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1. AIMS

• To numerically simulate a patch of superfluid turbulence away from boundaries and to reach a statistically steady state independently of the
arbitrary initial condition

• To relate the topological complexity of superfluid vortices with the geometry and dynamics of the system.

2. SIMULATING TURBULENCE

We numerically simulate a patch of superfluid
turbulence, reaching a statistically steady state
in the absence of solid or periodic boundaries.
Superfluid vortices are modelled according to
the Vortex Filament Method outlined in [1] at
T = 1.9K.

Turbulence is driven by the normal fluid
velocity, vn(r, t) = vABC(r, t)exp(−r/d) where
vABC is the Arnold-Beltrami-Childress (ABC)
flow defined by

vA =

Bcos(ky − ωt) + Csin(kz − ωt)
Ccos(kz − ωt) +Asin(kx− ωt)
Acos(kx− ωt) +Bsin(ky − ωt)


where we set A = B = C, k = 8π/d with d =
1.5cm, ω is the normal fluid frequency which
we set to 1s−1 and r =

√
x2 + y2 + z2.

3. RESULTS

We observe that the initial vortex configura-
tion expands in length due to instability with
the tightly packed vortices reconnecting and
releasing Kelvin waves. The vortex lines de-
cay as they leave the central region due to fric-
tion with the normal fluid which is stationary
away from the centre. The overall topology of
the system is continuously altered by reconnec-
tions and the tangle quickly reaches a statisti-
cally steady turbulent state. An example of the
tangle evolution is seen in Figure 1 with a drive
of A = 1.
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(b).

Figure 1: Illustrations of the typical time evolution
of the vortex tangle with a drive of A = 1. The vor-
tex lines are the red curves, equally scaled and en-
closed in a box with shadows for visualisation pur-
poses only. The figure shows the vortex tangle at (a):
The initial condition, t = 0.00s consisting of 40 ran-
domly oriented loops with sizes varying according
to a normal distribution with an average number of
200 points, located at the centre of the region. (b):
t = 0.1.96s, once the superfluid has reached a statis-
tically steady state.

4. TOPOLOGICAL COMPLEXITY

To describe the topology of each vortex loop we
compute a knot invariant known as the Alexan-
der polynomial, ∆(τ) and quantify topological
complexity using the order ν of the polynomial
as in [2]. So for example, the trivial unknot/circle
has ∆(τ) = 1 with ν = 0 and a trefoil has
∆(τ) = 1 − τ + τ2 of order ν = 2. A vortex
loop, j with Alexander polynomial

∆j(τ) = a0 + a1τ + ...+ aνjτ
νj

is of order νj .

Figure 2: For all drives, and at all time steps we see
that there are many vortex loops of low topological
complexity but that there always exist highly com-
plex vortices with large Alexander polynomials.

We see in Figure 2 that we encounter many vor-
tex loops of low complexity but that there al-
ways exist one or two loops of high complexity
in the system at each time step over all drives.

The writhe is a property of knots which
sums numerical values assigned to each appar-
ent crossing, giving an overall measure of the
geometry of the configuration. We will thus
compare the topological complexity with geom-
etry using the lengths of vortices, Λj and their
writhe, Wrj . Figure 3 shows that νj increases
with vortex length Λj and in Figure 4, νj ap-
pears to increase linearly with the writhe,Wrj .

Figure 3: The order of the Alexander polynomial, νj
for each vortex against vortex length, Λj in cm.

Figure 4: Comparing the order of the Alexander
polynomial, νj with the writhe, Wrj .

When comparing the order of the Alexan-
der polynomial, νj with the drive parameter, A
of the normal fluid in Figure 5 we see that in
general, topological complexity increases with
drive.

Figure 5: The time evolution of the highest and sec-
ond highest ordered Alexander polynomials, ν1 (cir-
cles) and ν2 (triangles) respectively for a higher drive
of A = 1.1 (red) and lower drive of A = 1.0 (blue).

5. CONCLUSIONS

• At all time steps and for all drives, we see that the turbulence consists of many vortices of low
complexity and at least one of high complexity.

• Topological complexity increases with vortex length and increases linearly with the writhe.

• In general, driving the system more intensely results in higher topological complexity.
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