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INTRODUCTION

We are interested in the formation of large-scale patterns in rapidly-rotating convection, such as the convective nests observed in 3D spherical
convection (Grote & Busse, 2001; Brown et al., 2008), which might explain why some planets such as Mercury generate weak dipolar fields (Heimpel et
al., 2005). We consider the most basic setup where localized convective structures are observed (Beaume et al., 2013) and study the motion of a layer of
fluid in a rotating box, uniformly heated from below. We also consider the system at low Prandtl numbers (Pr = 0.025), relevant to planetary cores.

GOVERNING EQUATIONS

We assume that all variations in the y-
direction vanish and so the governing equa-
tions are the two-dimensional Boussinesq
equations. The geometry of the system can be
seen below,
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with boundary conditions, ψ = 0, ∂2ψ/∂z2 = 0,
T = 0 and ∂v/∂z = 0 at z = 0, d.

The two dimensional Boussinesq equations
in dimensionless form are then,
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with non-dimensional parameters Pr = ν/κ
(Prandtl number), Ta = 4Ω2d4/ν2 (Taylor num-
ber) and Ra = gα∆Td3/κν (Rayleigh number)
where ψ is the streamfunction, η = ∇2ψ, v is
the zonal velocity and T is the temperature de-
viation from the linear profile.

The vertical boundaries are flat, stress-free
and perfectly conducting and horizontally the
boundaries are periodic. We use a simpli-
fied model where a minimal number of Fourier
modes are retained in the vertical direction
whilst keeping the full horizontal structure
(Blanchflower, 1999). This is motivated by
the simple vertical structure of the convective
flow at the linear onset of convection (Chan-
drasekhar, 1953).

ψ = A(t, x) sin(πz) +B(t, x) sin(2πz)

T = C(t, x) sin(πz) +D(t, x) sin(2πz)

v = E(t, x) + F (t, x) cos(πz) +G(t, x) cos(2πz)

leaving us with a system of partial dif-
ferential equations for the coefficients,
A(t, x), . . . , G(t, x) which we solve pseudo-
spectrally.

NUMERICAL RESULTS
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Figure 1: Plot of the full parameter space explored
at fixed Prandtl number, Pr = 0.025. Ra0 = 2(Pr +
1)α−2[(α2 + 1)3π4 + Pr2Ta/(Pr + 1)2] is the critical
Rayleigh number for the onset of overstable motions
where α is the critical horizontal wavenumber (Chan-
drasekhar, 1953).

1 Modulated Oscillatory
States
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Figure 2: Contour plots of the streamfunction, ψ (top),
temperature, T (middle) and plot of the vertically av-
eraged zonal velocity, E(t, x) (bottom) for Pr = 0.025,
Ta = 8.4× 106, Ra = 8× 103 ≈ 1.06Ra0.
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Figure 3: Time series of the Nusselt number, Nu and
kinetic energy, KE on the thermal diffusion timescale
corresponding to Figure 2.

2 Localized Non-oscillatory
States
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Figure 4: Nusselt number, Nu as a function of Ta for
constant Ra = 2 × 104. The critical Taylor number
such that Ra0 = 2×104 is Ta0 ≈ 4.68×107. The solu-
tion eventually drops onto the modulated oscillatory
branch (red).
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Figure 5: Contour plots of the streamfunction, ψ (top),
temperature, T (middle) and plot of the vertically av-
eraged zonal velocity, E(t, x) (bottom) for Pr = 0.025,
Ta = 1.5 × 107, Ra = 2 × 104 ≈ 1.9Ra0. If we cal-
culate the effective Taylor number in the cyclonic re-
gion we find that where the convection is suppressed,
Taeff ≈ 5.09 × 107 > Ta0 and so the effective Taylor
number is subcritical.
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Figure 6: Time series of the Nusselt number, Nu and
kinetic energy, KE on the thermal diffusion timescale
corresponding to Figure 5.

CONCLUSIONS

• Localized and modulated convective states can be found at low Prandtl numbers.
• Just above the oscillatory onset for convection, modulated states are observed which may be due
to large-scale wave modes relating to an underlying conservation law (Cox & Matthews, 2001).
• In the highly supercritical regime, localized convective states are observed. In this regime the
zonal flow is strong and inhibits convection in the region with cyclonic vorticity.
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