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Planetary Dynamos

e Many planets have magnetic fields which are generated by
dynamo action.

e In magnetohydrodynamics (MHD)
convection in a rotating, electrically conducting
fluid acts to maintain a magnetic field.

e This fluid can be driven

by gradual cooling in the interior of the planet.
e This can happen if the convection is

able to produce a magnetic field strong enough
to alter the structure of the convective flows.

Figure: Glatzmaier
& Roberts (1995)
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The Martian Dynamo

e Some planets such as Mars do not presently have a magnetic
field, but show evidence of having one in the past.

e Rocks on the surface show strong remnant magnetisation (Acufia
et al., 1999).

e Studies observe that the

cessation of the Martian dynamo T e
occured rapidly (Lillis et al., 2008). | ...

e One possible

cause of this sudden termination
is subcritical dynamo action.
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Figure: Acufia et al. (1999)
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e Aim to reproduce and extend the results of Stellmach & Hansen
(2004) using the pseudospectral code of Cattaneo, Emonet &
Weiss (2003).

e Convection-driven dynamo simulations in a rotating plane layer.
e Electrically conducting Boussinesq fluid.

e Constant rotation, €2, aligned with gravity.

e Periodic boundaries in (x, y), stress-free, impermeable
boundaries in z.

e Magnetic boundary conditions are electrically insulating.
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Governing Equations

P
Deutu-Vu=—VP+PrvV2u— — 2xu+tJdxB+PrRaTz, (1)

Ek
atB+u-VB—B-vU:ﬂv2B, (2)
Pm
T +u-VT =u, + V2T, (3)
V-u=0, (4)
V-B=0. (5)
Dimensionless parameters:
3
Pr:%, szg, Ra:7gafy7_d : Ek:ﬁ- (6)
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Stellmach & Hansen (2004)

e Convection-driven dynamo and non-magnetic convection
simulations in a rotating plane layer.

e Compare flow structures finding a transition from small-scale
motions relatively unaffected by the magnetic field to large-scale
motions controlled by Lorentz forces.

e Show that in the nonlinear regime the magnetic field promotes
convection, increasing heat transport and flow amplitude.

e Manage to sustain a subcritical dynamo at a single Ekman
number.
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Moderately Supercritical Dynamos
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Figure: Pr=1, Pm =1, Ek =5 x 1079, Ra/Ra, = 1.18.

R.G. Cooper, C. Guervilly, P.J. Bushby Subcritical Cartesian convection driven dynamos at low Ekman 7/19



Kinematic vs Nonlinear Flows

u,(z,y) at z = 0.92
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Figure: (Left): Kinematic regime. (Right): Nonlinear regime.
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Kinematic vs Nonlinear Fields

|B(z,y)| at z = 0.92 | at 2 =0.92

1
15 1200
> 10
5
0
0 1
T X

Figure: (Left): Kinematic regime. (Right): Nonlinear regime.
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Kinematic vs Nonlinear Spectra
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Figure: (Left): KE spectra and (Right): Magnetic spectra for the
nonlinear regime (red), kinematic regime (blue) and for nonmagnetic
rotating convection (amber).
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Subcritical Dynamos

e Subcritical dynamo action is dynamo action for convective
forcing below the threshold necessary for convective motions to
occur in the absence of magnetic fields.

e The energy required to sustain the dynamo is far less than
required to initiate the dynamo in the absence of the strong
magnetic field.
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Figure: Hori & Wicht (2013)
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Subcritical Dynamos
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Figure: Pr=1, Pm =1, Ek =5 x 107%, Ra/Ra. = 0.93.
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Subcritical Flow and Field

u,(z,y) at z = 0.92 |B(z,y)| at z = 0.92
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Figure: (Left): u,(x,y) and (Right): |B(x,y)|-
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Subcritical Spectra
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Figure: (Left): KE spectra and (Right): Magnetic spectra for
supercritical Rayleigh number (blue), subcritical Rayleigh number (red)
and for supercritical nonmagnetic rotating convection (amber).
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Parameter Space so far
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Figure: (blue): highest Ekman (slowest rotation), (green): lowest Ekman
(fastest rotation).
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Magnetic Reynolds number
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Figure: (blue): highest Ekman (slowest rotation), (green): lowest Ekman
(fastest rotation).
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Elsasser number
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Figure: (blue): highest Ekman (slowest rotation), (green): lowest Ekman

(fastest rotation).
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Magnetic to Kinetic Energy ratio
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Figure: (blue): highest Ekman (slowest rotation), (green): lowest Ekman
(fastest rotation).
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Conclusions & Further Work

Conclusions:

e A transition to large-scale convection occurs when the magnetic
field becomes sufficiently strong.

e The strong magnetic field allows the dynamo to sustain itself
below the onset of convection, in the subcritical regime.

e More rapid rotation may lead to dynamo action deeper into the
subcritical regime.

Further Work:

e Expand the explored parameter space, particularly decreasing
Ekman number and moving further into the subcritical regime.
e Perform numerical simulations in a spherical dynamo model.
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