All posts by nla22

UKRI Future Leaders Fellowship Award

Xin Zhang works as a Senior Lecturer in Electronic and Electrical Engineering at Brunel University London and was recently awarded a UKRI Future Leaders Fellowship.

Transition from Industry to Academia

I worked at National Grid ESO for eight years before I returned to academia as a senior lecturer. My industry work involved in the real-time operation of the UK Electricity Transmission Systems, where I worked on shift patterns with five other shift teams and over a hundred engineers. We worked together to ensure the electricity supply met demand on a second-by-second basis, a core function of a GB Electricity System Operator.

“I am proud to tell my neighbours and friends that I was one of the power system engineers to keep the lights on”

My motivation to move to academic research initiated from a night shift when I was on the energy desk, there was so much wind on the system and the whole system was reaching security limits. I started to think about future technologies and solutions to solve real-time engineering problems. One day, I felt the power systems needed fundamental changes to accommodate more renewables, which has evolved so fast from 5% to almost 50% in the past ten years. Such fundamental change could be the combination of “3D – decarbonisation, decentralisation and digitalisation”, where I was so looking forward to participating in such energy system transitions.

I decided to take up a senior lecturer position in energy systems (future grid) at Cranfield University in April 2019. I remember the last day when I worked in the Electricity National Control Centre, I had finished my night shift at 7:00am and handed over my company budget. I told myself that I have now become a full-time academic researcher.

Research Funding

Changing career from industry to academia is never easy, particularly to establish myself in an academic research environment, where I need to set up my own research team and agenda. Research funding is a key factor to grow and sustain my research activities. In the first six months of my research career, I was lucky enough to receive my first research grant from the Flexible Fund Call from the Supergen Energy Networks Hub.

I went through a competitive funding selection process from project outlines to full proposal development. I was firmly supported by the Supergen Flexible Fund as my start-up grant to recruit my first research assistant, as well as to set up my first PhD student. With this initial support, I managed to publish two important journal papers to establish myself in the field, as well as to successfully secure future research funding including two T-TRIG grants from the Department for Transport, as well as an EPSRC Doctoral Training Partnership award.

I worked closely with the Supergen Energy Networks Hub in most of my funding applications as well as research activities. Through the Supergen Energy Networks Hub, I connected with several relevant industrial partners to strengthen my research, I was mentored by several senior Hub members. As an Early Career Researcher (ECR), I particularly valued the networking support from the Supergen Energy Networks Hub through the various hybrid events, including the Industrial Advisory Committee meetings, research webinars and regular Hub meetings in Manchester, Birmingham and London.

“Transiting career from industry to academia is never easy, that’s why I am so glad to receive a prestigious £1.8m UKRI Future Leaders Fellowship to make it happen.”

Future Leaders Fellowship

I recently applied for a Future Leaders Fellowship, during the  application process, I was supported by the Hub’s internal proposal review and mock interview, which ensured that I receive the best possible support from the Energy Networks community.

In my project: “Digitalisation of Electrical Power and Energy Systems Operation”,  I will lead the application and development of advanced digital technologies for the energy sector in order to improve the interoperability and whole system reliability of real-time power system operation with up to 100% low-carbon and renewable energy. This will support the digital transformation across electrical power and energy systems in order to achieve the UK’s net-zero emissions target.

The research project associated with my Fellowship will pioneer the development of cyber-physical energy systems modelling methods and co-simulation platform-as-a-service approaches to enhance real-time power system operation. The novel techniques will be deployed with regard to energy management systems in order to enhance the reliability and interoperability at the whole system level across electricity system operators (transmission, distribution and renewables).

Next Steps

I am confident in achieving future leadership in power and energy system digitalisation and leading an internationally-recognised research team supported by 11 industrial partners and research societies including Supergen Energy Networks Hub as a key project partner.

“Future Leaders Fellowships support talented people in universities, businesses, and other research and innovation environments. The aim of the scheme is to develop the next wave of world-class research and innovation leaders in academia and business.”

My Future Leaders Fellowship project will closely link with the Supergen Energy Networks Hub, with a consortium of Universities. Supported by Supergen, I will expand my academic networks with other key stakeholders in the UKRI Energy Programme including the Supergen Programme. This is important to further develop my international influence and new relationships, a key strategy to develop as a future leader in research and innovation.

