγ̄ij − Γ̄`
ikγ̄`j − Γ̄`

jkγ̄i` +
2
3

γ̄ijΓ̄`
`k.

Let us now expand Eq. (4.27):

L~βγ̄ij = βk∂kγ̄ij+γ̄ik∂jβ
k+γ̄kj∂iβ

k−2
3

γ̄ij∂kβk

= βk D̄kγ̄ij︸ ︷︷ ︸
=0

+βkΓ̄`
ikγ̄`j + βkΓ̄`

jkγ̄i` −
2
3

γ̄ijΓ̄`
`kβk+ γ̄ikD̄jβ

k︸ ︷︷ ︸
=D̄jβi

−γ̄ikΓ̄k
`jβ

`

+ γ̄kjD̄iβ
k︸ ︷︷ ︸

=D̄iβ j

−γ̄kjΓ̄
k
`iβ

`−2
3

γ̄ijD̄kβk +
2
3

γ̄ijΓ̄k
`kβ`

= βkΓ̄`
ikγ̄`j + βkΓ̄`

jkγ̄i` −
2
3

γ̄ijΓ̄`
`kβk − γ̄ikΓ̄k

`jβ
` − γ̄kjΓ̄

k
`iβ

` +
2
3

γ̄ijΓ̄k
`kβ`︸ ︷︷ ︸

= 0 by relabeling

+ 2D̄(iβ j) −
2
3

γ̄ijD̄kβk

= 2D̄(iβ j) −
2
3

γ̄ijD̄kβk. (4.28)

And now we tackle the first term on the RHS of Eq. (4.26):

αL~nγ̄ij = αL~n(χγij)

= α(χL~nγij︸ ︷︷ ︸
=−2Kij

+γijL~nχ)

= −2αχKij + αγij
1
α

( L~t︸︷︷︸
∂t

χ−L~βχ)

= −2αχ

(
χ−1

(
Āij +

1
3

γ̄ijK
))

+ γij

(
2
3

χ(αK− ∂kβk) + βk∂kχ−
(

βk∂kχ− 2
3

χ∂kβk
))

= −2αĀij −
2
3

αχγijK +
2
3

αχγijK−
2
3

χγij∂kβk +
2
3

χγij∂kβk + γijβ
k∂kχ− γijβ

k∂kχ

= −2αĀij. (4.29)
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Hence, combining Eqs. (4.29) and (4.28), equation (4.26) yields the evolution of the conformal metric:

∂tγ̄ij = −2αĀij + 2D̄(iβ j) −
2
3

γ̄ijD̄kβk. (4.30)
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We are now down to the last item from (4.1), namely, the coefficients Γ̄i ≡ γ̄jk Γ̄i
jk of the conformal

metric γ̄ij, where

Γ̄i
jk =

1
2

γ̄i` (∂jγ̄`k + ∂kγ̄`j − ∂`γ̄jk
)

. (4.31)

These symbols are the connection coefficients of the conformal connection D̄ of γ̄ij, from which (anal-
ogous to Eq. (3.22)) we define the conformal spatial derivative D̄a of some (a

b) tensor field T in a
coordinate chart as 5

(D̄T)i1...ia
j1...jbc = D̄cTi1...ia

j1...jb

= ∂cTi1...ia
j1...jb

+
a

∑
d=1

Ti1...e...ia
j1...jb

Γ̄id
ec −

b

∑
d=1

Ti1...ia
j1...e...jb

Γ̄e
jdc. (4.32)

We first note that in Cartesian coordinates, where γ̄ = 1, we have

Γ̄i = γ̄jk Γ̄i
jk

= γ̄jk
[

1
2

γ̄i` (∂jγ̄`k + ∂kγ̄`j − ∂`γ̄jk
)]

= −1
2

γ̄jkγ̄`k︸ ︷︷ ︸
= δ

j
`

∂jγ̄
i` − 1

2
γ̄jkγ̄`j︸ ︷︷ ︸

= δk
`

∂kγ̄i` − 1
2

γ̄i` γ̄jk∂`γ̄jk︸ ︷︷ ︸
= 0 by (4.34)

= −1
2

∂`γ̄
i` − 1

2
∂`γ̄

i`

= −∂jγ̄
ij, (4.33)

where we used
∂j(γ̄i`γ̄`k) = ∂jδ

i
k = 0 =⇒ γ̄i`∂jγ̄`k = −γ̄`k∂jγ̄

i`,

as well as Jacobi’s formula (c.f., Eq. (3.42)):

γ̄jk∂`γ̄jk =
1
γ̄

∂`γ̄
since γ̄ = 1
============ 0. (4.34)

5Note, however, that due to the tensor density nature of γ̄ij, the connection D̄ is not unique (i.e., it is not a Levi-Civita
connection). Nevertheless, it is compatible with the conformal metric; i.e., D̄kγ̄ij = 0.



55

The conversion from the Christoffel symbols Γi
jk of the spatial metric γij to the conformal symbols

Γ̄i
jk of the conformal metric γ̄ij is given as follows:

Γi
jk =

1
2

γi` (∂jγ`k + ∂kγ`j − ∂`γjk
)

=
1
2

χγ̄i`
(

∂j(χ−1γ̄`k) + ∂k(χ−1γ̄`j)− ∂`(χ
−1γ̄jk)

)
=

1
2

χγ̄i`
(

χ−1 ∂jγ̄`k + γ̄`k ∂jχ
−1 + χ−1 ∂kγ̄`j + γ̄`j ∂kχ−1 − χ−1 ∂`γ̄jk − γ̄jk ∂`χ

−1
)

=
1
2

γ̄i` (∂jγ̄`k + ∂kγ̄`j − ∂`γ̄jk
)

︸ ︷︷ ︸
=Γ̄i

jk

+
1
2

χγ̄i`
(
−χ−2γ̄`k ∂jχ− χ−2γ̄`j ∂kχ + χ−2γ̄jk ∂`χ

)

= Γ̄i
jk −

1
2

χ−1
(

δi
k ∂jχ + δi

j ∂kχ− γ̄jkγ̄i` ∂`χ
)

. (4.35)

Now it is time to rectify the issues we alluded to earlier regarding the spatial covariant derivative of
the lapse and the spatial Ricci tensor showing up in equations where every other term is written in
terms of the conformal factors (see comments below Eqs. (4.22) and (4.25)):

> [Spatial Derivative] Using (4.35), we expand the term DiDjα that appears both in the evolu-
tion of K (4.22) and in the evolution of Āij (4.25):

DiDjα = Di∂jα = ∂i∂jα− Γk
ij∂kα

= ∂i∂jα−
[

Γ̄k
ij −

1
2

χ−1
(

δk
i ∂jχ + δk

j ∂iχ− γ̄ijγ̄
k` ∂`χ

)]
∂kα

= ∂i∂jα− Γ̄k
ij ∂kα +

1
2χ

(
2∂(iχ∂j)α− γ̄ijγ̄

k` ∂`χ ∂kα
)

.

Then, using the fact that both χ and α are treated as scalars when taking covariant derivates,
we get the final expression

DiDjα = D̄iD̄jα +
1

2χ

(
2D̄(iχD̄j)α− γ̄ij D̄kχ D̄kα

)
. (4.36)

> [Spatial Ricci Tensor] The 3D (spatial) Ricci tensor can be split into the conformal Ricci tensor

R̄ij = ∂kΓ̄k
ij − ∂jΓ̄k

ik + Γ̄k
`k Γ̄`

ij − Γ̄k
`j Γ̄`

ik (4.37)

and some extra terms that arise as a result of the rescaling of the metric. The whole derivation
of this split of the Ricci tensor requires quite a bit of work, however, so instead of straying too
far off here on a tangent, the reader may refer to Appendix B, where everything is derived in
gory detail. Here we will simply quote the result obtained in the appendix: Rij can be split as

Rij = R̄ij + Rχ
ij,
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where R̄ij is given by (4.37), and Rχ
ij is given by

Rχ
ij =

1
2

(
D̄iD̄j(log χ) + γ̄ij D̄kD̄k(log χ)

)
+

1
4

(
D̄i(log χ)D̄j(log χ)− γ̄ij D̄k(log χ)D̄k(log χ)

)
.

Moreover, making use of the newly introduced coefficients Γ̄i, equation (4.37) may be rewritten
as

R̄ij = −1
2

γ̄k`∂k∂`γ̄ij + γ̄k(i∂j) Γ̄k + Γ̄k Γ̄(ij)k + γ̄k`
(

2 Γ̄m
k(iΓ̄j)m` + Γ̄m

ik Γ̄j`m

)
.

The reason why we want to write R̄ij in this form is because, with the exception of the Laplacian
term γ̄k`∂k∂`γ̄ij, every other second derivative of the metric γ̄ij is being absorbed into first
derivatives of Γ̄i. This in turns makes the BSSN equations more “wave-like” (i.e., hyperbolic; see,
e.g., [48]). We sum up our discussion on this segment here:

Rij = R̄ij + Rχ
ij

R̄ij = −1
2

γ̄k`∂k∂`γ̄ij + γ̄k(i∂j) Γ̄k + Γ̄k Γ̄(ij)k + γ̄k`
(

2 Γ̄m
k(iΓ̄j)m` + Γ̄m

ik Γ̄j`m

)
Rχ

ij =
1
2

(
D̄iD̄j(log χ) + γ̄ij D̄kD̄k(log χ)

)
+

1
4

(
D̄i(log χ)D̄j(log χ)− γ̄ij D̄k(log χ)D̄k(log χ)

)
.

(4.38a)

(4.38b)

(4.38c)

The expression for the lapse derivative (4.36) is to be inserted into both (4.22) and (4.25), in addition
to the split of the Ricci tensor (4.38) being inserted into (4.25). This fixes the issues we brought up
earlier.

Now, by writing R̄ij in the form presented on Eq. (4.38b), we are making the Γ̄i independent variables;
therefore an evolution equation for these coefficients must be derived as well. To that end, using
Eq. (4.33), we start by writing

∂tΓ̄i = ∂t(−∂jγ̄
ij) = −∂j∂tγ̄

ij,

where on the last line we used the fact that ordinary partial derivatives commute. Naturally, we
now need an evolution equation for the inverse conformal metric; to that end we proceed as we did
for (3.65): note that since γ̄ijγ̄jk = δi

k , we have ∂t(γ̄ijγ̄jk) = 0, which implies

γ̄jk∂tγ̄
ij = −γ̄ij ∂tγ̄jk

=⇒ γ̄lkγ̄jk︸ ︷︷ ︸
=δl

j

∂tγ̄
ij = −γ̄lkγ̄ij ∂tγ̄jk

=⇒ ∂tγ̄
il = −γ̄lkγ̄ij ∂tγ̄jk.

Hence we have
∂tΓ̄i = −∂j∂tγ̄

ij = −∂j

(
−γ̄ikγ̄j` ∂tγ̄k`

)
. (4.39)
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Now recall the evolution of conformal metric,

∂tγ̄k` = −2αĀk` +L~βγ̄k` = −2αĀk` + βm∂mγ̄k` + γ̄km∂`βm + γ̄`m∂kβm − 2
3

γ̄k`∂mβm,

and note the following fact:

∂mγ̄ij = ∂m

(
γ̄ikγ̄j`γ̄k`

)
= γ̄ikγ̄j` ∂mγ̄k` + γ̄ikγ̄k`︸ ︷︷ ︸

=δi
`

∂mγ̄j` + γ̄j`γ̄k`︸ ︷︷ ︸
=δ

j
k

∂mγ̄ik

= γ̄ikγ̄j` ∂mγ̄k` + 2∂mγ̄ij

=⇒ γ̄ikγ̄j` ∂mγ̄k` = −∂mγ̄ij.

