

Cartesian convection driven dynamos

**Robert G. Cooper, C. Guervilly,
P. J. Bushby**

**Newcastle
University**

**Science & Technology
Facilities Council**

**STFC Advanced Summer School 2018
University of Southampton**

Dynamos

- Many planets have magnetic fields which are generated by a dynamo, such as in the Earth.
- In magnetohydrodynamics (MHD), convection in a rotating, electrically conducting fluid acts to maintain a magnetic field.
- This fluid can be driven by gradual cooling in the interior of the planet.
- This can happen if the convection is able to produce a magnetic field strong enough to alter the structure of the convective flows.

Figure: Glatzmaier & Roberts (1995)

The Martian Dynamo

- Some planets such as Mars do not presently have a magnetic field, but show evidence of having one in the past.
- Rocks on the surface show strong remnant magnetisation (Acuña et al., 1999).
- Studies observe that the cessation of the Martian dynamo occurred rapidly (Lillis et al., 2008).
- One possible cause of this sudden termination is subcritical dynamo action.

Figure: Acuña et al. (1999)

- Aim to reproduce and extend the results of Stellmach & Hansen (2004).
- Convection-driven dynamo simulations in a rotating plane layer.
- Electrically conducting Boussinesq fluid.
- Constant rotation, Ω , aligned with gravity.
- Periodic boundaries in (x, y) , stress-free, impermeable boundaries in z .
- Magnetic boundary conditions are electrically insulating.

Governing Equations

$$\frac{\text{Ek}}{q\text{Pr}}(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) - \mathbf{B} \cdot \nabla \mathbf{B} = \text{Ek} \nabla^2 \mathbf{u} - \nabla \Pi - \hat{\mathbf{z}} \times \mathbf{u} + q\text{Ra} T \hat{\mathbf{z}}, \quad (1)$$

$$\partial_t \mathbf{B} + \mathbf{u} \cdot \nabla \mathbf{B} - \mathbf{B} \cdot \nabla \mathbf{u} = \nabla^2 \mathbf{B}, \quad (2)$$

$$\partial_t T + \mathbf{u} \cdot \nabla T = q \nabla^2 T, \quad (3)$$

$$\nabla \cdot \mathbf{u} = 0, \quad (4)$$

$$\nabla \cdot \mathbf{B} = 0. \quad (5)$$

Dimensionless parameters:

$$\text{Pr} = \frac{\nu}{\kappa}, \quad q = \frac{\kappa}{\eta}, \quad \text{Ra} = \frac{g\alpha\Delta T d^3}{\kappa\nu}, \quad \text{Ek} = \frac{\nu}{2\Omega d^2}. \quad (6)$$

Subcritical Dynamos

- Subcritical dynamo action is dynamo action for convective forcing below the threshold necessary for convective motions to occur in the absence of magnetic fields.
- The energy required to sustain the dynamo is far less than required to initiate the dynamo in the absence of the strong magnetic field.

Figure: Hori & Wicht (2013)

Moderately Supercritical Dynamos

Figure: $\text{Pr} = 1$, $q = 1$, $E_k = 5 \times 10^{-6}$, $\text{Ra}/\text{Ra}_c = 1.18$.

Flow Structures

Figure: (Left): Linear, weak-field regime. (Right): Nonlinear, strong-field regime.

Subcritical Dynamos

Figure: $\text{Pr} = 1$, $q = 1$, $\text{Ek} = 5 \times 10^{-6}$, $\text{Ra}/\text{Ra}_c = 0.98$.

Conclusions:

- A transition to large-scale convection occurs when the magnetic field becomes sufficiently strong.
- The strong magnetic field allows the dynamo to sustain itself below the onset of convection, in the subcritical regime.

Further Work:

- Expand the explored parameter space, particularly decreasing Ekman number and moving further into the subcritical regime.
- Perform numerical simulations in a spherical dynamo model.