Joint Supergen Energy Networks Hub and National Energy Action workshop

Supergen Energy Networks (SEN) Hub is committed not only to researching energy networks solutions/technologies to help achieve net-zero, but also to ensuring that any future transition to net-zero is a ‘just transition’.

National Energy Action (NEA) is the national charity working to end fuel poverty in England, Wales, and Northern Ireland. The work of NEA is more important than ever, with households across the country facing rising energy bills.

On 5th April the SEN Hub and NEA hosted a joint workshop to discuss the ‘Opportunities for DNOs to address the energy crisis.’ The purpose of the workshop was to better understand the opportunities for energy networks – particularly Distribution Network Operators (DNO) – to support vulnerable customers during the energy crisis and overcome barriers that they may encounter to ensure all customers can benefit in the transition to net zero.

Aims and Objectives:

The workshop, attended by NEA, SEN researchers and industrial representatives, was successful in identifying multiple areas where DNOs could further support fuel-poor households in the context of increased energy prices. There was agreement that:

  • In the short term, DNOs can help ensure low-income and vulnerable households are better supported through the current energy crisis and can use their role to press for more progressive outcomes in network charging and the recovery of supplier failure costs.
  • Local Authorities and DNOs should be key partners in helping to deliver a fair and affordable transition to net zero.
  • Energy efficiency forms one of three key pillars to ensuring network costs can be kept at a minimum, alongside flexibility and network upgrades, but it is the element that has been the least utilised to date.
  • There is a need for greater clarity from the Government and Ofgem on the role of DNOs regarding the energy efficiency of domestic properties.
  • Considerable work has been undertaken to improve the affordability of upgraded connections to the electricity network for all customers.
  • More research will be required to better understand the impact of upgraded connections on the low voltage networks, including the impact on cables and EV integration, and how to enable smoother connections to the grid in a way that does not put pressure on the network.

Collaboration

Continued collaboration including a report and next steps from NEA which makes the following recommendations for both DNOs and research institutions:

  1. Bring together DNOs and Combined Authorities for more constructive working.
  2. Ensuring fairer recovery of Supplier of Last Resort (SOLR) levy costs.
  3. Providing clarity to DNOs regarding Energy Efficiency.
  4. DNOs should develop an energy efficiency beacon project
  5. DNOs should ensure no fuel-poor households must pay to upgrade their connection when installing a heat pump.
  6. Researching the impact of shallow connection costs
  7. DNOs and research organisations should conduct research to better understand the impact of upgraded connections on the low voltage network.

If you would like to find out more about the workshop and collaboration please get in contact with the SEN Admin Team.

Barriers to Black Academia Roundtable Workshop

Attendees:

University of Bristol (Dr Amaka Onyianta, Dr Anita Etale, Prof Phil Taylor, Dr Andreas Elombo, Prof Stephen Eichhorn), University of Cambridge (PhD Candidate Rhiannon Jones, PhD Candidate  Nuala Murray, PhD Candidate Malik Al Nasir, PhD Candidate Naomi Abayasekara), University of Liverpool (Dr Laura Sandy, Prof Alison Fell), Historic Environment Scotland (Rebecca Bailey), Enact Equality (L’myah Sherae). 

Workshop

On Friday the 25th of March 2022, the Pro Vice Chancellor (Research and Enterprise) Prof. Phil Taylor and members of the Supergen Energy Networks Hub team based at the University of Bristol, hosted a roundtable workshop at Clifton Hill House, as part of the ‘Barriers to Black Academia’ symposia series, devised by  Malik Al Nasir (PhD candidate at University of Cambridge and director of Yesternight Productions Ltd.) and Dr Leana Vaughn (Derby Fellow at University of Liverpool). This forms part of Supergen Energy Network Hub’s commitment to supporting equality, diversity and inclusion, and to improve participation with under-represented groups as our Hub grows. 

 Supergen staff were joined by barrister Katherine Anderson from Bristol’s 3PB Chambers, L’myah Sherae (founder of the All Party Parliamentary Group on Race Equality in Education and director of Enact Equality Ltd.), as well as experts from within academia, and both the public and private sectors. Delegates from across the UK gathered to discuss ‘Lifting The Barriers to Black Academia – Through Decolonisation and Positive Action’. 