Now expand Eq. (4.39),

∂tΓ̄i = −∂j

(
−γ̄ikγ̄j` ∂tγ̄k`

)
= ∂j

[
γ̄ikγ̄j`

(
−2αĀk` + βm∂mγ̄k` + γ̄km∂`βm + γ̄`m∂kβm − 2

3
γ̄k`∂mβm

)]
= ∂j

(
−2αĀij − βm∂mγ̄ij + γ̄j`∂`βi + γ̄ik∂kβj − 2

3
γ̄ij∂mβm

)
= ∂j

(
−2αĀij − βk∂kγ̄ij + 2γ̄k(i∂kβj) − 2

3
γ̄ij∂kβk

)
. (4.40)

We may also rewrite Eq. (4.40) in terms of the coefficients Γ̄i, by using Γ̄i = −∂jγ̄
ij:

∂tΓ̄i = −2∂j(αĀij)− ∂j

(
βk∂kγ̄ij

)
+ ∂j

(
γ̄ki∂kβj

)
+ ∂j

(
γ̄kj∂kβi

)
− 2

3
∂j

(
γ̄ij∂kβk

)
= −2α∂j Āij − 2Āij∂jα− βk∂k ∂jγ̄

ij︸︷︷︸
=−Γ̄i

− ∂kγ̄ij∂jβ
k︸ ︷︷ ︸

(‡)

+ γ̄ki∂k∂jβ
j︸ ︷︷ ︸

(†)

+ ∂jγ̄
ki∂kβj︸ ︷︷ ︸

= (‡) by relabelling

+ γ̄kj∂k∂jβ
i + ∂jγ̄

kj︸︷︷︸
=−Γ̄k

∂kβi − 2
3

γ̄ij∂j∂kβk︸ ︷︷ ︸
= (†) by relabelling

−2
3

∂kβk ∂jγ̄
ij︸︷︷︸

=−Γ̄i

= −2α∂j Āij − 2Āij∂jα + βj∂jΓ̄i + γ̄jk∂j∂kβi − Γ̄j∂jβ
i +

1
3

γ̄ij∂j∂kβk +
2
3

Γ̄i∂jβ
j. (4.41)

It may seem like we are now finally done deriving the evolution equations for all the BSSN variables
listed on (4.1); however, we are still missing one crucial step! As it turns out, if we use the evolution
equation for Γ̄i in the form presented on Eq. (4.41), the whole system is numerically unstable (even
more unstable than the ADM system we presented in Chapter 3!). To fix this, we need to expand the
divergence of Āij (first term on the RHS of Eq. (4.41)), with the aid of the momentum constraints.
First recall the momentum constraints written in ADM form (c.f., Eq. (3.56)),

Dj

(
Kij − γijK

)
= 8πSi.
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Now raising indices on (4.16) and inserting into this expression, we get

Dj

(
Aij − 2

3
γijK

)
= 8πSi. (4.42)

In order to expand this further, we will need the following result: using (4.35),

Dj Āij = ∂j Āij + Γi
jk Ājk + Γj

jk Āik

= ∂j Āij +
[

Γ̄i
jk −

1
2

χ−1
(

δi
k ∂jχ + δi

j ∂kχ− γ̄jkγ̄i` ∂`χ
)]

Ājk

+
[

Γ̄j
jk −

1
2

χ−1
(

δ
j
k ∂jχ + δ

j
j ∂kχ− γ̄jkγ̄j` ∂`χ

)]
Āik

= ∂j Āij + Γ̄i
jk Ājk + Γ̄j

jk Āik︸ ︷︷ ︸
=D̄j Āij

−1
2

χ−1
(

Āij ∂jχ + Āik ∂kχ + Āij ∂jχ + 3 Āik∂kχ− Āik∂kχ
)

= D̄j Āij − 5
2

χ−1 Āij D̄jχ.

Now we plug this back into (4.42) and expand,

Dj Aij − 2
3

γijDjK = 8πSi

Dj(χĀij)− 2
3

χγ̄ijD̄jK = 8πSi

χ Dj Āij + ĀijDjχ−
2
3

χD̄iK = 8πSi

χ

(
D̄j Āij − 5

2
χ−1 Āij D̄jχ

)
+ ĀijDjχ−

2
3

χD̄iK = 8πSi.

Writing S̄i ≡ χ−1Si (= χ−1γijSj = γ̄ijSj), we have our final expression for the momentum
constraints in BSSN form:

D̄j Āij − 3
2χ

Āij D̄jχ−
2
3

D̄iK = 8πS̄i. (4.43)

We will leave this expression as our standard equation for the momentum constraints. However
note that writing the full conformal covariant divergence on the first term on the LHS of (4.43) is
unnecessary, since

D̄j Āij = ∂j Āij + Γ̄i
jk Ājk + Γ̄j

jk Āik,

but
Γ̄j

jk =
1
2

γ̄j`∂kγ̄j` = ∂k log
√

γ̄ = 0,

where we used (yet again) Jacobi’s formula, as well as the fact that we are working in Cartesian
coordinates where γ̄ = 1. Hence, the conformal covariant divergence of Āij simplifies to

D̄j Āij = ∂j Āij + Γ̄i
jk Ājk.
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Now we isolate ∂j Āij on Equation (4.43),

∂j Āij =
3

2χ
Āij D̄jχ +

2
3

D̄iK + 8πS̄i − Γ̄i
jk Ājk,

and insert back into (4.41) to arrive at our sought-after evolution equation for the coefficients Γ̄i:

∂tΓ̄i = −2α

(
3

2χ
Āij D̄jχ +

2
3

D̄iK + 8πS̄i − Γ̄i
jk Ājk

)
− 2ĀijD̄jα

+ βj∂jΓ̄i + γ̄jk∂j∂kβi − Γ̄j∂jβ
i +

2
3

Γ̄i∂jβ
j +

1
3

γ̄ij∂j∂kβk.

(4.44)

The last matter to take care of before we complete our presentation of the BSSN formalism is to also
rewrite the Hamiltonian constraint in BSSN form; recall from Eq. (3.51),

R + K2 − KijKij = 16πρ.

From Eqs. (4.19) and (4.20), we have

KijKij =
[

χ−1
(

Āij +
1
3

γ̄ijK
)] [

χ

(
Āij +

1
3

γ̄ijK
)]

= Āij Āij +
1
3

K2, (4.45)

where we used the tracelessness of Āij. We now plug this as well as the transformation law for
the spatial Ricci scalar R (which is derived in full detail on Appendix B (c.f., Equation B.13)) into the
Hamiltonian constraint:

χR̄ + 2 χD̄2(log χ)− 1
2

χD̄k(log χ)D̄k(log χ) + K2 − Āij Āij +
1
3

K2 = 16πρ

χR̄ + 2 χD̄2(log χ)− 1
2

χD̄k(log χ)D̄k(log χ) +
4
3

K2 − Āij Āij = 16πρ.

Writing ρ̄i ≡ χ−1ρ, we have our final expression for the Hamiltonian constraint in BSSN form:

R̄ + 2 D̄2(log χ)− 1
2

D̄k(log χ)D̄k(log χ) +
4

3χ
K2 − 1

χ
Āij Āij = 16πρ̄. (4.46)

Equations (4.46) and (4.43) are the Hamiltonian and momentum constraints, respectively, in BSSN
variables. We shall not use them in this form, however, when solving the initial data problem in the
next chapter, since more suitable conformal scalings will be used there.

This concludes our presentation of the BSSN formalism of numerical general relativity. Admittedly,
this formalism is not nearly as intuitive and straightforward as the ADM alternative that we presented
on the previous chapter, but it is nevertheless a much more robust formulation (from a numerical
perspective). This is a running theme in physics (and science in general): analytical and numerical
implementations rarely play fair ball with each other. The ADM formalism is important for historical
(and pedagogical) reasons, but it is nearly useless for practical purposes. We remark, however, that
BSSN is not by any means the only modern successful approach to numerical relativistic studies; other
flourishing alternatives such as the Generalized Harmonic Coordinates with Constraint Damping (GHCD)
([29], [44], [45]) and Z4-like formalisms ([5], [10], [14], [13], [47]) are just as good as (and in some cases
even superior to) BSSN.
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BSSN Equations

> Evolution Equations:

∂tχ =
2
3

χ(αK− ∂iβ
i) + βiD̄iχ

∂tγ̄ij = −2αĀij + 2D̄(iβ j) −
2
3

γ̄ijD̄kβk

∂tK = α

(
Āij Āij +

1
3

K2
)

+ 4πα(ρ + S)− D2α + βiD̄iK

∂t Āij =
[
χ(αRij − 8παSij − DiDjα)

]TF − α(2Āik Āk
j + ĀijK)

+ βk∂k Āij + Āik∂jβ
k + Ākj∂iβ

k − 2
3

Āij∂kβk

∂tΓ̄i = −2α

(
3

2χ
Āij D̄jχ +

2
3

D̄iK + 8πS̄i − Γ̄i
jk Ājk

)
− 2ĀijD̄jα

+ βj∂jΓ̄i + γ̄jk∂j∂kβi − Γ̄j∂jβ
i +

2
3

Γ̄i∂jβ
j +

1
3

γ̄ij∂j∂kβk

In these equations we need to rewrite the (second) spatial derivatives of the lapse as

DiDjα = D̄iD̄jα +
1

2χ

(
2D̄(iχD̄j)α− γ̄ij D̄kχ D̄kα

)
Also the Ricci tensor is split as

Rij = R̄ij + Rχ
ij

R̄ij = −1
2

γ̄k`∂k∂`γ̄ij + γ̄k(i∂j) Γ̄k + Γ̄k Γ̄(ij)k + γ̄k`
(

2 Γ̄m
k(iΓ̄j)m` + Γ̄m

ik Γ̄j`m

)
Rχ

ij =
1
2

(
D̄iD̄j(log χ) + γ̄ij D̄kD̄k(log χ)

)
+

1
4

(
D̄i(log χ)D̄j(log χ)− γ̄ij D̄k(log χ)D̄k(log χ)

)
> Constraint Equations:

R̄ + 2 D̄2(log χ)− 1
2

D̄k(log χ)D̄k(log χ) +
4

3χ
K2 − 1

χ
Āij Āij = 16πρ̄

D̄j Āij − 3
2χ

Āij D̄jχ−
2
3

D̄iK = 8πS̄i
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Chapter 5

Further Considerations {Initial Data, Gauge Choice & Cosmology }

Having presented two of the main formalisms of numerical relativity, we now turn to a brief discussion
of some further considerations that must be taken into account: the initial data problem (§5.1), gauge
choice (§5.2), and some potential applications to cosmology (§5.3).

5.1 Choosing Initial Data
As we have alluded to earlier, we are not free to impose whatever data we like on our hypersurfaces;
the initial data has to be chosen in such a way that the Hamiltonian (c.f., Eq. (3.51)) and momentum
(c.f., Eq. (3.56)) constraints are satisfied from the onset and remain satisfied throught the entire time-
evolution of the system. It can be shown (analytically, via the Bianchi identities) that if the constraints
are satisfied on some initial time slice, they will remain fulfilled for the entirety of the simulation.
This is, however, an analytical statement; in numerical simulations the constraints will be violated,
and this is something that needs to be monitored. In practice, some sort of damping technique is
applied to keep these violations in check. However, our concern here is exclusively on the initial data;
the evolution of the EFEs, which are given by the BSSN equations presented in the previous chapter,
will not be discussed any further in the remainder of this treatment.

Thus far we have exclusively used the conformal factor χ in our work since, as explained on Chapter 4,
its use is helpful in avoiding singularity excision [18]. However, for the sake of solving the initial data
problem it makes no difference which conformal factor we use, since in the end we are only after the
physical data {γij, Kij}, which can be recovered from any conformally-related quantity. Both the CTT
([53], [54], [51]) and (X)CTS [52] decompositions use the factor ψ, so we will switch to using it for the
purpose of solving initial data. Thus we start with the conformal rescaling

γij = ψ4γ̄ij

γij = ψ−4γ̄ij,

(5.1a)

(5.1b)

which is precisely the same one we used in the BSSN formulation (c.f., Eq. (4.10)), except we are now
using ψ instead of χ. The quantity that will be scaled differently for the purpose of solving initial data
will be Aij; let us see why it is convenient to use a different factor for this quantity:

Start by putting
Aij = ψη Ãij, (5.2)

where η is some user-defined constant. Note that we have now replaced the bar with a tilde (and we
will do so throughout this chapter) to differentiate from the Nakamura rescaling of Aij introduced in
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the BSSN formalism (c.f., Eq. (4.17)) which, in terms of ψ, would equate to η = −4. Now consider the
momentum constraints in the vacuum (c.f., Eq. (3.56))

DjKij = DiK. (5.3)

From (4.16) we can rewrite this as

Dj

(
Aij +

1
3

γijK
)

= DiK =⇒ Dj Aij =
2
3

DiK. (5.4)

We now expand the divergence of Aij in terms of the conformal connection D̄, using (B.11) and
applying it on (B.1) (see Appendix B):

Dj Aij = D̄j Aij + AkjCi
jk + AikC

j
jk

= D̄j Aij + Akj
[
4δ i

(j D̄k)(log ψ)− 2γ̄jk D̄i(log ψ)
]

+ Aik
[
4δ

j
(j D̄k)(log ψ)− 2γ̄jk D̄j(log ψ)

]
= D̄j Aij + 2AikD̄k(log ψ) + 2AijD̄j(log ψ)− 2Akjγ̄jk D̄i(log ψ)

+ 6AikD̄k(log ψ) + 2AijD̄j(log ψ)− 2Aik D̄k(log ψ)

= D̄j Aij + 10AijD̄j(log ψ)− 2Ajkγ̄jk D̄i(log ψ)

= D̄j Aij + 10AijD̄j(log ψ)− 2ψ−4 Ajkγjk︸ ︷︷ ︸
=0

D̄i(log ψ)

= D̄j Aij + 10AijD̄j(log ψ).

This result can be rewritten as

Dj Aij = ψ−10D̄j

(
ψ10Aij

)
, (5.5)

which suggests that we define the quantity

Ãij = ψ10Aij, (5.6)

which corresponds to setting η = −10 on (5.2). This rescaling of Aij, which was first introduced by
Lichnerowicz [36], will be the one used when solving the constraints on the initial data; we shall call it
the Lichnerowicz scaling of Aij . Lowering indices on Eq. (5.6), we find 1

γikγj`Aij = ψ−10Ãijγikγj`

Ak` = ψ−10Ãij ψ4γ̄ik ψ4γ̄j`

Ak` = ψ−2Ãk`.

In summary,
Aij = ψ−2Ãij

Aij = ψ−10Ãij.

(5.7a)

(5.7b)

1Note that Aij may have a different scaling factor, but it is still a quantity related to the conformal metric γ̄ij, so
indices of Ãij shall be raised/lowered with γ̄ij.
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Now, from (3.56) and (5.4)– (5.6),

Dj Aij − 2
3

γijDjK = 8πSi

ψ−10D̄j Ãij − 2
3

ψ−4γ̄ijD̄jK = 8πSi

D̄j Ãij − 2
3

ψ6D̄iK = 8πψ10Si.

