Tag Archives: Multi-Vector

An Interdisciplinary Research Perspective on the Future of Multi-Vector Energy Networks

About the Author:

Dr Dragan Cetenovic is a Postdoctoral Research Associate at the University of Manchester, where he works as a part of the core research team of the Supergen Energy Network Hub to develop approaches for advanced monitoring and control of multi-energy systems using novel sensor, ICT and Big Data approaches. My focus is on development of methods for advanced state-estimation for dynamic security assessment of integrated multi-energy networks, integration of signals from different types of sensors into a data acquisition platform, and development of efficient methods for real-time Big Data processing and knowledge extraction in future energy networks.

Introduction

Despite their vital importance to the UK’s energy sector, industry and society, there is no current whole systems approach to studying the interconnected and interdependent nature of energy network infrastructure and the challenges it faces. Inspired by this, team of Researchers and Academics from the Supergen Energy Networks Hub, led by Hub Director, Professor Phil Taylor, recently published their joint paper in the International Journal of Electrical Power and Energy Systems (IJEPES).

The paper is available online and will be published in the February 2022 issue of the Journal. The paper has been written through a well-organized coordination and professional commitment of all signed authors. It is now a good starting point for moving forward with new publications in high impact papers. The IJEPES is a highly respected, Q1‑journal (IF=4.63), with a tradition of 40 years of successful publication of high-quality research papers in the field of power and energy systems.

About the paper

The energy sector worldwide is facing considerable pressure arising from the growing demand for clean energy, the need to reduce carbon emissions substantially while adapting to the inevitable impacts of climate change and coping with the depletion of fossil fuels and geopolitical issues around the location of remaining fossil fuel reserves. In this regard, UK Government has committed to a net zero carbon economy by 2050 [1]. Energy networks are vitally important enablers in the global pursuit of a just transition to net zero [2].

The transition to net zero and the energy trilemma (energy security, environmental impact and social cost) present many complex interconnected international challenges. There are different challenges regarding systems, plants, physical infrastructure, sources and nature of uncertainties, ICT requirements, cyber security, big data analytics, innovative business models and markets, and policy and societal changes. As technology and society changes, so do these challenges, and therefore the planning, design and operation of energy networks needs to be revisited and optimised.

Current energy networks research does not fully embrace a whole systems approach and is therefore not developing a deep enough understanding of the interconnected and interdependent nature of energy network infrastructure [3, 4]. This paper provides a novel interdisciplinary perspective intended to enable deeper understanding of multi-vector energy networks. The expected benefits would be enhanced flexibility and higher resilience, as well as reduced costs of an integrated energy system.

Considering drivers like societal evolution, climate change and technology advances, this paper describes the most important aspects which have to be taken into account when designing, planning and operating future multi-vector energy networks. For this purpose, the issues addressing future architecture, infrastructure, interdependencies and interactions of energy network infrastructures are elaborated through a novel interdisciplinary perspective. Aspects related to optimal operation of multi-vector energy networks, implementation of novel technologies, jointly with new concepts and algorithms, are extensively discussed. The role of policy, markets and regulation in facilitating multi-vector energy networks is also reported. Last but not least, the aspects of risks and uncertainties, relevant for secure and optimal operation of future multi-vector energy networks are discussed.

Fig. 1 Block-diagram of the framework for investigation of interfaces between modelling, policy, markets, ICT and risks in multi-vector energy networks.

References

  • Committee on Climate Change, “Net Zero: The UK’s contribution to stopping global warming”, May 2019.
  • International Energy Agency Report, “World Energy Outlook 2020”, IEA, Paris, 2020 https://www.iea.org/reports/world-energy-outlook-2020
  • H. R. Hosseini, A. Allahham, S. L. Walker, P. Taylor, “Optimal planning and operation of multi-vector energy networks: A systematic review”, Renewable and Sustainable Energy Reviews, vol. 133, 2020. doi: 10.1016/j.rser.2020.110216
  • Mancarella, “MES (multi-energy systems): An overview of concepts and evaluation models”, Energy, vol. 65, pp. 1–17. 2014. doi: 10.1016/j.energy.2013.10.041

Combined capacity and operation optimisation for multi-vector local energy systems

Academics and researchers involved in the EPSRC Supergen Energy Networks Hub, based in the School of Engineering at University of Warwick, Dr Dacheng Li, Mr Songshan Guo, Dr Wei He, Mr Markus King and Prof Jihong Wang recently published the paper “Combined capacity and operation optimisation of lithium-ion battery energy storage working with a combined heat and power system” in Elsevier’s journal Renewable and Sustainable Energy Reviews.