The objective of the roundtable workshop was to act upon the Barriers to Black Academia Analytical Report, which was written by L’myah Sherae. The report summarised the findings of a previous symposium held online – hosted by CSIS at the University of Liverpool, sponsored by Pro Vice Chancellor Prof. Fiona Beveridge – which considered the barriers faced by Black academics, and the disparities in their under-representation at all levels within the academic pipeline. The discussion revolved around three key themes; 1. The barriers faced by black academics, 2. The policy framework and how it impacts the barriers. 3. The current legislation and what needs to change. 

At the University of Bristol event, the focus was on finding solutions to overcome these barriers, using – where possible, – the existing policy framework, good and best practice in equality, diversity and inclusion, and more specifically ‘widening participation’.  Delegates discussed the Equality Act (2010 and the Higher Education and Research Act (2017) with the assistance of Barrister Katherine Anderson, from 3PB Chambers. Delegates formulated a series of proposals which will be summarised in a report and will form the basis of a policy paper, which will outline recommendations for policy and legislative changes. This will be presented to HE institutions, research councils, academic trusts and funding bodies, as well as relevant Education Authorities and parliamentarians.    

Supergen is proud to support this joint initiative with Yesternight Productions Ltd. and hope to participate in similar events in the future. 

EDI Blog Series – Part 2: Adib Allahham

About the Author:

Dr Adib Allahham is Senior Research Associate at School of Engineering, Newcastle University. His research focusses on renewable energy, smart grids, active buildings, electricity distribution, and multi-vector energy systems.

Adib is researcher working for the EPSRC National Centre for Energy Systems Integration (CESI), involved in the research activities of the Active Building Centre (ABC), and leading three projects funded by the Royal Academy of Engineering in the field of smart grids, energy storage, and peer-to-peer energy trading.

 

My journey to one of the top universities in the UK

In September of 2021 I was promoted to Senior Research Associate at Newcastle University. This was a huge career landmark for me.

I was brought up in Damascus, the Syrian capital, which is classified as the oldest continuously inhabited city in the world. It was here where I obtained my bachelor’s degree in Electrical Engineering from Damascus University and secured top rank in the five-year bachelor program

After securing my degree, I worked as a teaching assistant in the same department and institution for two years where I led the laboratory demonstration, assisted in the teaching activities, and supervised graduation project. It was during this time I received a scholarship from the French government to pursue further studies. I obtained MSc degree from the Grenoble Institute of Technology and awarded PhD from University of Joseph Fourier in 2004 and 2008 respectively.

After completion of my PhD, I worked as a post-doctoral researcher in Grenoble Institute of Technology until 2010. To fulfil my interests in research, teaching and willing to serve the home institution, I took the decision to come back to Syria, and worked as lecturer at Damascus University until 2016. Unfortunately, the Syrian conflict started in March 2011 and changed whole situation. The war forced me to re-think about research career.

How did the Syrian war affect your Engineering career?

My research and teaching duties were heavily increased as students from two other universities located in military conflict areas moved to Damascus University. In addition, I had to work as part-time lecturer in a private university to support my family as the conflict severely affected our economic situation. Due to these unforeseen situations, the safety of my family and to achieve my research goals, I had decided to leave Syria in 2015. Although the right decision, it was hard for me. I had to leave some of my family, friends, and stable job.

What are some of the unexpected challenges you faced?

I obtained a job offer from Grenoble Institute of Technology to work on an industrial project. Unfortunately, I could not obtain the visa and unable to join the French University. This was very disappointing and left me feeling down and frustrated. The most shocking in this visa rejection was that the rejection reasons were not given with the decision letter which took 67 days after the application submission.

However, I was given hope again! Whilst I was conducting research with my MSc student about Smart Grids demonstrators, I became aware of the Power Systems Group at Newcastle University. Immediately, I contacted the team leader and consequently I was offered the position of visiting researcher at Newcastle University. With this I started a new adventure with Newcastle University from June 2016.