Rescaling the matter quantity
S̃i ≡ ψ10Si, (5.8)

we have our momentum constraints using the Lichnerowicz scaling of Aij,

D̄j Ãij − 2
3

ψ6D̄iK = 8πS̃i. (5.9)

Lastly, we need the Hamiltonian constraint; recall from (3.51),

R + K2 − KijKij = 16πρ.

From Eq. (4.45), we have

KijKij = Āij Āij +
1
3

K2,

where Āij is the Nakamura scaling of Aij. Rewriting the first term on the RHS in terms of the Lich-
nerowicz scaling,

Āij Āij = ψ4ψ−4Aij Aij = Aij Aij = ψ−2ψ−10Ãij Ãij = ψ−12Ãij Ãij, (5.10)

and plugging in the transformation law for the spatial Ricci scalar R (which is derived in full detail on
Appendix B (c.f., Eq. B.13)) in terms of ψ instead of χ,

R = ψ−4R̄− 8ψ−5D̄2ψ,

we get

R + K2 − KijKij − 16πρ = 0

ψ−4R̄− 8ψ−5D̄2ψ +
2
3

K2 − ψ−12Ãij Ãij − 16πρ = 0

D̄2ψ +
1
8

(
ψ−7Ãij Ãij − ψR̄

)
+ ψ5

(
2πρ− 1

12
K2
)

= 0.

Rescaling the matter quantity
ρ̃ ≡ ψ8ρ, (5.11)

we have our Hamiltonian constraint in its final (Lichnerowicz) form,

D̄2ψ +
1
8

(
ψ−7Ãij Ãij − ψR̄

)
− 1

12
ψ5K2 + 2πψ−3ρ̃ = 0. (5.12)

Remark 1. Whereas the motivation for the rescaling of the energy density in (5.11) is not as intuitively clear as
the one for the momentum density in (5.8), it is a suitable one because the negative power of ψ on the ρ̃ term
guarantees some uniqueness of solutions (actually, any power > 5 would do the trick; 8 is chosen for later
computational convenience).
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5.1.1 Conformal Transverse-Traceless (CTT) Decomposition

Most known decompositions of the initial data problem start with the conformal rescalings introduced
above; from this point on the different approaches (such as the ones introduced in this subsection
and the next) proceed to decompose the (rescaled) traceless extrinsic curvature Ãij in different ways.
For the CTT decomposition, we start by splitting Ãij as 2

Ãij = Ãij
L + Ãij

TT = (L̄X)ij + Ãij
TT, (5.13)

where Ãij
TT is the transverse-traceless (TT) part of Ãij :

D̄j Ã
ij
TT = 0 (Transverse) (5.14a)

γ̄ij Ã
ij
TT = 0. (Traceless) (5.14b)

On the other hand, the longitudinal (L) part of Ãij, namely Ãij
L , is expressed in terms of the conformal

Killing operator (L̄X)ij associated with the conformal metric γ̄ij and some vector field X ,

(L̄X)ij ≡ 2D̄(iX j) − 2
3

γ̄ijD̄kXk. (5.15)

The vector field X is determined from taking the divergence of (5.13)

D̄j(L̄X)ij = D̄j Ãij, (5.16)

where we used the transverse property (5.14a). This second-order operator is crucial to our work, so
we shall give it its own unique notation,

∆̄L̄Xi ≡ D̄j(L̄X)ij. (5.17)

Expanding,

∆̄L̄Xi = D̄j(L̄X)ij = D̄j

(
D̄iX j + D̄jXi − 2

3
γ̄ijD̄kXk

)
= D̄jD̄iX j︸ ︷︷ ︸

=R̄i
jX

j+D̄iD̄jX j

+ D̄2Xi − 2
3

D̄iD̄jX j

= D̄2Xi + R̄i
jX

j +
1
3

D̄iD̄jX j. (by Ricci identity)

Thus we have the conformal vector Laplacian

∆̄L̄Xi = D̄2Xi + R̄i
jX

j +
1
3

D̄iD̄jX j. (5.18)

2In fact, it can be shown that any symmetric, trace-free tensor can be split into a sum of its
transverse/orthogonal/divergence-free part and its longitudinal part, the latter being given by the Killing opera-
tor, as in (5.15).
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From Eq. (5.16) we see that the existence and uniqueness of the L-TT decomposition (5.13) is guaran-
teed iff there exists a unique solution Xi to (5.18). We shall now rewrite the momentum constraints us-
ing this conformal Laplacian operator: from (5.16)–(5.17), we see that (5.9) becomes

∆̄L̄Xi − 2
3

ψ6D̄iK = 8πS̃i. (5.19)

Thus we have reduced the Hamiltonian and momentum constraints to equations that need to be
solved for ψ and Xi, respectively. 3 Once we have the solutions, we then need to recover the physical
data from it: from ψ we recover γ̄ij and, accordingly, γij; from Xi we recover Ãij via (5.16) (conse-
quently Aij and, ultimately, the physical data Kij).

Let us briefly recap the situation. We start off with twelve degrees of freedom (DoF) in the physical
system {γij, Kij}, four of which are removed due to the constraints (one is the conformal factor ψ

from the Hamiltonian (5.12); three come from Xi or, equivalently, the longitudinal part of the extrinsic
curvature Ãij

L = (L̄X)ij which is recovered from the momentum constraints (5.19)). A further four
DoF account for the gauge freedom that is inherent to GR (three spatial coordinates associated with
the physical 3-metric γij and a time coordinate that is associated with K). Hence from the initial
twelve DoF we are left with only four that are still undetermined:

> (Two undetermined DoF in the conformal metric, γ̄ij) From the possible six DoF of γ̄ij, one is
lost once we fix the conformal factor ψ whilst other three are due to the spatial-coordinate
freedom. In other words, there are actually five DoF encoded in γ̄ij, albeit only two of them are
true dynamical degrees of freedom of the gravitational field;

> (Two undetermined DoF in theTTpart of the extrinsic curvature, Ãij
TT) From the possible six DoF

of Ãij
TT, one is lost due to the traceless property (5.14b) and three more due to the transverse

property (5.14a).

These four are the true dynamical DoF of the gravitational field; the remaining eight are either fixed
by constrains (four) or represent gauge freedom (four). All in all, the CTT approach puts as constrained
data the quantities ψ and Xi whilst leaving as free data the quantities {Ãij

TT, γ̄ij, K} 4 as well as any
matter terms ρ, Si, if present. The choice of this free background data has to be made according to the
physical meaning of the scenario one would like to present (e.g., black holes, neutron stars, exotic
compacts).

3Note that the second term on the LHS of (5.19) couples the constraints; under the assumption that K = constant
(e.g., the maximal slicing condition K = 0) they decouple. In such situations we can first solve (5.19) for Xi, from which
we determine Ãij, which we then plug into (5.12) and solve the Hamiltonian constraint for ψ.

4The last two listed quantities include of course the two free DoF of γ̄ij, plus the free coordinates (which includes a
time coordinate associated with K).
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CTT Decomposition

In the CTT approach, initial data is split as follows

• Constrained Data: ψ, Xi;

• Free Data: Ãij
TT, γ̄ij, K, (matter terms (ρ, Si), if present).

The Hamiltonian constraint is

D̄2ψ +
1
8

(
ψ−7Ãij Ãij − ψR̄

)
− 1

12
ψ5K2 + 2πψ−3ρ̃ = 0

where Ãij is given by
Ãij = Ãij

L + Ãij
TT = (L̄X)ij + Ãij

TT.

It needs to be solved for ψ. On the other hand, the momentum constraints are

∆̄L̄Xi − 2
3

ψ6D̄iK = 8πS̃i

which need to be solved for Xi.

The physical solution is then constructed from

γij = ψ4γ̄ij

Kij = ψ−2Ãij +
1
3

γijK.
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5.1.2 Conformal Thin-Sandwich (CTS) Decomposition

Unlike the CTT decomposition, where the initial data problem is dealt with on a single hypersurface,
the alternative CTS approach considers the vicinity of the slice as well (consequently, it is no wonder
that in this formalism the foliation variables α and βi will make an appearance, which was not the case
for CTT). Instead of starting with the single-slice data {γij, Kij}, our starting point will be the metric
γij of our initial slice Σ and its value in a neighbourhood of Σ (i.e., its time derivative γ̇ij ≡ ∂tγij).
We then consider the traceless part of γ̇ij,

υij ≡ γ1/3∂t(γ−1/3γij). (5.20)

Note that υij is indeed traceless:

γijυij = γij
(

γ1/3∂t(γ−1/3γij)
)

= γij(γ1/3γ−1/3∂tγij + γ1/3γij ∂tγ
−1/3︸ ︷︷ ︸

=− 1
3 γ−4/3∂tγ

)

= γij∂tγij︸ ︷︷ ︸
=2∂t log

√
γ

−1
3

γijγij︸ ︷︷ ︸
=3

=γ︷ ︸︸ ︷
γ1/3γ−4/3 ∂tγ︸ ︷︷ ︸

=2∂t log
√

γ

= 2∂t log
√

γ− 2∂t log
√

γ = 0,
√

where on the last line we used Jacobi’s formula (c.f., Eq. (3.42)). Now recall from Eq. (3.40) the evolution
equation of the spatial metric

∂tγij = 2D(iβ j) − 2αKij,

and from Eq. (3.41)
∂t log

√
γ = −αK + Diβ

i.

Now putting all this together we rewrite Eq. (5.20):

υij = γ1/3∂t(γ−1/3γij)

= ∂tγij −
1
3

γij γ−1∂tγ︸ ︷︷ ︸
=2∂t log

√
γ

= 2D(iβ j) − 2αKij −
2
3

γij∂t log
√

γ

= 2D(iβ j) − 2α

(
Aij −

1
3

γijK
)
− 2

3
γij

(
−αK + Dkβk

)
= 2D(iβ j) − 2αAij −

2
3

γijDkβk

= (Lβ)ij − 2αAij, (5.21)

where on the last line we used the Killing operator (Lβ)ij ≡ 2D(iβ j) − 2/3 γijDkβk, defined just
as its conformal counterpart (5.15), but associated with the physical metric instead of the conformal
one (hence the lack of a “bar” on top of the L symbol).
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On the other hand, Eq. (5.21) looks awfully similar to the evolution of the conformal metric (c.f.,
Eq. (4.30))

∂tγ̄ij = 2D̄(iβ j) −
2
3

γ̄ijD̄kβk − 2αĀij = (L̄β)ij − 2αĀij, (5.22)

where Āij = ψ−4Aij is the Nakamura scaling of Aij (c.f., (4.17)). This suggests that we rescale υij as
ῡij ≡ ψ−4υij and put

ῡij ≡ ∂tγ̄ij. (5.23)

Indeed,

ῡij ≡ ψ−4υij = ψ−4

=ψ4︷︸︸︷
γ1/3 ∂t(

=ψ−4︷ ︸︸ ︷
γ−1/3 γij︸ ︷︷ ︸

=γ̄ij

) = ∂tγ̄ij.
√

Note that, just like υij, the rescaled ῡij is also traceless:

γ̄ijῡij = γ̄ij∂tγ̄ij
Jacobi’s identity
================ γ̄−1︸︷︷︸

=1

∂tγ̄︸︷︷︸
=0

= 0.
√

Now, from Eqs. (5.22) and (5.23), we have

Āij =
1

2α

(
(L̄β)ij − ῡij

)
.

However, we are using now the Nakamura scaling of Aij and, as discussed earlier in the chapter, when
dealing with the initial data problem it is more mathematically convenient to work instead with the
Lichnerowicz scaling displayed on Eq. (5.7). Converting from Nakamura to Lichnerowicz,

Āij = ψ−4Aij = ψ−4ψ−2Ãij = ψ−6Ãij

Āij = ψ4Aij = ψ4ψ−10Ãij = ψ−6Ãij,

we have

Ãij =
ψ6

2α

(
(L̄β)ij − ῡij

)
(5.24a)

Ãij =
ψ6

2α

(
(L̄β)ij − ῡij

)
. (5.24b)

It turns out to be convenient (not a simple matter of aesthetics; this is relevant for numerical imple-
mentations!) to use the densitised lapse (also referred to as the conformal lapse)

ᾱ ≡ ψ−6α, (5.25)

in terms of which (5.24) is rewritten as

Ãij =
1

2ᾱ

(
(L̄β)ij − ῡij

)
Ãij =

1
2ᾱ

(
(L̄β)ij − ῡij

)
.

(5.26a)

(5.26b)
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In the CTS decomposition the Hamiltonian constraint is still the same equation (5.12) that needs to be
solved for ψ, except this time Ãij and Ãij are understood to be replaced by the values derived on (5.26).
As for the momentum constraints, let us first expand the divergence D̄j Ãij in terms of (5.26b):

D̄j Ãij = D̄j

[
1

2ᾱ

(
(L̄β)ij − ῡij

)]
=

1
2ᾱ

∆̄L̄βi − 1
2ᾱ2 (L̄β)ijD̄jᾱ−

1
2ᾱ

D̄jῡ
ij +

1
2ᾱ2 ῡijD̄jᾱ

=
1

2ᾱ

(
∆̄L̄βi − (L̄β)ijD̄j(log ᾱ)− D̄jῡ

ij + ῡijD̄j(log ᾱ)
)

.

Inserting this into the momentum constraints (5.9),

D̄j Ãij − 2
3

ψ6D̄iK = 8πS̃i

1
2ᾱ

[∆̄L̄βi − (L̄β)ijD̄j(log ᾱ)−D̄jῡ
ij + ῡijD̄j(log ᾱ)︸ ︷︷ ︸

=−ᾱD̄j(ᾱ−1ῡij)

]− 2
3

ψ6D̄iK = 8πS̃i

∆̄L̄βi − (L̄β)ijD̄j(log ᾱ)− ᾱD̄j(ᾱ−1ῡij)− 4
3

ᾱψ6D̄iK = 16πᾱS̃i.