About the Author

Dr Dacheng Li has worked as an Assistant Professor, Associate Professor in Chinese Academy of Sciences since 2012, and joined the Power and Control Systems Research Laboratory, University of Warwick in 2019. His research focuses on the intelligent optimisation of energy storage (i.e., Phase Change Materials, Compressed air, Lithium-ion Battery) based multi-vector energy systems. He has worked as a project leader sponsored by the National Natural Science Foundation of China and the Key deployment project of Chinese Academy of Sciences for optimisation and demonstration of kW, MW-level energy storage systems.  Currently, he is involved in the RCUK’s Energy Programme and works on self-powered active cooling and cleaning technology for solar PV systems to improve the efficiency of renewable energy utilisation. Additionally, he is participating in the investigation on the on-line condition monitoring for biomass power plant mills. He has published more than 20 academic articles in leading journals and conferences, and 6 patents have been applied or authorised.

Contact email: dacheng.li@warwick.ac.uk

About the Paper

The paper reports the work completed in the first stage for the research project of combined capacity and operation optimisation for multi-vector local energy systems. The work is to investigate how energy storage can help improve CHP operation efficiency, reduce operation cost and CO2 emissions based on the campus energy system structure. In supporting future system and infrastructure design and planning, optimisation algorithms are developed which are able to derive the optimal solutions with consideration of the operation optimisation, optimal energy capacity, technical constrains and energy market information. The research is continuing to bring local renewable power generation, electrification of heating and EV to the optimisation process and extend from the campus energy system to the urban local energy system analysis.

Combined Heat and Power (CHP) systems are considered as a transitional solution towards zero carbon emissions in the next couple of decades [1]. The current CHP systems are mainly controlled by thermally led strategy, that is, the electrical power generation depends on the thermal energy demand. The mismatch between the power generation and load demand leads to the deficient energy utilisation and economic loss. In this context, electrical energy storage technologies could open up an opportunity to reduce energy bills by improving power utilisation locally and mitigate otherwise necessary network upgrades. Moreover, electricity storage could also enable the integrated system to gain additional economic benefits using the Time-of-Use (ToU) pricing structures.

Lithium-ion Battery (LIB) is a promising electrical storage technology because of its high energy density and Coulombic efficiency. Integration of a Lithium-ion Battery Storage System (LBSS) with CHP systems can provide operational flexibility and improve the self-sufficiency rate. However, the lifetime cash flow of a battery storage integrated CHP system is inherently complex. An installation of LBSS leads to an increase in system capital expenditure; real-time operation of the battery system under varying user-load patterns and ToU rates determines the system operating expenses (including revenues), and the LBSS system lifetime [2]. All these factors are coupled and interactively affect the economic viability of using LBSS in CHP systems.

An innovative combined planning method is proposed in the paper to improve the economic gains of the CHP systems by integrating the lithium-ion battery storage system. The paper focuses on the simultaneous optimisation of storage capacity design and operation strategy formulation of the LBSS subject to the variations of the load and power generation from CHP with consideration of LBSS degradation and cost, and ToU pricing structures. The new strategy is implemented and tested using the University of Warwick (UoW) campus CHP system combined with the LBSS facilities.

A techno-economic model that describes LBSS-integrated CHP system operation, performance, and economic gains was derived, using the historic and experimental data. Then an integrated optimisation framework with the Biogeography-Based Optimisation (BBO) method that co-optimises battery storage capacity (Capital Expenditure) and temporal operational strategy (Operating Expensed) was proposed, considering control-dependent battery degradation rate at the system planning stage (Figure 1).

Figure 1: Main logic process of the LBSS operation for combined planning. (a) Main logic process of flag 1. (b) Main logic process of flag 2. (c) Main logic process of flag 3.

A real campus-scale CHP system and a 50 kW demonstration LBSS at the UoW was used to verify the effectiveness of our proposed method, which also exhibits the contribution of the LBSS in improving the economic performance of CHP systems (Figure 2).

Figure 2: Combined optimisation results for seasons. (a) Optimal operation cost and capacity of the LBSS. (b) Operation strategy of the LBSS for Spring case. (c) Operation strategy of the LBSS for Autumn case. (d) Operation strategy of the LBSS for Winter case.

Besides, considering that the price of the LBSS would decrease gradually and the profitability from the ToU structure remains uncertainty in the following decades [3], this paper investigates the variation trend of profit gain and the corresponding Number of Battery (NOB) under different LBSS price and ToU rates to predict the future contribution of the LBSS technology in improving the economy of the CHP system (Figure 3).