“I took a risk by reaching out, and it paid off!”

was fortunate to work with friendly and knowledgeable researchers who included me in their research activities and gave the opportunity to develop my own research directions. In 2017, the team started to enlarge its scope of research activities to include not only Power Systems but also the Whole Energy System. This major change started with the launch of EPSRC National Centre for Energy Systems Integration (CESI) led by Newcastle University and involved 5 other universities in which I was worked as a research associate.

In fact, moving to the UK was a challenge for me and my wife and now I’m happy that I made the right decision. At the same time when I moved to Newcastle University, she was also successful in getting a Chevening Scholarship, funded by the British Foreign and Commonwealth Office. She joined and obtained a MSc degree in international development at University of East Anglia. She is now working for Gateshead Council.

What piece of advice would you give to someone who might be in a similar situation as yours?

“As long as you plan your life and you are surrounded by supportive people, you will achieve your goals sooner or later.”

EDI Blog Series: Challenges in Your Career Pathway

About the Author:

Professor Sara Walker is the Director of The Centre for Energy, in the School of Engineering. Her research focusses on renewable energy and energy efficiency in buildings, energy policy, energy resilience, and whole energy systems.

Sara is Director of the EPSRC National Centre for Energy Systems Integration, Deputy Director of the EPSRC Supergen Energy Networks Hub, and Deputy Research Director of the Active Building Centre.

 

My journey to Professorship

In November of 2021 I was promoted to Professor of Energy at Newcastle University. This has felt like such a career landmark for me.

I was brought up by my parents in Cramlington, a town to the north of Newcastle. When I was young my father was made redundant and the family moved into council housing. I never considered myself as poor, but I do remember we grew potatoes in the garden to save on food shopping and me and my younger sister would wear hand-me-down clothes. My older sister left school at 16 and got a job working in hospitality, and as my parents’ financial situation improved they were able to purchase their council house, but we were by no means affluent! At 15 I got a Saturday job at Whitley Bay ice rink in the cafeteria, and I started to earn my own money which was very empowering.

When I went to university at Leicester I noticed that my financial situation wasn’t the same as others around me. I had a grant from the council to cover most of my living costs and my parents also contributed to top my grant up. I got a part time job working at the bar in the students union, and also worked part time in a local pub. During summer vacations I always worked, normally bar work. I remember waiting to use the public telephone one weekend to chat to my parents whilst at university, and watching the person on the phone in front of me crying crocodile tears to her dad. She needed money to buy a ball gown since it wasn’t fair for her to be expected to wear her existing ball gown that she’d already worn. That’s when it really struck me that some of my fellow students were really well off! I didn’t join expensive societies like skiing and horse riding, I didn’t go to lots of balls and social events. For my graduation ball I hired my dress.

When I finished my undergraduate course in physics I was offered a PhD by my personal tutor at the university. I didn’t really know what a PhD was, I had been first in my family to go to university, and I turned it down. Instead, I did a teacher training course and got a job as teacher. After teaching for a short while I decided to go back to university to do a masters course in environmental science, because I had got really interested in energy issues through voluntary work. This led onto a research job, and an opportunity to complete a PhD part time whilst working as a researcher. I think this is the only way I could have completed a PhD since I didn’t have the financial resources to support myself on a student bursary. The part time PhD took five years whilst I worked as researcher and during that time I had my son Toby.

My early experience of academia was still affected by my background somewhat. I had to think carefully about attending academic conferences, because I didn’t know how long it would take for my expenses to be paid back. One time an expensive overseas trip wasn’t paid in time before I had to pay the credit card bill, and I could only pay the minimum and incurred interest, something I couldn’t claim back from my employer. Conference dinners were a minefield, I didn’t have lots of spare cash to spend on cocktail dresses. Even work suits were often bought from the catalogue and paid for monthly when I first started out. Later in my career, financially and socially I found myself excluded from social events and the associated networking opportunities of corporate boxes at football, or golf at exclusive members courses.