Thus the momentum constraints in the CTS decomposition are given by

∆̄L̄βi − (L̄β)ijD̄j(log ᾱ) = ᾱD̄j(ᾱ−1ῡij) +
4
3

ᾱψ6D̄iK + 16πᾱS̃i. (5.27)

(Note that, as was the case for the CTT decomposition, in a constant-mean-curvature (i.e., K =
constant) slice, the Hamiltonian and momentum constraints decouple.) Having made a choice for
the background metric γ̄ij and its time derivative ῡij, as well as the densitised lapse and the trace of the
extrinsic curvature K (as well as any matter terms, if applicable), we then proceed to solve the coupled
system (5.12) & (5.27) for ψ and βi, respectively. Note that, unlike the CTT decomposition where we
started with twelve DoF (four of which were constrained and eight free), in CTS we find ourselves with
a total of sixteen DoF: γ̄ij (5), ῡij (5), K (1), ᾱ (1), βi (3), and ψ (1). Of these sixteen, the latter four
{βi, ψ} are constrained; moreover, by constraining the conformal factor ψ we are removing one DoF
from γ̄ij (and consequently, also one DoF is removed from ῡij). The four extra DoF in CTS are due to
the appearance of the foliation variables (shift and lapse), since in this approach we are not working
on a single hypersurface (as was the case for CTT).
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CTS Decomposition

In the CTS approach, initial data is split as follows

• Constrained Data: ψ, βi;

• Free Data: γ̄ij, ῡij, ᾱ, K, (matter terms (ρ, Si), if present).

The Hamiltonian constraint is

D̄2ψ +
1
8

(
ψ−7Ãij Ãij − ψR̄

)
− 1

12
ψ5K2 + 2πψ−3ρ̃ = 0

where Ãij is given by

Ãij =
1

2ᾱ

(
(L̄β)ij − ῡij

)
.

It needs to be solved for ψ. On the other hand, the momentum constraints are

∆̄L̄βi − (L̄β)ijD̄j(log ᾱ) = ᾱD̄j(ᾱ−1ῡij) +
4
3

ᾱψ6D̄iK + 16πᾱS̃i

which need to be solved for βi.

The physical solution is then constructed from

α = ψ6ᾱ

γij = ψ4γ̄ij

Kij = ψ−2Ãij +
1
3

γijK.
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Extended Conformal Thin-Sandwich (XCTS) Decomposition

The above CTS prescription is commonly referred to as the “original” conformal thin-sandwich decom-
position; it was introduced by York in 1999 [52]. CTS is quite efficient in its own right and, moreover, it
can be helpful when used in tandem with other conformal decompositions; for instance, when com-
paring with CTT, the presence of the time derivative of the conformal metric ῡij brings some intuition
with regards to the prescription of the free CTT data Ãij

TT. That beings said, CTS has in particular one
major drawback: there are situations in which there is no natural way of prescribing the densitised
lapse ᾱ, as the latter has a more difficult physical interpretation. In an effort to solve this issue, Pfeiffer
and York found a way to extend this CTS approach by giving the time derivative of the mean curvature
(time derivative of the trace K) in order to determine the lapse [43]. This “extension” is referred to as,
. . . well, . . .the extended conformal thin-sandwich (XCTS) decomposition; we shall present it now.

Since XCTS replaces CTS’s free datum ᾱ with ∂tK, we start by recalling equation (4.22),

∂tK = α

(
Āij Āij +

1
3

K2
)

+ 4πα(ρ + S)− D2α + βiD̄iK,

where S is trace of the spatial stress (c.f., Eq. (3.62)). Our first order of business then is to replace the
Laplace operator D2 with the conformal one D̄2. In order to accomplish this we need to convert from
the Christoffel symbols Γi

jk of the spatial metric γij to the conformal symbols Γ̄i
jk of the conformal

metric γ̄ij (this was derived earlier on (4.35), but for the conformal factor χ; we now derive it for ψ):

Γi
jk =

1
2

γi` (∂jγ`k + ∂kγ`j − ∂`γjk
)

=
1
2

ψ−4γ̄i`
(

∂j(ψ4γ̄`k) + ∂k(ψ4γ̄`j)− ∂`(ψ
4γ̄jk)

)
=

1
2

ψ−4γ̄i`
(

ψ4 ∂jγ̄`k + 4ψ3γ̄`k ∂jψ + ψ4 ∂kγ̄`j + 4ψ3γ̄`j ∂kψ− ψ4 ∂`γ̄jk − 4ψ3γ̄jk ∂`ψ
)

=
1
2

γ̄i` (∂jγ̄`k + ∂kγ̄`j − ∂`γ̄jk
)

︸ ︷︷ ︸
=Γ̄i

jk

+2γ̄i` (γ̄`k ∂j(log ψ) + γ̄`j ∂k(log ψ)− γ̄jk ∂`(log ψ)
)

= Γ̄i
jk + 4δi

(k ∂j)(log ψ)− 2γ̄jkγ̄i` ∂`(log ψ)

= Γ̄i
jk + 4δi

(k D̄j)(log ψ)− 2γ̄jkγ̄i` D̄`(log ψ), (5.28)

where on the last line we used the fact that ψ (and therefore log ψ) is treated as a scalar (as opposed
to a scalar tensor density) in covariant derivatives (we will also use this for the lapse below). Equipped
with (5.28), we can rewrite D2α in terms of the conformal connection D̄ (again, we also did this
on (4.36), but that was using χ; we now derive it for ψ):

DiDjα = Di∂jα = ∂i∂jα− Γk
ij∂kα

= ∂i∂jα−
[
Γ̄k

ij + 4δk
(i D̄j)(log ψ)− 2γ̄ijγ̄

k` D̄`(log ψ)
]

∂kα

= ∂i∂jα− Γ̄k
ij ∂kα︸ ︷︷ ︸

=D̄iD̄jα

−4D̄(iα D̄j)(log ψ) + 2γ̄ijD̄kα D̄k(log ψ)

= D̄iD̄jα− 4D̄(iα D̄j)(log ψ) + 2γ̄ijD̄kα D̄k(log ψ). (5.29)
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Contracting, we get an expression for D2α in terms of the conformal connection D̄:

D2α = γijDiDjα = γij
[

D̄iD̄jα− 4D̄(iα D̄j)(log ψ) + 2γ̄ijD̄kα D̄k(log ψ)
]

= ψ−4γ̄ij
[

D̄iD̄jα− 4D̄(iα D̄j)(log ψ) + 2γ̄ijD̄kα D̄k(log ψ)
]

= ψ−4
[

D̄2α− 4D̄iα D̄i(log ψ) + 6D̄iα D̄i(log ψ)
]

= ψ−4
[

D̄2α + 2D̄iα D̄i(log ψ)
]

. (5.30)

Thus, equation (4.22) becomes

ψ−4
[

D̄2α + 2D̄iα D̄i(log ψ)
]

= α

(
Āij Āij +

1
3

K2
)

+ 4πα(ρ + S) + βiD̄iK− ∂tK. (5.31)

Pfeiffer and York took it a step further and suggested that we combine this equation with the Hamilto-
nian constraint (5.12) to get an equation involving the quantity αψ = ᾱψ7 that effectively eliminates
the scalar product of gradients found in term 2D̄iα D̄i(log ψ):

D̄2(αψ) = D̄i (D̄i(αψ))

= D̄i (αD̄iψ + ψD̄iα)

= 2D̄iα D̄iψ + αD̄2ψ + ψD̄2α. (5.32)

Multiplying this result by ψ−1,

ψ−1
[
2D̄iα D̄iψ + αD̄2ψ + ψD̄2α

]
= 2D̄iα D̄i(log ψ) + ψ−1αD̄2ψ + D̄2α.

Combing this with (5.32), the LHS of (5.31) is rewritten as

ψ−4
[

D̄2α + 2D̄iα D̄i(log ψ)
]

= ψ−4
[
ψ−1

(
D̄2(αψ)− αD̄2ψ

)]
= ψ−5

(
D̄2(αψ)− αD̄2ψ

)
.

(5.33)
Now, recall from (5.10) that Āij Āij = ψ−12Ãij Ãij, and from (5.11) the rescaled energy density ρ̃ =
ψ8ρ; moreover, we also rescale the trace of the spatial stress,

S̃ ≡ ψ8S. (5.34)

Then we substitute these quantities and (5.33) into (5.31):

ψ−5
(

D̄2(αψ)− αD̄2ψ
)

= α

(
ψ−12Ãij Ãij +

1
3

K2
)

+ 4παψ−8(ρ̃ + S̃) + βiD̄iK− ∂tK. (5.35)

To take this further we now replace the term D̄2ψ with the Hamiltonian constraint (5.12)

D̄2ψ =
1

12
ψ5K2 − 1

8

(
ψ−7Ãij Ãij − ψR̄

)
− 2πψ−3ρ̃,
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so that (here comes the mess!)

ψ−5D̄2(αψ) = α

[
1

12
K2 − 1

8

(
ψ−12Ãij Ãij − ψ−4R̄

)
− 2πψ−8ρ̃

]
+ α

(
ψ−12Ãij Ãij +

1
3

K2
)

+ 4παψ−8(ρ̃ + S̃) + βiD̄iK− ∂tK

ψ−5D̄2(αψ) = α

(
7
8

ψ−12Ãij Ãij +
5

12
K2 +

1
8

ψ−4R̄ + πψ−82(2S̃ + ρ̃)
)

+ βiD̄iK− ∂tK

D̄2(αψ) = αψ

(
7
8

ψ−8Ãij Ãij +
5

12
ψ4K2 +

1
8

R̄ + 2πψ−4(2S̃ + ρ̃)
)

+ ψ5
(

βiD̄iK− ∂tK
)

.

Hence, the XCTS decomposition contains an additional constraint equation

D̄2(αψ) = αψ

(
7
8

ψ−8Ãij Ãij +
5

12
ψ4K2 +

1
8

R̄ + 2πψ−4(2S̃ + ρ̃)
)

+ ψ5
(

βiD̄iK− ∂tK
)

.

(5.36)
which needs to be solved for the quantity αψ (or, equivalently, ᾱψ7), thus adding an extra constraint
datum α (or, equivalently, ᾱ) to the original CTS decomposition. Note that one major disadvantage
of XCTS over CTS or CTT is that assuming constant mean curvature (i.e., setting K = constant) does
not decouple the Hamiltonian and momentum constraints, which was a convenient feature in the
other two decompositions. On the other hand, however, by having as free data the time derivatives
of both the (conformal) metric and of the mean curvature K, the XCTS decomposition gives us a
good measure of control over the initial data; for instance, since ῡij and ∂tK are not constrained, we
may choose to set both equal to zero, which is particularly useful in situations where we would like
to prescribe equilibrium/quasi-equilibrium data (since ∂tγ̄ij = 0 and ∂tK = 0 are both necessary
conditions for~∂t to be a Killing vector).
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XCTS Decomposition

In the XCTS approach, initial data is split as follows

• Constrained Data: ψ, βi, α (or, equivalently, ᾱ (if we use ᾱψ7 in place of αψ on (5.36)));

• Free Data: γ̄ij, ῡij, K, ∂tK, (matter terms (ρ, Si), if present).

The Hamiltonian constraint is

D̄2ψ +
1
8

(
ψ−7Ãij Ãij − ψR̄

)
− 1

12
ψ5K2 + 2πψ−3ρ̃ = 0

where Ãij is given by

Ãij =
1

2ᾱ

(
(L̄β)ij − ῡij

)
.

It needs to be solved for ψ. On the other hand, the momentum constraints are

∆̄L̄βi − (L̄β)ijD̄j(log ᾱ) = ᾱD̄j(ᾱ−1ῡij) +
4
3

ᾱψ6D̄iK + 16πᾱS̃i

which need to be solved for βi. Furthermore, an additional constraint equation

D̄2(αψ) = αψ

(
7
8

ψ−8Ãij Ãij +
5

12
ψ4K2 +

1
8

R̄ + 2πψ−4(2S̃ + ρ̃)
)

+ ψ5
(

βiD̄iK− ∂tK
)

needs to be solved for the quantity αψ (or, equivalently, ᾱψ7).

The physical solution is then constructed from

α = ψ6ᾱ

γij = ψ4γ̄ij

Kij = ψ−2Ãij +
1
3

γijK.
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5.2 Gauge Choice
Even though, in theory (i.e., analytically) all gauge choices should yield the same physical result, at
the numerical level this is an issue that merits some consideration. In order to achieve a long-term
stable simulation we need to specify the right gauge (choice for α and βi ) and determine how these
quantities will evolve in coordinate time. Choosing static gauges is not a very good idea, since we
have no a priori knowledge of which functions will serve us better; the best approach is to choose the
lapse and shift dynamically as functions of the evolving geometry.

