Subcritical Cartesian convection driven dynamos at low Ekman

Robert G. Cooper, C. Guervilly, P. J. Bushby

Astro-Lunch 2018

R.G. Cooper, C. Guervilly, P.J. Bushby

Subcritical Cartesian convection driven dynamos at low Ekman 1/19

• Many planets have magnetic fields which are generated by dynamo action.

- In magnetohydrodynamics (MHD) convection in a rotating, electrically conducting fluid acts to maintain a magnetic field.
- This fluid can be driven

by gradual cooling in the interior of the planet.

• This can happen if the convection is able to produce a magnetic field strong enough to alter the structure of the convective flows.

Figure: Glatzmaier & Roberts (1995)

• Some planets such as Mars do not presently have a magnetic field, but show evidence of having one in the past.

• Rocks on the surface show strong remnant magnetisation (Acuña et al., 1999).

• Studies observe that the cessation of the Martian dynamo occured rapidly (Lillis et al., 2008).

• One possible

cause of this sudden termination is subcritical dynamo action.

Figure: Acuña et al. (1999)

Model

- Aim to reproduce and extend the results of Stellmach & Hansen (2004) using the pseudospectral code of Cattaneo, Emonet & Weiss (2003).
- Convection-driven dynamo simulations in a rotating plane layer.
- Electrically conducting Boussinesq fluid.
- \bullet Constant rotation, $\Omega,$ aligned with gravity.
- Periodic boundaries in (x, y), stress-free, impermeable boundaries in z.
- Magnetic boundary conditions are electrically insulating.

Governing Equations

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla P + \Pr \nabla^2 \boldsymbol{u} - \frac{\Pr}{\mathsf{Ek}} \hat{\boldsymbol{z}} \times \boldsymbol{u} + \boldsymbol{J} \times \boldsymbol{B} + \Pr \mathsf{Ra} T \hat{\boldsymbol{z}},$$
(1)

$$\partial_t \boldsymbol{B} + \boldsymbol{u} \cdot \nabla \boldsymbol{B} - \boldsymbol{B} \cdot \nabla \boldsymbol{u} = \frac{\mathsf{Pr}}{\mathsf{Pm}} \nabla^2 \boldsymbol{B},$$
 (2)

$$\partial_t T + \boldsymbol{u} \cdot \nabla T = \boldsymbol{u}_z + \nabla^2 T, \qquad (3)$$

$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}, \tag{4}$$

$$\nabla \cdot \boldsymbol{B} = 0. \tag{5}$$

Dimensionless parameters:

$$\Pr = \frac{\nu}{\kappa}, \quad \Pr = \frac{\nu}{\eta}, \quad \operatorname{Ra} = \frac{g \alpha \Delta T d^3}{\kappa \nu}, \quad \operatorname{Ek} = \frac{\nu}{2\Omega d^2}.$$
 (6)

R.G. Cooper, C. Guervilly, P.J. Bushby

• Convection-driven dynamo and non-magnetic convection simulations in a rotating plane layer.

• Compare flow structures finding a transition from small-scale motions relatively unaffected by the magnetic field to large-scale motions controlled by Lorentz forces.

• Show that in the nonlinear regime the magnetic field promotes convection, increasing heat transport and flow amplitude.

• Manage to **sustain a subcritical dynamo** at a single Ekman number.

Moderately Supercritical Dynamos

Figure: Pr = 1, Pm = 1, Ek = 5 \times 10⁻⁶, Ra/Ra₂ = 1.18. \Rightarrow \Rightarrow \Rightarrow

R.G. Cooper, C. Guervilly, P.J. Bushby

Kinematic vs Nonlinear Flows

Figure: (Left): Kinematic regime. (Right): Nonlinear regime.

Kinematic vs Nonlinear Fields

Figure: (Left): Kinematic regime. (Right): Nonlinear regime.

R.G. Cooper, C. Guervilly, P.J. Bushby

Kinematic vs Nonlinear Spectra

Figure: (Left): KE spectra and (Right): Magnetic spectra for the nonlinear regime (red), kinematic regime (blue) and for nonmagnetic rotating convection (amber).

• Subcritical dynamo action is dynamo action for convective forcing below the threshold necessary for convective motions to occur in the absence of magnetic fields.

• The energy required to sustain the dynamo is far less than required to initiate the dynamo in the absence of the strong magnetic field.

Subcritical Dynamos

Subcritical Flow and Field

Figure: (Left): $u_z(x, y)$ and (Right): |B(x, y)|.

R.G. Cooper, C. Guervilly, P.J. Bushby

э

Subcritical Spectra

Figure: (Left): KE spectra and (Right): Magnetic spectra for supercritical Rayleigh number (blue), subcritical Rayleigh number (red) and for supercritical nonmagnetic rotating convection (amber).

Parameter Space so far

Magnetic Reynolds number

Elsasser number

Magnetic to Kinetic Energy ratio

Conclusions:

• A transition to large-scale convection occurs when the magnetic field becomes sufficiently strong.

- The strong magnetic field allows the dynamo to sustain itself below the onset of convection, in the subcritical regime.
- More rapid rotation may lead to dynamo action deeper into the subcritical regime.

Further Work:

• Expand the explored parameter space, particularly decreasing Ekman number and moving further into the subcritical regime.

• Perform numerical simulations in a spherical dynamo model.