Academic statistics do not portray the full picture

HESA statistics are available, to tell us something of the makeup of our UK professoriate. In 2019/20 there were 22,810 professors, of which 6,345 are “female”, 16,415 “male” and 50 “other” gender. Of the 21,055 professors with known ethnicity, 2,285 are BME. 735 professors are known to have a disability. Looking just at engineering, this discipline areas has the lowest proportion of female academics (see figure below). There are no statistics for socio-economic group, and no statistics for intersectionality (i.e. we don’t know how many BME are female, or how many BME have a disability, for example). There are also statistics for grant applications and success from EPSRC, by gender. Data for other protected characteristics are lacking.

 

Source: Departmental demographics of academic staff

Source: EPSRC Understanding our Portfolio

I am acutely aware of the lack of role models in academia from lower socio-economic backgrounds. But there are also a lack of role models who are LGBTQ+, minority ethnic, disabled, non-white, from different faiths, or any combination of these. In seeking out these role models, we expect people to be open about their protected characteristics, regardless of the discrimination this may attract.

Raising up colleagues, giving equality of opportunity, and being more aware of the potential barriers to engagement, are approaches we are taking at Newcastle University’s Centre for Energy. For example, we are working hard to encourage involvement from all job families in the Centre for Energy – research as an activity spans so many jobs including project managers, technicians, finance, research students, research staff and academic staff, for example. We want the Centre itself to address issues of fairness and equity in energy research, and so we have a theme on Justice, Governance and Ethics. We are tackling global issues of energy transition, issues which need a range of perspectives across gender, race, (dis)ability, sexual orientation and religion in order to come up with solutions that work for the majority, and not the select few.

I have a strong northern accent, and am proud of my roots and to be back in the north east working at a Russell Group university. But I am still that kid from the council estate. And I am proud of that too.

 

COP26: Implications for Energy Networks

Conference of the Parties (COP) is arguably one of the most important international conferences, bringing together governments and policymakers from across the globe to deliberate on matters concerning global climate.

About the Author

Dr. Andreas Elombo is a Research Associate in Future Energy Networks within the Supergen Energy Networks (SEN) Hub, under the School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics (SCEEM) at the University of Bristol.

He holds a Doctor of Philosophy (PhD) in Engineering Science from the University of Oxford (United Kingdom), and a Master of Science (MSc) in High Voltage Engineering from the University of Stellenbosch (South Africa).

 

Conference of the Parties (COP)

Since the first COP meeting in 1995, member countries have convened annually to agree guidelines that could be adopted by all member countries in order to commit to abating the global threat of climate change.

The Paris Agreement (2015) took on the mandate to hold to account all its signatories on the pledges they have made to reduce their greenhouse gas emissions, and commit to working together to limit global warming to below 2℃ or, more ambitiously, below 1.5℃ compared to pre-industrial levels.  

Figure 1 shows the Climate Action Tracker thermometer, an independent scientific tool that tracks government climate action and measures it against the globally agreed Paris Agreement targets.

Figure1: Climate Action Tracker Thermometer

Key Outcomes of COP26

In the context of the renewed urgency brought about by the fast-rising global temperatures, COP26 was a meeting at which countries of the world were faced with the pressure to arrive at a concrete agreement that helps put into action all tools required to move toward a net-zero global economy by 2050. Two key outcomes that capture the essence of this urgency are the Glasgow Climate Pact, as well as the finalization of the Paris Rulebook.

What do the outcomes of COP26 mean for energy networks?

There is an international consensus that now is the time to act with renewed efforts toward alleviating the impact of climate change and ensure that the factors contributing to the climate change crisis are abated.

Specific outcomes include the intensified drive to limit global temperatures below 1.5℃, the phasing down of coal-based power and the phase-out of fossil fuel subsidies, climate change and adaptation finances, and carbon markets incentives.  

From the perspective of energy networks, it means that the energy networks will need to adapt to the new energy resources and applications by essentially undergoing a rapid transformation that enables these networks to serve as a well-suited conduit for delivering energy to customers. The important function of energy networks is to deliver energy to customers in a reliable, sustainable, and cost-effective manner.  

Electric Vehicles

The electrification of motor vehicles has already given rise to the introduction of electric vehicles onto the energy networks. This is a new load that must be served by the energy networks. The charging of these vehicles, as one can imagine, will be very stochastic in nature. Combining the stochasticity of the charging of these vehicles with the intermittency in energy generation gives rise to a chaotic reality.