One may naively think, for instance, that setting α = 1 would be an ideal choice (certainly, our
calculations would simplify quite a bit!). 5 Unfortunately, however, this turns out to be a terrible pick:
recall from Eq. (3.35) that the acceleration of a normal observer is given in terms of the lapse function
as nb∇bna = Da log α; thus setting α = 1 yields a vanishing acceleration of normal observers (hence
the choice α = 1 is usually referred to as geodesic slicing, since Eulerian observers are in free fall).
A detailed examination then shows that this almost always leads to a singularity, since geodesics
tend to focus in the presence of gravitating sources. Hence singularity-avoiding techniques such as
maximal slicing (computationally expensive) or 1 + log slicing (lower computational cost) must be
employed. The former is the condition that sets the mean curvature K to be constant; if we enforce
this not only on the initial slice but also during the evolution, we can write this condition WLOG as

K = 0 = ∂tK. (5.37)

The name “maximal slicing” comes from the fact that choosing K = 0 extremises the volume of spatial
slices. With a Riemannian metric such extremal surfaces with vanishing mean curvature are minimal,
whilst in the presence of a Lorentzian metric (our case) they are maximal. With the choice (5.37), the
equation for the time evolution of K (c.f,. Eq. (3.64)) reduces to

D2α = α
(

4π(ρ + S) + KijKij
)

, (5.38)

which decouples the lapse from the shift. We can then rewrite Eq. (5.38) in several different ways; for
instance, combining with the Hamiltonian (3.51),

D2α = α (4π(ρ + S) + R− 16πρ)

= α (4π(S− 3ρ) + R) , (5.39)

or alternatively, in the additional constraint equation of the XCTS decomposition (c.f., Eq. (5.36)),

D̄2(αψ) = αψ

(
7
8

ψ−8Ãij Ãij +
1
8

R̄ + 2πψ−4(2S̃ + ρ̃)
)

. (5.40)

This maximal slicing condition (5.37) is a major improvement over geodisic slicing, since it avoids the
focusing of normal observers that we mentioned takes place in the latter. This can be asserted from

∇ana = ∇agabnb = gab∇anb = (gab + nanb)∇anb︸ ︷︷ ︸
since nb∇anb = 0

= γab∇anb = −K;

5This corresponds to an evenly spaced slicing, so that coordinate time coincides with proper time of Eulerian ob-
servers (recall that dτ = αdt).



76

thus setting K = 0 we see that the expansion (negative or positive) of normal observers vanishes.
This is equivalent to saying that maximal slices are volume-preserving along the normal congruence
na, a fact that can also be verified from

0 = K = γabKab = −1
2

γabL~nγab = − 1
2γ
L~nγ = − 1

γ1/2
L~nγ1/2 = −L~n log γ1/2, (5.41)

where on the fourth equality we used Jacobi’s formula yet again. Since γ1/2d3x is the proper volume
element of a spatial hypersurface Σ, Eq. (5.41) shows that the negative of the mean curvature (zero in
the maximal slicing assumption) measures the fractional change in the proper 3-volume along the
normal congruence na.

The one major drawback of the maximal slicing condition is that it is prohibitively expensive to
implement for most relevant applications. The 1 + log slicing condition, on the other hand, has
proven to be quite robust, and it has become adopted by most modern NR codes. It is a generalised
hyperbolic slicing condition of Bona-Massó type [15], whose basic idea is to reduce the lapse in regions
where the curvature is particularly strong. In general, the so-called alpha-driver condition is given by

∂tα = −ζ1 αζ2K + ζ3βi∂iα, (5.42)

with ζi being some positive scalar functions. From this equation we get the 1 + log slicing by fixing
ζ1 = 2 and ζ2 = ζ3 = 1.

K;9NAB8CAM:<J

Similarly, we may also choose a vanishing shift vector (βi = 0), so that the coordinates are not shifted
as we move from slice to slice. This would also certainly simplify matters, and it is in fact a common
gauge choice that works well in certain applications. However, in black-hole spacetime simulations if
we use a vanishing βi the event horizon grows rapidly in coordinate space, due to the normal observers
falling in, which causes the computational domain to end up eventually trapped inside the black
hole [2]. Moreover, in oder to counter the large field gradients (or “slice-stretching”) 6 incurred in
the presence of a black hole, a nonvanishing βi is required [3]. To deal with this slice-stretching
issue, gauge conditions were designed so that second-time derivatives of the shift are proportional
to first-time derivatives of the coefficients Γ̄i (i.e., ∂2

t βi ∼ ∂tΓ̄i). In particular, a hyperbolic shift
condition

∂2
t βi = η∂tΓ̄i − ξ∂tβ

i, (5.43)

where η and ξ are positive scalar fields, was introduced. This is the so-called Gamma driver shift
condition. We may then use an auxiliary vector field Bi to perform the usual trick of rewriting a
second order derivative in first order,

∂tBi = ϑ1 αϑ2 ∂tΓ̄i − $1 Bi (5.44a)

∂tβ
i = $2 Bi, (5.44b)

63+1 simulations of black hole spacetimes without singularity excision and with singularity-avoiding lapse and van-
ishing shift fail after an evolution time of around t = 30 – 40M (M being the total ADM mass of the system) due to the
so-called “slice stretching” [4].



77

where we also rewrote the scalar fields η and ξ in terms of four damping parameters ϑ1,2 and $1,2
that fine-tune the growth of the shift. A usual choice is ϑ1 = $1 = 1, ϑ2 = 0, and $2 = 3/4.

The very successful moving punctures method that we mentioned in Chapter 4 is a combination of the
1 + log slicing for α and Gamma-driver for β [18]. It is very efficient at avoiding singularities, which
in turns spares us from having to excise black holes from the spacetime (which is computationally
expensive). Whence it has become the standard choice for simulation of black hole spacetimes.
Evolving a black hole in this particular gauge combination results in the “trumpet” solution, where the
central points asymptote to a finite distance from the singularity [30]. In this way we never resolve the
singularity itself, and are thus able to achieve long term stable evolutions of the spacetime around it.

5.3 Scalar Fields in the Presence of Gravity
Thus far we have only discussed purely geometric aspects of the 3+1 formulation of GR, without
discussing constraints or evolution of any potential matter field that might be coupled to the EFE’s;
we now turn to this topic (for a thorough treatment the reader may consult, e.g., Chapter 6 of [27]).
Let us focus our succinct discussion in a scalar matter field φ minimally coupled to the EFE’s. For such
scalar field, the Lagrangian is given by

LM =
1
2
∇aφ∇aφ + V(φ), (5.45)

where V(φ) is the scalar potential, which may be decomposed as

V(φ) =
1
2

m2φ2 + Vint(φ), (5.46)

m being the mass of the field and Vint the interaction potential (since we are interested in the minimally-
coupled case, the field is noninteracting; i.e., Vint = 0). If we then add the associated scalar matter
Lagrangian density LM =

√−gLM to the gravitational Lagrangian density, namely LG =
√−gR,

then minimisation of the (modified) Einstein-Hilbert action

S =
1

16π

∫
(LG +LM)d4x (5.47)

leads to the EFE’s with stress-energy tensor defined by

Tab = ∇aφ∇bφ− 1
2

gab (∇cφ∇cφ + 2V(φ)) . (5.48)

Moreover, from (5.45) the Euler-Lagrange equations yield our equation of motion, which coincides with
the Klein-Gordon equation in curved spacetime:

∇2φ =
dV(φ)

dφ
= m2φ, (5.49)

where∇2 = gab∇a∇b. Since this equation of motion is of second order, it would be useful to cast it
into first order for integration purposes; we accomplish this with the aid of new auxiliary variables Π
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andκi given by 7

Π ≡ 1
α

(
∂tφ− βi∂iφ

)
(5.50)

κi ≡ ∂iφ. (5.51)

Using these variables, (5.49) splits as

∂tφ = αΠ + βiκi (5.52a)

∂tκi = βj∂jκi + κj∂iβ
j + α∂iΠ + Π∂iα (5.52b)

∂tΠ = βi∂iΠ + gij
(

α∂jκi + κj∂iα− Γk
ijκk

)
+ α

(
KΠ +

dV(φ)
dφ

)
. (5.52c)

These equations must be solved in conjunction with the gravitational field’s 3+1 equations in order to
determine the complete evolution of a spacetime containing a scalar matter field. Note that (5.52a)
is just the definition of Π (i.e., it is simply a rewriting of (5.50)), and (5.52b) follows directly from (5.51)
and (5.52a) by commuting partial derivatives; the true equation of motion is in fact determined
by (5.52c). The constraint given by (5.51), namely,

Ri ≡ κi − ∂iφ = 0, (5.53)

must be preserved by the system (5.52). Of course, if (5.52) is solved exactly, the preservation of (5.53)
is guaranteed throughout the evolution. The problem is at the numerical level, where truncation errors
can give the residualRi nonzero values; therefore it is important to keep a close eye out onRi (in
addition to the Hamiltonian and momentum constraints!) during the evolution to make sure that we
are working with an accurate simulation.

Had we instead assumed homogeneity of the scalar field (i.e.,∇iφ = ∂iφ = 0), then the equation of
motion (5.49) for an FLRW metric would yield a relatively simple second-order ODE for the evolution
of the “inflaton” scalar field φ(t),

φ̈ + 3Hφ̇ + m2φ = 0, (5.54)

where, per usual notation, H(t) = ȧ(t)/a(t) represents Hubble’s constant, and a(t) is the expansion
parameter that appears in the FLRW metric. The much more complicated problem of dealing with an
inhomogeneous inflaton requires the full power of numerical relativity, and it is currently a very active
research area. In fact, the addition of such scalar field to our 3+1 formulation of GR opens the doors to
a plethora of interesting areas of study; for instance, inhomogeneous cosmological inflation ([21], [22],
[34]) and critical gravitational collapse ([20], [21], [28]).

The study of critical collapse and the role of scalar fields in the very early universe are the ultimate
direction of our future projects, for which this thesis presents the foundations. The interest on scalar
fields, from a cosmological perspective, lies in the likelihood that (pseudo)scalar fields known as
axions and axion-like particles (ALPs) are suitable dark matter candidates [7]. Indeed, inflation suggests
that axions were created abundantly during the Big Bang. If axions have low mass, thus preventing
other decay modes (since there is no lighter particles to decay into), theories predict that the universe
would be filled with a very cold Bose-Einstein condensate of primordial axions [49]. Hence, axions

7Some references (e.g., [8]) define Π as the negative of ours; here we follow the convention on [21].
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could plausibly explain the dark matter problem of cosmology. We are interested in axions because,
even though they are (as of now) hypothetical elementary particles, if they do indeed exist and have
low mass within a specific range, then they are likely to be a component of cold dark matter (CDM),
since they satisfy the two necessary CDM criteria: (1) a non-relativistic population of axions could be
present in our universe in sufficient quantities to provide the required dark matter energy density, and
(2) they are effectively collisionless, i.e., the only significant long-range interactions are gravitational
[33]. We intend to use both analytical techniques and numerical modelling based on general relativity
and scalar boson models to investigate the central role that scalar fields play in solving the dark matter
problem of cosmology.

On the other hand, gravitational collapse with nothing more than gravity and a scalar field is a re-
markably rich subject. The null coordinate approach is fast, accurate, and reliable, but it is limited
to spherically symmetric collapse [39]. In spherical symmetry, the system of the Einstein equations
coupled to matter can be reduced to a 1+1D system, and hence it is widely studied. However, progress
beyond spherical symmetry assumptions has been stifled due to the extremely high refinements re-
quired to study the stages of the collapse, which are magnified three-fold in full 3+1 codes. Thus, whilst
the case presented in [39] has an important check on the results obtained from more sophisticated
3+1 integration schemes, it is ultimately the full 3+1 approach the one that is required for handling
general collapse situations. It is in this configuration that we intend to study the axisymmetric and
fully asymmetric settings, which are much less understood.
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Appendix A

Proof of Gauss-Codazzi, Codazzi-Mainardi, &
Ricci Equations

In this appendix we will write out detailed calculations that prove the Gauss-Codazzi, Codazzi-Mainardi,
and Ricci Equations, all three of which we use in the main text to derive projections of the ambient
(4D) spacetime curvature onto the (3D) spacelike hypersurfaces.

A.1 Proof of Gauss-Codazzi

Recall that he Riemann tensor is defined in terms of second covariant derivatives of a vector (Ricci
identity),

2∇[c∇d]Va = R(4) a
bcdVb. (A.1)

Thus, to relate R(4) a
bcd to Ra

bcd, it is natural to consider the Ricci identity for the projected spatial
derivative. We start there:

DaDbVc = Da (DbVc) = γ d
a γ e

b γc
f ∇d(DeV f )

= γ d
a γ e

b γc
f ∇d

(
γ

g
e γ

f
h∇gVh

)
. (A.2)

In order to expand this further, we will make use of these facts:

∇dγ
g

e = ∇d
(
δ

g
e + neng) = ∇d(neng) = ne∇dng + ng∇dne;

γ e
b ne = 0;

naVa = 0 =⇒ na∇bVa = −Va∇bna;

γa
bγb

c = γa
c;

0 = ∇d

(
γc

f n f
)

= γc
f∇dn f + n f∇d(ncn f ) = γc

f∇dn f −∇dnc

=⇒ γc
f∇dn f = ∇dnc.
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Now we may expand Eq. (A.2):

DaDbVc = γ d
a γ e

b γc
f ∇d

(
γ

g
e γ

f
h∇gVh

)
= γ d

a γ e
b γc

f

{
γ

f
h∇gVh∇dγ

g
e + γ

g
e ∇gVh∇dγ

f
h + γ

g
e γ

f
h∇d∇gVh

}
= γ d

a γ e
b γc

f {γ
f
h∇gVh (ne∇dng + ng∇dne)

+ γ
g

e ∇gVh(nh∇dn f + n f∇dnh) + γ
g

e γ
f
h∇d∇gVh}

= γ d
a γ e

b γc
f {γ

f
h∇gVhng∇dne + γ

g
e ∇gVhnh∇dn f

+ γ
g

e γ
f
h∇d∇gVh} (Since γ a

b na = 0)

= γ d
a γ e

b γc
f γ

f
h︸ ︷︷ ︸

=γc
h

ng∇gVh∇dne + γ d
a γ e

b γ
g

e︸ ︷︷ ︸
=γ

g
b

γc
f∇dn f nh∇gVh︸ ︷︷ ︸

=−Vh∇gnh

+ γ d
a γ e

b γ
g

e︸ ︷︷ ︸
=γ

g
b

γc
f γ

f
h︸ ︷︷ ︸

=γc
h

∇d∇gVh

= γ d
a γ e

b ∇dne︸ ︷︷ ︸
=−Kab

γc
hng∇gVh − γ d

a γ
g

b γc
f∇dn f ∇gnh︸ ︷︷ ︸

=γ
p

h ∇gnp

Vh + γ d
a γ

g
b γc

h∇d∇gVh

= −Kabγc
hng∇gVh − γ d

a γc
f∇dn f︸ ︷︷ ︸

=−K c
a

γ
g

b γ
p

h ∇gnp︸ ︷︷ ︸
=−Kbh

Vh + γ d
a γ

g
b γc

h∇d∇gVh

= −Kabγc
hng∇gVh − K c

a KbhVh + γ d
a γ

g
b γc

h∇d∇gVh.