Figure 3: Combined optimisation results for one year. (a) Optimal operation cost with the change of the LBSS price and ToU structure. (b) Optimal storage capacity with the change of the LBSS price and ToU structure.

Application results demonstrated that a combined management mechanism was established to achieve the optimal balance between the profit gain and capital loss of the LBSS integration. The conducted work for maximising potential profits and optimising number of batteries with the change of LBSS cost and ToU structure would provide competitive guidance for investors to develop a reasonable solution to improve the economy of CHP systems by integrating of LBSS in the next decades.

The full paper is available to view.

Reference:

[1] Department for Business, Energy & industrial strategy. Digest of UK energy statistics (DUKES) [Chapter 7]: Combined heat and power 2019.

[2] Davies DM, Verde MG, Mnyshenko O, Chen YR, Rajeev R, Meng YS, et al. Combined economic and technological evaluation of battery energy storage for grid applications. Nat Energy 2019;4:42–50.

[3] Oliver Schmidt, Sylvain Melchior, Adam Hawkes, Iain Staffell. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 2019;3:81-100.

Techno-economic-environmental evaluation framework for integrated gas and electricity distribution networks considering impact of different storage configurations

Researchers and Academics from the EPSRC funded Supergen Energy Networks Hub and the National Centre for Energy Systems Integration (CESI), Dr Adib Allahham, Dr Hamid Hosseini, Dr Vahid Vahidinasab, Dr Sara Walker & Professor Phil Taylor, recently published their journal paper in the International Journal of Electrical Power and Energy Systems.

About the Author

Dr Adib Allahham is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the Supergen Energy Networks Hub and EPSRC National Centre for Energy Systems Integration (CESI).  Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Adib Allahham contact details: adib.allahham@ncl.ac.uk @adiballahham and profile details

About the Paper

Governments around the world are working hard to reduce their Greenhouse Gas (GHG) emissions. In the UK, the government has set a target of “Net Zero” GHG emissions by 2050 in order to reduce contribution to global warming [1]. This necessitates the integration of more Renewable Energy Sources (RESs) into the energy networks and consequently reduction in the use of fossil fuels while meeting and reducing energy demand.

To achieve this objective flexibly and reliably, it may be necessary to couple the energy networks using several network coupling components such as gas turbine (GT), power-to-gas (P2G) and Combined Heat and Power (CHP) [2]. Also, the energy networks may benefit from different types of Energy Storage Systems (ESSs) in order to be able to compensate for any energy carrier deficit or other constraints in energy supply in any of the networks [3].

In order to comprehensively study multi-vector integrated energy systems and analyse ESS potentials, a Techno-Economic-Environmental (TEE) evaluation framework needs to be designed to investigate the mutual impacts of each of the networks on the operational, economic and environmental performance of others. This is the main aim of this study.

The paper divides ESS into two different categories of Single Vector Storage (SVS) and Vector Coupling Storage (VCS).

Figure 1: A conceptual representation of SVS and VCS storage devices in an Integrated Gas and Electricity Distribution Network (IGEDN)

A literature review looked at models which have been used to perform planning of the whole energy system of several countries taking into account all layers of the energy system, as well as different types of energy storage in multi-vector energy networks. As well as using a case study from a rural area in Scotland which is connected to the electricity distribution network only, also benefitting from a small wind farm and roof-top PV’s.

Fig. 2. The schematic of the studied rural area in Scotland including the separate gas and electricity networks (without considering P2G and VCS) and IGEDN (with considering P2G and VCS) [4].

A framework was developed as a result of the literature review carried out and this was tested on the real-world rural area in Scotland.  The evaluation framework provides the ability to perform TEE operational analysis of future scenarios of Integrated Gas and Electricity Distribution Networks (IGEDN).  Several specifications and achievements from this study are identified in the paper which is available to read online and will be published in the November issue of the Journal.

References

[1] Committee on Climate Change. Net Zero – The UKś contribution to stopping global warming, 2019. Google Scholar

[2] S. Clegg, P. MancarellaIntegrated electrical and gas network flexibility assessment in low-carbon multi-energy systems IEEE Trans Sustainable Energy, 7 (2) (2016), pp. 718-731 CrossRefView Record in ScopusGoogle Scholar

[3] S.H.R. Hosseini, A. Allahham, P. TaylorTechno-economic-environmental analysis of integrated operation of gas and electricity networks 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1-5 CrossRefView Record in ScopusGoogle Scholar

[4] EPSRC National Centre for Energy Systems Integration (CESI). https://www.ncl.ac.uk/cesi/, 2017.