Heating

The heating sector is also undergoing a rapid revolution of decarbonization. It is believed that green hydrogen will act as cushion that will allow us to transition from fossil-based oil and gas dependency into an era of low-carbon heating. Existing heating fuel will most likely adopt green hydrogen in place of methane-based gas heating. What this means for energy networks is that the existing gas networks will need to undergo re-designing or some sort of adaptation in order to be able to transport green hydrogen reliably and securely.

Conclusions

The role of the energy sector in bringing about a net-zero reality is immense. Fossil fuels will be replaced with low-carbon energy resources such as solar, tidal, and wind energy resources, motor vehicles will be electrified, and heating will adopt green hydrogen as a form of fuel. All of this requires energy networks that are capable to deliver energy to customers in a reliable, sustainable, and cost-effective manner while navigating the complexity that arises from the integration of the variable energy sources (solar, tidal, and wind energy) and smart energy applications (V2G, demand-side response (DSR)).

The race is on. The task is decarbonization. It is a global task. Collaboration is essential in accomplishing this task.  

The full article is available to download.

 

RA Catchup Event

On December 9th 2021, Research Assistants (RAs) met in Bristol for dinner ahead of the final Supergen networking event before the new year. On the 10th, in the magnificent ‘Engine Shed’ events hub, RAs presented research updates to their colleagues and discussed the possibility of collaborative research efforts in the future. This RA catchup event was an opportunity to share their achievements, progress, and ideas with others in the Supergen network. It was also a reminder of breadth of expertise among Supergen’s researchers:

“I personally consider that the team has a unique range of skills and research interests” – Andrei-Nicolas Manea

The opportunity to share ideas and receive feedback from colleagues with different research interests showed a real strength of the Structure of the Supergen network. The multidisciplinary research team was able to offer a range of insights that very few other workshops could.

“I shared my recent work and got meaningful feedback, thanks to this forum” – Wie Gan

Throughout a difficult 2021, the RAs in the wider Supergen network have shown themselves to be resilient to the challenges facing academic enquiry. Despite these hurdles, RAs have managed to continue their research, produce new papers and disseminate their work at conferences and COP events. Meeting face to face, after an extended period dominated by online networking events, therefore came as a welcome change:

“It was fantastic to meet other researchers face to face, having only very limited opportunities to do so since starting my PhD” – Jonathan Amirmadhi.

“It was great to meet colleagues after almost 2 years of remote working” – Muditha Abeyseker.

Once those who presented their research had done so, the event ended with a discussion, chaired by Laiz Souto, on the future direction of the Supergen RA investigations, specifically ‘what understanding, shaping and challenging is still required for a move towards Net Zero?’

Discussants covered several topics:

  • The role of energy networks/companies in future decision making.
  • The financial burden of upgrading/developing networks.
  • The transportation of energy throughout the country.
  • The concerns of energy firms/distributors regarding risk.
  • Possible energy futures, and what an integrated energy future might look like.

Discussants mentioned that more interactions with policymakers/regulators would be beneficial and that their suggestions could be directly investigated and tested by Supergen RAs. Summarising these discussions, it was suggested that RAs should meet again for further workshops and should work towards coauthoring a piece of work that could be presented to appropriate policymakers/regulators. This idea has been very well received among the RAs:

“I am excited to see how the group could produce a coherent collaborative piece of work” – Jonathan Amirmadhi.

“Lots of opportunities are present for further collaboration between each of the different institutions, and there is a feeling among the researchers that we could bring our ideas together to deliver a single body of work” – Daniel Carr

Overall, the event demonstrated the importance of face-to-face meetings for large projects, especially those with researchers from different academic institutions with a range of research interests. The entire catchup event was optimistic, constructive, and set the foundations for future collaborations. It is hoped that, in the coming year, Supergen RAs will be able to meet more frequently, supporting each other’s research.