Permuting the indices a and b and substracting from the above result to form DaDbVc − DbDaVc,
the first term vanishes since Kab is symmetric, and so we are left with

DaDbVc − DbDaVc = (K c
b Kah − K c

a Kbh)Vh + γ d
a γ

g
b γc

h

(
∇d∇gVh −∇g∇dVh

)
. (A.3)

Now, applying both the 3D and 4D Ricci identities to Eq. (A.3), we get

Rc
f abV f =

(
K c

b Ka f − K c
a Kb f

)
V f + γ d

a γ
g

b γc
h R(4) h

f dgV f ,

or equivalently, since V f = γ
f
pVp,

γ d
a γ

g
b γc

hγ
f

p R(4) h
f dgVp = Rc

pabVp +
(
K c

a Kbp − K c
b Kap

)
Vp.

But this relation must hold for any spatial vector Vp, so we have proven (3.46a):

γ e
a γ

f
b γ

g
cγ h

d R(4) c
he f = Rg

dab + K g
a Kbd − K g

b Kad. (A.4)

Equivalently, hitting (A.4) with gcg on both sides,

γ e
a γ

f
b γ

g
cγ h

d R(4) c
he f gcg = gcgRg

dab + gcgK g
a Kbd − gcgK g

b Kad

γ e
a γ

f
b γ

g
cγ h

d R(4)
ghe f = γcgRg

dab + γcgK g
a Kbd − γcgK g

b Kad

γ e
a γ

f
b γ

g
c γ h

d R(4)
e f gh = Rabcd + KacKbd − KadKcb. (A.5)
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A.2 Proof of Codazzi-Mainardi

First consider the spatial derivative of the extrinsic curvature:

DaKbc = γ d
a γ e

b γ
f

c ∇dKe f = γ d
a γ e

b γ
f

c ∇d

(
−γ

g
e γ h

f ∇gnh

)
= −γ d

a γ e
b γ

f
c
(
∇d∇en f +∇d(nea f )

)
= −γ d

a γ e
b γ

f
c ∇d∇en f − γ d

a γ
f

c γ e
b ne︸ ︷︷ ︸
=0

∇da f − γ
f

c a f︸ ︷︷ ︸
=ac

γ d
a γ e

b ∇dne︸ ︷︷ ︸
=−Kab

= −γ d
a γ e

b γ
f

c ∇d∇en f + acKab.

Now, since Kab is symmetric, the last term disappears when antisymmetrising, and we are left with

D[aKb]c = −γ d
a γ e

b γ
f

c ∇[d∇e]n f . (A.6)

Using the Ricci identity, we get

2∇[d∇e]n f = (∇d∇e −∇e∇d)n f

= − R(4) h
f denh = −npghp R(4) h

f de

= −np R(4)
p f de.

Applying this to the RHS of (A.6), we get

D[aKb]c = γ d
a γ e

b γ
f

c np R(4)
p f de,

or similarly, applying the symmetries

R(4)
p f de = R(4)

dep f and R(4)
dep f = − R(4)

de f p

we arrive at (3.46b):

DbKac − DaKbc = γ d
a γ e

b γ
f

c np R(4)
de f p. (A.7)

Thanks to the symmetries of the Riemann tensor, changing the index contracted with np would not
give an independent relation; it would at most result in a change of sign of the right-hand side.

A.3 Proof of Ricci Equation

In the proof we will use the previous results ((3.35) and (3.36)):

aa = Da log α and Daab =
1
α

DaDbα− aaab,
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as well as the facts

Kab = −∇anb − naab =⇒ ∇anb = −Kab − naab;

R(4) e
bacne = 2∇[c∇a]nb & R(4) e

bac = gde R(4)
dbac

=⇒ R(4)
dbacnd = 2∇[c∇a]nb.

Let us compute the Lie derivative of Kab in the direction of the normal na:

L~nKab = nc∇cKab + Kcb∇anc + Kac∇bnc

= nc∇c(−∇anb − naab) + Kcb(−K c
a − naa

c) + Kac︸︷︷︸
=Kca

(−K c
b − nba

c)

= −nc∇c∇anb − nc∇c(naab)− KcbK c
a − KcaK c

b − Kcbnaa
c − Kcanba

c

= −nc∇c∇anb︸ ︷︷ ︸
=−(4)Rdbacndnc−nc∇a∇cnb

−nanc∇cab − ab nc∇cna︸ ︷︷ ︸
=aa

−KcbK c
a − KcaK c

b

− Kcbnaa
c − Kcanba

c

= −ncnd (4) Rdbac − nc∇a∇cnb − nanc∇cab − abaa − 2Kc(bK c
a) − 2Kc(bna)a

c.

Expanding upon the second term above,

∇a (nc∇cnb)︸ ︷︷ ︸
=ab

= nc∇a∇cnb +∇cnb∇anc

=⇒ nc∇a∇cnb = ∇aab −∇cnb∇anc

= ∇aab − (−Kcb − ncab)(−K c
a − naa

c)
= ∇aab − (KcbK c

a + Kcbnaa
c + ab ncK c

a︸ ︷︷ ︸
=0

+abna nca
c︸︷︷︸

=0

)

= ∇aab − KcbK c
a − Kcbnaa

c.

Thus, we have

L~nKab = −ncnd (4) Rdbac − nc∇a∇cnb − nanc∇cab − abaa − 2Kc(bK c
a) − 2Kc(bna)a

c

= −ncnd (4) Rdbac − (∇aab − KcbK c
a − Kcbnaa

c)− nanc∇cab − abaa

− KcbK c
a − KcaK c

b − Kcbnaa
c − Kcanba

c

= −ncnd (4) Rdbac −∇aab − nanc∇cab − abaa − KcaK c
b − Kcanba

c.

Now, using

na∇a (Kcbnc)︸ ︷︷ ︸
=0

= nanc∇aKcb + Kcbna∇anc

=⇒ Kcbna∇anc = −nanc∇aKcb

= −ncna∇cKab, (relabeling a↔ c)
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we can show thatL~nKab is purely spatial, i.e.,

naL~nKab = nanc∇cKab + Kcbna∇anc + naKac︸ ︷︷ ︸
=0

∇bnc

= nanc∇cKab − ncna∇cKab

= 0.

Thus, projecting onto the hypersurface the result

L~nKab = −ncnd (4) Rdbac −∇aab − nanc∇cab − abaa − KcaK c
b − Kcanba

c (A.8)

does not affect the left hand side, given thatL~nKab is purely spatial. Hence, since we have two free
indices (a, b) on (A.8), we apply the projection operator twice:

L~nKab = γ e
a γ

f
b L~nKe f

= −ncndγ e
a γ

f
b

(4)Rd f ec︸ ︷︷ ︸
=−(4)Rd f ce

− γ e
a γ

f
b ∇ea f︸ ︷︷ ︸

=Daab

−γ
f

b γ e
a ne︸ ︷︷ ︸
=0

nc∇ca f

− γ e
a γ

f
b aea f︸︷︷︸

purely spatial

−γ e
a γ

f
b KceK c

f︸ ︷︷ ︸
purely spatial

−γ e
a γ

f
b n f︸ ︷︷ ︸
=0

Kcea
c

= ncndγ e
a γ

f
b

(4) Rd f ce − Daab︸︷︷︸
= 1

α DaDbα−aaab

−aaab − KcaK c
b

= ncndγ e
a γ

f
b R(4)

d f ce −
1
α

DaDbα− KacK c
b .

This concludes our proof of (3.46c),

γ e
a γ

f
b ncnd R(4)

ec f d = L~nKab +
1
α

DaDbα + K c
b Kac. (A.9)





87

Appendix B

Weyl Transformations

One of the key steps in the BSSN formulation of 3+1 numerical relativity is the decomposition of the
spatial Ricci tensor and Ricci scalar into their conformal relatives and additional terms that follow due
to the rescaling of the metric. We show these derivations in gory detail here in the appendix, since its
inclusion in the main text would have been an unwanted tangent.

First off we want to know how D and D̄ are related; therefore a good starting point for our discussion
would be to examine the relation between different connections on a manifold. 1 We start by consid-
ering the relation between the covariant derivative∇a of a connection∇ and the covariant derivative
∇̂a of a connection ∇̂. Applying these covariant derivatives to some (a

b) tensor field T , we have

∇cTi1...ia
j1...jb

= ∇̂cTi1...ia
j1...jb

+
a

∑
d=1

Ti1...e...ia
j1...jb

C
id

ec −
b

∑
d=1

Ti1...ia
j1...e...jb

Ce
jdc, (B.1)

whereCc
ab is a symmetric (Cc

ab = Cc
ba) (1

2) tensor field that encodes information regarding possible
disagreements between the two connections∇ and ∇̂. We shall derive an expression forCc

ab straight
away.

Applying (B.1) to the metric gab that is compatible with the connection∇, we get

∇cgab︸ ︷︷ ︸
=0

= ∇̂cgab − Cd
ac gbd − Cd

bc gad,

=⇒ ∇̂cgab = Cd
ac gbd + Cd

bc gad = Cbac + Cabc. (B.2)

Similarly, cyclic permutations yield

∇̂agcb = Cbca + Ccba (B.3)

∇̂bgac = Cacb + Ccab. (B.4)

Now we add (B.2) and (B.3) and subtract (B.4),

∇̂cgab + ∇̂agcb − ∇̂bgac = Cbac + Cabc + Cbca︸︷︷︸
=Cbac

+Ccba − Cacb︸︷︷︸
=Cabc

− Ccab︸︷︷︸
=Ccba

= 2Cbac

1For more detail, the reader may consult, e.g., [50].
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=⇒ Cbac =
1
2

(
∇̂cgab + ∇̂agcb − ∇̂bgac

)
=⇒ Cd

ac =
1
2

gdb
(
∇̂cgab + ∇̂agcb − ∇̂bgac

)
.

Thus we have found an expression for Cc
ab, relating a metric gab to the connection ∇̂ of another

metric ĝab,

Cc
ab =

1
2

gcd
(
∇̂agbd + ∇̂bgad − ∇̂dgab

)
. (B.5)

This choice ofCc
ab is manifestly unique; note that in the special case when ∇̂a is the ordinary partial

derivative ∂a, thenCc
ab is simply the Christoffel symbol Γc

ab.

Having now a well defined relation between connections, we may compare their curvature. Recall the
Ricci identity of the Riemann tensor: for any one-form ωd, 2

2∇[a∇b]ωc = R d
abc ωd. (B.6)

We then apply (B.1) to this expression; consider the first term on the LHS of (B.6):

∇a∇bωc = ∇a(∇bωc)

= ∇a

(
∇̂bωc − Cd

bcωd

)
= ∇a

(
∇̂bωc

)
−∇a

(
Cd

bcωd

)
= ∇̂a∇̂bωc − Cd

ab∇̂dωc − Cd
ac∇̂bωd

− ∇̂a

(
Cd

bcωd

)
+ Cd

ec C
e
ab ωd + Cd

eb C
e
ac ωd

= ∇̂a∇̂bωc − Cd
ab∇̂dωc − Cd

ac∇̂bωd

− Cd
bc ∇̂aωd −ωd ∇̂aC

d
bc + Cd

ec C
e
ab ωd + Cd

eb C
e
ac ωd.

Then permuting a↔ b and subtracting,

2∇[a∇b]ωc = ∇̂a∇̂bωc−Cd
ab∇̂dωc−Cd

ac∇̂bωd

−Cd
bc ∇̂aωd −ωd ∇̂aC

d
bc+C

d
ec C

e
ab ωd + Cd

eb C
e
ac ωd

−∇̂b∇̂aωc+Cd
ab∇̂dωc+Cd

bc∇̂aωd

+Cd
ac ∇̂bωd + ωd ∇̂bC

d
ac−Cd

ec C
e
ab ωd − Cd

ea C
e
bc ωd.

= 2 ∇̂[a∇̂b]ωc︸ ︷︷ ︸
= R̂ d

abc ωd

−2 ∇̂[aC
d

b]cωd + 2Ce
c[a C

d
b]eωd

= R̂ d
abc ωd − 2 ∇̂[aC

d
b]cωd + 2Ce

c[a C
d

b]eωd.

