REDESIGNING THE CIVIL ENGINEERING PROGRAMMES to deliver sustainability

Friday 20th April 2012

Civil Engineering and Geosciences Stephanie Glendinning Jean Hall

INTRODUCTION

- Overview of the major changes:
 - Drivers
 - Funding and processes
 - Outcomes

UG Programmes – major drivers

- Realising our ambition
- Research informed teaching
- Large and diverse staff profile
- Meeting (surpassing) accreditation targets
- Delivering sustainability

- Strategy group
- External review
- Staff consultation and engagement
- External funding Royal academy of Engineering

Thematic Structure of New Programme

New Programme

	DSES	Credits	Modelling and Information systems (PDG)	Credits	Infrastructure Systems	Credits	Environmental Systems	Credits	Human and Management Systems	Credits
Stage 1	Design of Sustainable Engineering Systems 1	20	Engineering Mathematics 1	20	Engineering Mechanics and Materials	20	Environmental Systems	10	Human System Demands and Impacts	10
			Geographic Information Systems	10	Fluid Mechanics	10	Geotechnical Properties of Soils and Rocks	10		
							Engineering Surveying 1	10		
Stage 2	Design of Sustainable Engineering Systems 2	30	Engineering Informatics	10	Structural Analysis	10	Treatment of Water and Wastewater	10	Land Traffic and Highways	10
			Statistics and Numerical Methods for Civil Engineers	10	Steel & Concrete Structures	10				
			Engineering Surveying 2	10	Geotechnics	10				
					Hydraulics	10				

Design of Sustainable Engineering Systems – Stage 3

- Masterplanning of the Science Central site
- A spatial layout including the buildings and transport layout, plus:
- Sustainability framework
- Geotechnical Appraisal
- Surface water plan
- Environmental Statement
- Carbon footprint appraisal

Student presentation

Sustainable Urban Drainage System

Energy

Design of Sustainable Engineering Systems – Stage 1

- Design based teaching 2 Projects
- Semester 1 small groups
 - From theory to practice.....

Design of Sustainable Engineering Systems – Stage 1

- Semester 2 larger groups (6 students)
- Sustainable development in Gateshead
 - 'Real' project with ARUP
 - Sustainability principles
 - Sustainable Urban Drainage scheme
 - Use of Space in Design
 - Regional Transport Strategy

External Review

William Powrie: our proposal was up-to-date, exciting and novel,

..... we had put our finger on what was needed - an excellent proposal

Colin Bailey:.... our vision was excellent, and that it would definitely attract 18 year olds to come and study civil engineering at Newcastle.

..... it would become what defines a Newcastle graduate

Student Quotes.....

..... the sustainability framework concepts were a useful approach.....

.....we now have an appreciation of the very complex and conflicting issues surrounding designwe have enjoyed the application of the

sustainability issues in real case examples

... the input from industry offered a much wider insight to employment opportunities available.....