“I hope to continue to communicate with my friends and colleagues and do more for the Supergen project together” – Wei Gan

“The was real enthusiasm for the work that we are all doing, and I am looking forward to future face to face meetings over the duration of the research project” – Daniel Carr

Attendees:

  • Daniel Carr, Cardiff
  • Nicolas Manea, Cardiff
  • Laiz Souto, Bristol
  • Amirreza Azimipoor, Cardiff
  • Wei Gan, Cardiff
  • Jonathan Amirmadhi, Cardiff
  • Andrei Manea, Cardiff
  • Muditha Abeyseker, Cardiff
  • Richard Oduro, Leeds
  • Minghao Xu, Bath
  • Phil Taylor, Bristol
  • Furong Li, Bath
  • Jack Dury, Bristol

Who perseveres wins!

About the Author:

Dr Susan Claire Scholes is a post-doctoral researcher within the School of Engineering.  Susan’s current research is in the field of whole systems energy research, working with the Supergen Energy Networks Hub at Newcastle University.

Previous research interests were in bioengineering where Susan was responsible for the investigation of explanted metal-on-metal hip prostheses and explanted knee prostheses.

 

Matlab and the GB Network System

Let me tell you a story….  It feels like it started a long, long time ago but in reality it has only been 20 months (this may still seem like a long time to some, depending on your age!).  Twenty months of hard work but important work.  This is when I started working on a model of the GB network system.  This model already existed [1, 2] but it needed some work to be done on it to allow it to perform the tasks that I required.

Now, I had minimal experience (or knowledge) on Matlab but I am always eager to learn so I saw this as an opportunity to develop my research skills even further (I’ve been working in academic research for 21 years now, so it’s never too late to learn!).

I familiarised myself with Matlab and the model so I understood the background to my project; and this understanding developed as the time progressed.  The adjustments needed on the model were only small; small in capacity but mammoth in the necessary effort to succeed!

The cost functions of each generation type in the GB network model were already in the model but they were just given as merit order equations; this was so the model was able to calculate the proportion of expected generation from each type of generation provider (wind, gas, coal, nuclear and hydro).  But I needed it to calculate the true costs.

I knew this wouldn’t be easy, or quick!  As a modeller, it is important to analyse results obtained and question their validity; you need to have confidence in the results that your model provides.  It is essential that you compare your results with appropriate published data and relevant work done by others.

Using known data from previous years I was able to identify when the results from my model were not as good as they needed to be; and it allowed me to gain confidence in my work as it developed.  This was an iterative process that required many hours of hard and repetitive work.

To get this done well it required a lot of effort and determination (and a few handkerchiefs to mop up the inevitable tears of frustration!).  For months I was stuck in what seemed to be a never-ending loop:

  • adjust the model, write the script, run the model – no joy
  • adjust the model, adjust the script, run the model – it works!, review the results
  • adjust the model/script, run the model – it works (but sometimes it didn’t!), review the results
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • again, again and again until…
  • adjust the model/script, run the model – it works!, review the results, confirm results, write the paper (with confidence that the model used is the most appropriate and performs the task well) and submit!

So, what have I learned during this time?  Perseverance is key, determination is needed and patience would have been a bonus but I’ve always lacked in that!  Unexpected things, like the University’s cyber security attack, and even a pandemic, can be obstacles but with the correct support they are not insurmountable.  I also needed to learn that all models have their limitations.

You can minimise these limitations to produce the best model for your purpose but your model cannot do all, it will not be suitable for everything.  Spend time on the model, like I say, for it to produce relevant results for your work but understand that there will always be limitations as to what the model can do.

As long as you are aware of these and you are able to explain the limitations imposed on your work (and why these are acceptable) then you should feel proud.  Proud of the valid, valuable work you have achieved and the advancements you have made in your field of research.  It was all worth it in the end!

References

  1. Bell, K.R.W. and A.N.D. Tleis. Test system requirements for modelling future power systems. in IEEE PES General Meeting. 2010.
  2. Asvapoositkul, S. and R. Preece. Analysis of the variables influencing inter-area oscillations in the future Great Britain power system. in 15th IET International Conference on AC and DC Power Transmission (ACDC 2019). 2019.

Looking Back at the Supergen COP26 Fishbowl Event

The Supergen COP26 Fishbowl was a public engagement activity in which participants from different groups, organisations, and backgrounds discussed their visions for an energy future with net-zero carbon emissions. It took place at the Ramshorn Theatre in Glasgow during the COP26 Energy Day on the 4th of November.