2You may check that this expression for the Ricci identity is entirely equivalent to Eq. (3.25). Here R d
abc is obtained

from the usual coordinate expression of the Riemann tensor Rd
abc by performing some straightforward index gymnas-

tics and using the known symmetries of the Riemann tensor (R d
abc = gdeRabce = gdeRceab = −gdeRecab = −Rd

cab =
Rd

cba).
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This relation holds for any one-form ωd; thus we have found a transformation law for the Riemann
tensor from a connection∇ to a connection ∇̂:

R d
abc = R̂ d

abc − 2 ∇̂[aC
d

b]c + 2Ce
c[a C

d
b]e. (B.7)

Similarly, contracting b = d, we get a relation for the Ricci tensor:

Rac = R̂ac − 2 ∇̂[aC
b
b]c + 2Ce

c[a C
b
b]e. (B.8)

Then, if the conformal scaling of the metric is such that

ĝab = χgab

ĝab = χ−1gab,

(as it shall be in our case), then we can get a transformation law for the Ricci scalar as well by raising
an index on (B.8) and contracting:

gacRac = gac
(

R̂ac − 2 ∇̂[aC
b
b]c + 2Ce

c[a C
b
b]e

)
R = χĝac

(
R̂ac − 2 ∇̂[aC

b
b]c + 2Ce

c[a C
b
b]e

)
= χ

(
R̂− 2 ĝac∇̂[aC

b
b]c + 2 ĝacCe

c[a C
b
b]e

)
.

We summarise these three key curvature transformations here,

R d
abc = R̂ d

abc − 2 ∇̂[aC
d

b]c + 2Ce
c[a C

d
b]e

Rab = R̂ab − 2 ∇̂[aC
c
c]b + 2Ce

b[a C
c
c]e

R = χ
(

R̂− 2 ĝab∇̂[aC
c
c]b + 2 ĝabCe

b[a C
c
c]e

)
.

(B.9a)

(B.9b)

(B.9c)

These are very important transformation laws that we will use quite often in the main text. . . In fact, let
us use them now to write the conformal decomposition of both the 3D (spatial) Ricci tensor Rij and
Ricci scalar R that we are using in our treatment: We start by calculating theCc

ab relation between
our two connections D and D̄, using (B.5):

Ck
ij =

1
2

γk` (D̄iγj` + D̄jγi` − D̄kγij
)

=
1
2

χγ̄k`
(

D̄i(χ−1γ̄j`) + D̄j(χ−1γ̄i`)− D̄`(χ
−1γ̄ij)

)
=

1
2

χγ̄k`(χ−1 D̄iγ̄j`︸ ︷︷ ︸
=0

+γ̄j` D̄iχ
−1 + χ−1 D̄jγ̄i`︸ ︷︷ ︸

=0

+γ̄i` D̄jχ
−1 − χ−1 D̄`γ̄ij︸ ︷︷ ︸

=0

−γ̄ij D̄`χ
−1)

=
1
2

χγ̄k`
(
−χ−2γ̄j` D̄iχ− χ−2γ̄i` D̄jχ + χ−2γ̄ij D̄`χ

)
=

1
2

χ−1
(

γ̄ij D̄kχ− 2 δ k
(i D̄j)χ

)
=

1
2

γ̄ij D̄k(log χ)− δ k
(i D̄j)(log χ). (B.10)
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Also, in terms of ψ (we will use this when dealing with the initial data problem (see Chapter 5)),

Ck
ij =

1
2

γk` (D̄iγj` + D̄jγi` − D̄kγij
)

=
1
2

ψ−4γ̄k`
(

D̄i(ψ4γ̄j`) + D̄j(ψ4γ̄i`)− D̄`(ψ
4γ̄ij)

)
=

1
2

ψ−4γ̄k`
(

4ψ3γ̄j` D̄iψ + 4ψ3γ̄i` D̄jψ− 4ψ3γ̄ij D̄`ψ
)

= 2ψ−1γ̄k` (γ̄j` D̄iψ + γ̄i` D̄jψ− γ̄ij D̄`ψ
)

= 2γ̄k` (γ̄j` D̄i(log ψ) + γ̄i` D̄j(log ψ)− γ̄ij D̄`(log ψ)
)

= 4δ k
(i D̄j)(log ψ)− 2γ̄ij D̄k(log ψ). (B.11)

We now apply (B.10) to (B.9b) and expand:

Rij = R̄ij − 2 D̄[iC
k
k]j + 2C`

j[i C
k
k]`

= R̄ij −
(

D̄iC
k

jk − D̄kC
k
ij

)
+
(
C`

ij C
k
`k − C`

jk C
k
i`

)
= R̄ij−D̄i

[
1
2

γ̄jk D̄k(log χ)− δ k
(j D̄k)(log χ)

]
+D̄k

[
1
2

γ̄ij D̄k(log χ)− δ k
(i D̄j)(log χ)

]
+
[

1
2

γ̄ij D̄`(log χ)− δ `
(i D̄j)(log χ)

] [
1
2

γ̄`k D̄k(log χ)− δ k
(` D̄k)(log χ)

]
−
[

1
2

γ̄jk D̄`(log χ)− δ `
(j D̄k)(log χ)

] [
1
2

γ̄i` D̄k(log χ)− δ k
(i D̄`)(log χ)

]
= R̄ij−

1
2

D̄iD̄j(log χ) +
1
2

D̄iD̄j(log χ) +
3
2

D̄iD̄j(log χ)

+
1
2

γ̄ij D̄kD̄k(log χ)− 1
2

D̄iD̄j(log χ)− 1
2

D̄jD̄i(log χ)︸ ︷︷ ︸
= D̄iD̄j(log χ) since log χ is a scalar

+
1
4

γ̄ij D̄k(log χ)D̄k(log χ)− 1
4

γ̄ij D̄k(log χ)D̄k(log χ)− 3
4

γ̄ij D̄k(log χ)D̄k(log χ)

−1
4

D̄i(log χ)D̄j(log χ)− 1
4

D̄i(log χ)D̄j(log χ) +
1
4

D̄i(log χ)D̄j(log χ)

+
3
4

D̄i(log χ)D̄j(log χ) +
3
4

D̄i(log χ)D̄j(log χ) +
1
4

D̄i(log χ)D̄j(log χ)

−1
4

D̄i(log χ)D̄j(log χ) +
1
4

γ̄ij D̄k(log χ)D̄k(log χ) +
1
4

D̄i(log χ)D̄j(log χ)

+
1
4

γ̄ij D̄k(log χ)D̄k(log χ)− 1
4

D̄i(log χ)D̄j(log χ)− 1
4

D̄i(log χ)D̄j(log χ)

+
1
4

D̄i(log χ)D̄j(log χ)− 1
4

D̄i(log χ)D̄j(log χ)− 3
4

D̄i(log χ)D̄j(log χ)

= R̄ij +
1
2

(
D̄iD̄j(log χ) + γ̄ij D̄kD̄k(log χ)

)
+

1
4

(
D̄i(log χ)D̄j(log χ)− γ̄ij D̄k(log χ)D̄k(log χ)

)
.
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Thus we have found that the 3D Ricci tensor can be split as

Rij = R̄ij + Rχ
ij

R̄ij = ∂kΓ̄k
ij − ∂jΓ̄k

ik + Γ̄k
`k Γ̄`

ij − Γ̄k
`j Γ̄`

ik

Rχ
ij =

1
2

(
D̄iD̄j(log χ) + γ̄ij D̄kD̄k(log χ)

)
+

1
4

(
D̄i(log χ)D̄j(log χ)− γ̄ij D̄k(log χ)D̄k(log χ)

)
.

(B.12a)

(B.12b)

(B.12c)

Then, raising an index and contracting, we get

γijRij = γij
(

R̄ij + Rχ
ij

)
= χγ̄ij

(
R̄ij + Rχ

ij

)
R = χR̄ + χ[

1
2

(
D̄kD̄k(log χ) + 3 D̄kD̄k(log χ)

)
+

1
4

(
D̄k(log χ)D̄k(log χ)− 3 D̄k(log χ)D̄k(log χ)

)
]

= χR̄ + 2 χD̄kD̄k(log χ)− 1
2

χD̄k(log χ)D̄k(log χ).

Hence we have derived a conformal decomposition for the Ricci scalar as well,

R = χR̄ + 2 χD̄2(log χ)− 1
2

χD̄k(log χ)D̄k(log χ). (B.13)

where D̄2 = D̄kD̄k the conformal Laplace operator. We may further expand this expression as follows:

R = χR̄ + 2 χγ̄ijD̄i(D̄j(log χ))− 1
2

χγ̄ijD̄i(log χ)D̄j(log χ)

= χR̄ + 2 χγ̄ijD̄i(χ−1D̄jχ)− 1
2

χ · χ−2γ̄ijD̄iχD̄jχ

= χR̄ + 2 χγ̄ij
(

χ−1D̄iD̄jχ− χ−2D̄iχD̄jχ
)
− 1

2
χ−1D̄kχD̄kχ

= χR̄ + 2 D̄2χ− 5
2

χ−1D̄kχD̄kχ. (B.14)
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Appendix C

Numerical Methods

In this appendix we fill in some detail of a handful of numerical methods that we used in this thesis
(the presentation is terse; it merely serves as a brief under-the-hood peek). Partial differential equa-
tions (PDE’s) cannot be implemented using a computer in such raw form, as the computer would not
be able to understand what the concept of a derivative is; hence we must settle for just an approx-
imation of these derivatives. In typical Finite Difference Methods (FDM) fashion, we present some
field/function and a discrete lattice, and then we evaluate certain combinations of values of this field
at each lattice node in order to approximate its derivatives. (This approximation is usually referred to
as the Finite Difference Approximation, or FDA.)

Let Φ be a field, sufficiently smooth so that it admits a Taylor series expansion about some point x.
Then we write

Φ(x + ∆x) =
∞

∑
n=0

∂n
xΦ(x)

∆xn

n!
= Φ(x) + ∂xΦ∆x + ∂2

xΦ
∆x2

2
+ ∂3

xΦ
∆x3

6
+ . . . (C.1)

or

Φ(x− ∆x) =
∞

∑
n=0

∂n
xΦ(x)

(−1)n∆xn

n!
= Φ(x)− ∂xΦ∆x + ∂2

xΦ
∆x2

2
− ∂3

xΦ
∆x3

6
+ . . . (C.2)

Note that from either (C.1) or (C.2) we can get an expression for the first derivative of Φ, by isolating
the second term on the RHS and then dividing by ∆x. For instance, for (C.1),

∂xΦ =
Φ(x + ∆x)−Φ(x)

∆x
− ∂2

xΦ
∆x
2
− ∂3

xΦ
∆x2

6
− . . . (C.3)

Now the green part of equation (C.3) must be truncated at some point, since the computer is not
capable of dealing with infinite sums; whence we write

∂xΦ =
Φ(x + ∆x)−Φ(x)

∆x
+ O(∆x). (C.4)

Similarly, from (C.2),

∂xΦ =
Φ(x)−Φ(x− ∆x)

∆x
+ O(∆x). (C.5)

Moreover, substracting (C.2) from (C.1), we have

∂xΦ =
Φ(x + ∆x)−Φ(x− ∆x)

2∆x
+ O(∆x). (C.6)
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In the limit where ∆x → 0, all three expressions (C.4)–(C.6) will converge to the derivative.

Using standard FDM notation, we write xi ≡ x0 + i∆x and Φi ≡ Φ(xi). Then, if ∆x is small but
finite, equations (C.4) – (C.6) can be used to obtain approximations of the derivate ∂xΦ about the
grid point xi of the form

∂xΦ|xi ≈
Φi+1 −Φi

∆x
(C.7a)

∂xΦ|xi ≈
Φi −Φi−1

∆x
(C.7b)

∂xΦ|xi ≈
Φi+1 −Φi−1

2∆x
. (C.7c)

The three expressions (C.7) are referred to as the forward, backward, and centred finite difference
approximations, respectively, of ∂xΦ evaluated at xi. We shall use the latter in our work.

Now we also need to find a discrete expression for second derivatives. Write (C.1) and (C.2) in terms
of the second derivative term:

∂2
xΦ = 2

Φ(x + ∆x)−Φ(x)− ∂xΦ∆x
∆x2 + O(∆x)

∂2
xΦ = 2

Φ(x− ∆x)−Φ(x) + ∂xΦ∆x
∆x2 + O(∆x).

