Reviving the Ross Operation

The adult congenital heart unit at the Freeman hospital has joined a multi-centre study, the REVIVAL study, designed to compare the Ross procedure with other surgical options for aortic valve replacement. 

Heart valves help control blood flow through the heart and, if diseased, may need to be replaced. There are different methods for doing this, each with their own advantages and disadvantages. In young adults, replacing the aortic heart valve with a mechanical valve can reduce life expectancy. Mechanical valves tend to form blood clots so they need long-term blood thinners which themselves can cause bleeding and lower quality of life. Animal tissue valves reduce clotting and bleeding risks but wear out sooner and shorten patient life-span. An operation, called the Ross procedure, replaces a patient’s diseased aortic valve with his/her own pulmonary valve and uses a donor valve in the pulmonary position which receives less stress than the aortic valve. The Ross procedure aims to improve valve durability with less clotting whilst avoiding use of blood thinners. REVIVAL is a research study investigating the efficacy and safety of the Ross procedure compared to conventional valve replacement. Specifically we are interested in learning the number of patients who survive without a life-threatening valve related complication, long term postoperatively.

For more information contact: mohamed.nassar2@nhs.net

Mitral valve development

From Bill Chaudhry and Deb Henderrson

Mr Francis Wells, the internationally recognised cardiac surgeon from Papworth Hospital Cambridge, and our longstanding colleague Professor Bob Anderson, are in the late stages of producing a book for Springer Nature Publishers about the degenerating mitral valve. The work is aimed at clinicians and provides a broad discussion of the mitral valve from a scientific perspective. It is especially timely as the  developmental basis of many degenerative conditions, for example mitral valve prolapse, are increasingly recognised. We are honoured to be involved and have written a chapter explaining the developmental molecular genetics that control mitral valve development. Our chapter is specifically written for the clinician, outlining important aspects, but not burdening with scientific jargon. It is of relevance to topics of our research including hypoplastic left heart syndrome, atrioventricular septal defects and bicuspid aortic valve. Developmental anatomy and surgical aspects are provided by Bob and Francis in other chapters, and a host of international experts are adding their expertise in clinical genetics and physiology. We will post publication details in due course.