Now adding these two equations, we get

∂2
xΦ =

Φ(x + ∆x)− 2Φ(x) + Φ(x− ∆x)
∆x2 + O(∆x). (C.8)

Then, taking ∆x to be small but finite, we can approximate the second derivate ∂2
xΦ about the grid

point xi:

∂2
xΦ|xi≈

Φi+1 − 2Φi + Φi−1

∆x2 . (C.9)

Figure C.1: Five-point stencil in
one (top) and two (bottom) dimen-

sions. [Image from Wikipedia]

Thus far we have only used three-point stencils to derive all the
FDA’s, and it turns out sometimes the necessity arises to use a more
accurate scheme, such as an FDA based on a five-point stencil (see
Fig C.1 on the right). In this case the derivative approximations are
more accurate because more nodes are being used (four neighbour-
ing points as opposed to just the two immediate neighbours, as
in the previously derived formulæ. Using these extra nodes, we
Taylor-expand

Φ(x± 2∆x) ≈ Φ(x)± ∂xΦ(2∆x)

+ ∂2
xΦ

(2∆x)2

2
± ∂3

xΦ
(2∆x)3

6
+ . . . (C.10)



95

Substracting the positive and negative versions of this expansion yields

Φ(x + 2∆x)−Φ(x− 2∆x) ≈ ∂xΦ(4∆x) + ∂3
xΦ

8∆x3

3
+ . . . (C.11)

We can then get rid of the ∂3
xΦ term by multiplying 8× ((C.1)− (C.2)) and then substracting (C.11):

8Φ(x + ∆x)− 8Φ(x− ∆x)−Φ(x + 2∆x) + Φ(x− 2∆x) ≈ ∂xΦ(12∆x) + . . . (C.12)

This leaves us with an expression for a five-point stencil approximation of the first derivative:

∂xΦ ≈ 8(Φi+1 −Φi−1)−Φi+2 + Φi−2

12∆x
. (C.13)

Similar derivations yield five-point stencil FDA’s for higher derivatives:

∂2
xΦ ≈ 16(Φi+1 + Φi−1)− 30Φi −Φi+2 −Φi−2

12∆x2 (C.14)

∂3
xΦ ≈ Φi+2 −Φi−2 + 2(Φi−1 −Φi+1)

2∆x3 (C.15)

∂4
xΦ ≈ Φi+2 + Φi−2 + 6Φ − 4(Φi+1 + Φi−1)

∆x4 . (C.16)

We make use of the latter FDA in the von Neumann analysis of our code (§ 2.1.1).

C.1 Simpson’s Method

We need to evaluate, numerically, a double integral

SE =
∫ τmax

τmin

∫ xmax

xmin

Ldx dτ. (C.17)

We will tackle this integration via a 2D Simpson method. In 1D, according to Simpson’s composite 1/3
rule, an integral

I =
∫ b

a
f (x) dx

is approximated by partitioning the interval [a, b] into N evenly spaced segments a = x0 < x1 <
· · · < xN = b with spacing h ≡ (b− a)/N, and then putting

I ≈ h
3

 f0 + 4
N−1

∑
i=1

i is odd

fi + 2
N−2

∑
i=2

i is even

fi + fN

 , (C.18)

where as usual we wrote fk ≡ f (xk), and we point out the requirement that in order for (C.18) to
work N must be even. Alternatively, note that we may write this in vector form as

I ≈ h
3

s f T , (C.19)
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where s = [1 4 2 4 · · · 2 4 1] and f = [ f0 · · · fN] are vectors of length N + 1. In the 2D extension of
this method both s and f become (N + 1)× (N + 1) matrices, S and F. The latter is the Lagrangian
that we want to integrate (= L in (C.17)), whilst the fomer is acquired by multiplying the Simpson
coefficients at each grip point; for instance, if N = 4,

S =


1× 1 = 1 4× 1 = 4 2× 1 = 2 4× 1 = 4 1× 1 = 1
1× 4 = 4 4× 4 = 16 2× 4 = 8 4× 4 = 16 1× 4 = 4
1× 2 = 2 4× 2 = 8 2× 2 = 4 4× 2 = 8 1× 2 = 2
1× 4 = 4 4× 4 = 16 2× 4 = 8 4× 4 = 16 1× 4 = 4
1× 1 = 1 4× 1 = 4 2× 1 = 2 4× 1 = 4 1× 1 = 1

 .

The pattern is now clear for general N:

S =



1 4 2 4 · · · 2 4 1
4 16 8 16 · · · 8 16 4
2 8 4 8 · · · 4 8 2
4 16 8 16 · · · 8 16 4
...

...
...

...
...

...
...

...
2 8 4 8 · · · 4 8 2
4 16 8 16 · · · 8 16 4
1 4 2 4 · · · 2 4 1


. (C.20)

Thus we approximate the 2D integral (C.17) via the Frobenius inner product 1

SE ≈
h2

9
S⊗F L ≡

h2

9

τmax

∑
i=τmin

xmax

∑
j=xmin

Sij Lij, (C.21)

where Sij is understood to be the (i, j)-component of (C.20) andLij is the FDA of the LagrangianL.
Our user-defined C++ function for this 2D Simpson implementation is shown on listing C.1.

1 // 2D Simpson 's Rule
2 double Simpson2D (vector <vector <double >> Fij , double step_size , int taumax

, int xmax){
3 // Initialize variables
4 vector <double > Si {};
5 vector <double > Action_Vec {};
6 double actionvals {};
7 double Action {};
8 double Total_Action {};
9 // initialize 2D vector Sij to have size 121 x 121

10 vector <vector <double >> Sij (taumax+1, vector <double > ( xmax+1, 0.0 ) );
11

12 for (int i {0}; i <= taumax; i++){
13 for (int j {0}; j <= xmax; j++){
14 if (i == 0 || i == taumax) {
15 if (j == 0 || j == xmax)
16 Sij.at(i).at(j) = 1.0;
17 else if (j % 2 != 0)

1This is, of course, assuming the grid spacing h is uniform and equal in both the x and y directions.
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18 Sij.at(i).at(j) = 4.0;
19 else

20 Sij.at(i).at(j) = 2.0;
21 }
22 else if (j == 0 || j == xmax) {
23 if (i % 2 != 0)
24 Sij.at(i).at(j) = 4.0;
25 else
26 Sij.at(i).at(j) = 2.0;
27 }
28 else {
29 if ( (i % 2 != 0) && (j % 2 != 0) )
30 Sij.at(i).at(j) = 16.0;
31 else if ( ((i % 2 != 0) && (j % 2 == 0)) || ((i % 2 == 0)
32 && (j % 2 != 0)) )
33 Sij.at(i).at(j) = 8.0;
34 else
35 Sij.at(i).at(j) = 4.0;
36 }
37 actionvals = (Sij.at(i).at(j)) * (Fij.at(i).at(j));
38 Si.push_back(actionvals);
39 } //end of main 'j' loop
40 Action = accumulate(Si.begin(), Si.end(), 0.0 );
41 Action_Vec.push_back(Action);
42 Si.clear();
43 } //end of main 'i' loop
44 Total_Action = (pow(step_size ,2) /9.0) *
45 ( accumulate(Action_Vec.begin(), Action_Vec.end(), 0.0 ) );
46 Action_Vec.clear();
47

48 return Total_Action;
49 }

Listing C.1: Our user-defined 2D Simpson function.

C.2 Least Squares Fitting (LSF)

We begin with a set of n data points P0, . . . , Pn−1, where Pi = (xi, yi). The procedure then is to find
a line y = mx + b (m being the slope and b the y-intercept) which best fits the data set (note that
this is a classical max/min calculus problem). The vertical distance from Pi = (xi, yi) to the line
y = mx + b is |yi − (mxi + b)|. However, since we are heading toward a calculus style max/min
process, the absolute value is an inconvenience. To get around this, we instead square each of these
terms and then add them all to get a function σ which depends on m and b:

σ(m, b) = ∑
i

[yi − (mxi + b)]2. (C.22)
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Next we apply standard max/min techniques to σ. Differentiating,

∂σ

∂m
= ∑

i
2 [yi − (mxi + b)](−xi) = 2 ∑

i
[mx2

i + (b− yi)xi]

∂σ

∂b
= 2 ∑

i
[yi − (mxi + b)],

and then setting these derivatives to zero,

0 = ∑
i

[mx2
i + (b− yi)xi] = m ∑

i
x2

i + b ∑
i

xi −∑
i

xiyi

0 = ∑
i

[yi − (mxi + b)] = −m ∑
i

xi − nb + ∑
i

yi.

Thus we have a a 2× 2 linear system with unknowns m and b,

∑
i

xiyi = m ∑
i

x2
i + b ∑

i
xi (C.23a)

∑
i

yi = m ∑
i

xi + nb, (C.23b)

or in matrix notation, (
∑i x2

i ∑i xi
∑i xi n

) (
m
b

)
=
(

∑i xiyi
∑i yi

)
. (C.23~)

Now, introducing

A ≡
(

x0 · · · xn−1
1 · · · 1

)
it is immediate that

AAT =
(

x0 · · · xn−1
1 · · · 1

)  x0 1
...

...
xn−1 1

 =
(

∑i x2
i ∑i xi

∑i xi n

)
,

and

A

 y0
...

yn−1

 =
(

∑i xiyi
∑i yi

)
.

Hence we may rewrite the 2× 2 system (C.23~) as

AAT
(

m
b

)
= A

 y0
...

yn−1

 . (C.23>)

We then use a numerical package to solve this linear system; in our work we used Numpy, in which the
built-in function numpy.linalg.lstsq suffices (see listing C.2).
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1 import pandas as pd
2 import numpy as np
3

4 #import data using panda
5 x_pd = pd.read_csv("~/PATH to lambda csv. file", header = None)
6 y_pd = pd.read_csv("~/PATH to alpha csv. file", header = None)
7

8 #convert panda data to numpy data
9 x = np.array(x_pd [0])

10 y = np.array(y_pd [0])
11

12 #define A transpose
13 Atr = np.vstack ([x, np.ones(len(x))]).T
14

15 #get slope m and y-intercept b (from y = mx + b)
16 m, b = np.linalg.lstsq(Atr , y, rcond=None)[0]

Listing C.2: Linear LSF code to get the line y = mx + b that best fits our data of α as a
function of λ.

For the sake of completion let us just point out that the generalisation of the above procedure to a
fitting with an m-degree polynomial is straightforward. The coefficient matrix A takes the form

A ≡


xm

0 · · · xm
n−1

...
...

...
x0 · · · xn−1
1 · · · 1

 ,

and instead of two independent variables m and b, we have m + 1 variables a0, . . . , am, so that

AAT

am
...

a0

 = A

 y0
...

yn−1

 . (C.23})

The concept of LSF extends well beyond polynomials. For instance, we may also apply a LSF to our
ansatz (2.45) from Chapter 2,

SE =
α

T
.

Applying the same procedure as above, we start from a function σ which depends only on α:

σ(α) = ∑
i

(
yi −

α

xi

)2

,

where the xi are the temperature (T) values and yi are the action (SE) values on our data. Next we
apply standard max/min techniques to σ. Differentiating,

∂σ

∂α
= ∑

i
2
(

yi −
α

xi

)(
− 1

xi

)
= 2 ∑

i

(
α

x2
i
− yi

xi

)
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and now setting to zero,

0 = 2 ∑
i

(
α

x2
i
− yi

xi

)
=⇒ ∑

i

yi

xi
= ∑

i

α

x2
i

,

we find α from the equation

α =
∑i

yi
xi

∑i x−2
i

,

which is precisely Equation (2.46) that we used on Chapter 2. For this LSF there is no need to use some
numerical package, since there is no matrix multiplication/inversion involved. Our own code to find α
is shown on listing C.3.

1 // functor for getting sum of previous result and square inverse of current
element

2 template <typename T>
3 struct invsqr{
4 T operator ()(const T& Left , const T& Right) const{
5 return (Left + pow(Right*Right , -1) );
6 }
7 };
8

9 // S_E = alpha/T
10 double S_Ansatz (vector <double > temp , vector <double > action){
11

12 // Initialize variables
13 double xval_invsqr {};
14 double yval_over_xval {};
15 vector <double > y_over_x {};
16 double alpha {};
17

18 for (int i{0}; i <= temp.size() -1; i++) {
19 y_over_x.push_back( (action.at(i))/(temp.at(i)));

20 }
21

22 yval_over_xval = accumulate(y_over_x.begin(), y_over_x.end(), 0.0 );
23 y_over_x.clear();
24 xval_invsqr = accumulate(temp.begin(), temp.end(), 0.0, invsqr <double

>() );
25

26 alpha = yval_over_xval/xval_invsqr;
27 return alpha;
28 }

Listing C.3: LSF for ansatz (2.45) to determine α.
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discrete first derivative, 94
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evolution for the extrinsic curvature, 43
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evolution of conformal metric, 54, 57, 68
evolution of conformal traceless curvature, 52, 55
evolution of the spatial metric, 37, 67
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55, 71
extrinsic curvature tensor, 34–36, 49

false vacuum, 1–4

Gauss-Codazzi equations, 38, 81
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Jacobi’s formula, 37, 54, 58, 67, 68, 76

Klein-Gordon equation, 1, 77

lapse function, 25, 26, 69, 75
Least Squares Fitting, 97
Lichnerowicz scaling of Aij, 62, 63, 68
Lie derivative of a tensor density, 47
Lie derivative of tensor density, 47
Lie dragging, 28

maximal slicing, 65
momentum constraints, 40, 58, 62, 63, 65, 66, 69,

70, 74
momentum density, 40, 63

Nakamura scaling of Aij, 50, 61, 63, 68

purely spatial object, 28

quantum tunneling, 1–3

Ricci equation, 38, 83
Ricci identity, 33, 34, 64, 88
Ricci scalar, 59, 63, 91
Ricci tensor, 52, 55, 56, 91
Riemann tensor, 32–34, 88

shift vector, 26, 27, 29, 30, 69, 75
Simpson’s Method, 95
spacelike hypersurface, 25
spacetime line element, 31
spacetime metric in 3+1 cooordinates, 31
spatial connection, 32
spatial covariant derivative, 32
spatial Laplace operator, 43, 91
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spatial metric, 29, 31
spatial projection operator, 28, 29
spatial stress, 42, 71, 72

tensor density, 46
time vector, 27, 29
trace of curvature tensor, 38
trace of the stress-energy tensor, 41
traceless curvature, 49
true vacuum, 2

unit normal, 27, 30
universal time function, 26

von Neumann Analysis, 10

XCTS decomposition, 71, 74
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