Each Supergen hub – Solar, Offshore Renewable Energy, Bioenergy, Energy Networks, Energy Storage, Hydrogen and Fuel Cell – nominated up to two academics and early-career researchers to make up the surrounding audience and contribute to the discussion with specialist knowledge. I am glad that I was among them and had the opportunity to join the event in person.

In the next paragraphs, I will describe the concept of a fishbowl discussion, summarize the discussion points of the Supergen COP26 Fishbowl event, and provide an overview of my experience in Glasgow during the COP26 Energy Day

About the Author

Laiz Souto is  a Research Associate on the Supergen Energy Networks Hub, with a PhD in Electrical Engineering and  is also a Postdoctoral Research Associate in Future Energy Networks at the University of  Bristol with the Department of Electrical and Electronic Engineering.

Laiz has a broad interest in the energy transition, including energy infrastructures, low carbon energy systems, optimization and statistical techniques applied to energy systems planning and operation, uncertainty quantification in large scale energy systems, energy systems integration, power system resilience to extreme weather events, power system reliability and security of supply, and power systems protection, automation, and control, among other topics.

What is a fishbowl discussion?

A fishbowl is a form of conversation which allows several people to participate in a conversation. In a fishbowl discussion, chairs are arranged in concentric rings. Participants seated in the inner circle (i.e., the fishbowl) actively take part in the conversation by sharing their thoughts, whereas participants seated in the outer circles listen carefully to the topics being discussed. Participants in the outer circles may enter the inner circle to share their thoughts when a seat is available. Participants in the inner circle are encouraged to vacate their seats after contributing to the discussion so that other participants can join the conversation.

The Supergen COP26 Fishbowl event followed this format with six inner chairs and roughly twenty outer chairs. The inner chairs were occupied by the facilitator and the academics nominated by each of the five Supergen hubs at the start of the live stream. Before the start of the event, participants agreed to leave an empty seat in the inner circle whenever possible so that different participants could join the ongoing discussion. As an outcome, participants from different backgrounds, organizations, and career stages could share their thoughts on distinct aspects involved in the energy transition towards a net-zero carbon emissions future.

What was discussed in the Supergen COP26 Fishbowl event?

The Supergen COP26 Fishbowl agenda was divided into four chapters over one hour and a half. The event facilitator moderated the discussion, ensuring that the duration of each chapter was roughly the same and that all participants who joined the inner circle could share their ideas.

At the start of the live stream, academics delivered a short presentation about the perspective of their hub to contextualize the debate. The role of the research conducted by each Supergen hub towards a net-zero carbon emissions future was briefly introduced.

Chapter 1: “How do we generate our energy in a net zero world”

The role of different energy sources in a net-zero carbon emissions future was discussed. Energy production from renewable sources, energy storage, nuclear power plants, hydrogen, integrated electricity-gas-heating networks, and the phasing-out of fossil fuels were debated. Other aspects were also linked to the energy production in a net zero world, such as the importance of a just energy transition leaving nobody behind to achieve the climate targets previously set in the Paris Agreement.

Chapter 2: “How do we deliver that net zero energy to the public”

The role of different technologies in the energy supply chain was discussed. Among them, smart grid capabilities, artificial intelligence, flexibility options, and distributed energy resources were associated to disruptive changes in the provision of energy to the customers in a net-zero carbon emissions future. In this context, the role of energy networks in the transportation of energy in its different forms from generation sites to consumption sites was emphasized. Challenges and opportunities posed by the increasing electrification of other sectors were also discussed.

Chapter 3: “How do we utilize that net zero energy”

Changes in energy consumption in a net-zero world were debated, highlighting the role of the customers towards net-zero carbon emissions. The impact of the choices made by the customers on the final uses of energy was debated, considering aspects that could incentivize the adoption of clean energy technologies and energy efficient appliances, such as subsidization. Changes introduced by the increasing electrification of economies worldwide were also discussed.

Chapter 4: “What steps should the UK be taking to make our energy system net zero by 2050”

Policy decisions were discussed with a sense of urgency. Stopping subsidization of fossil fuels and increasing investments in state-of-the-art clean energy technologies along with the required network infrastructure were emphasized as key commitments towards a net-zero carbon emissions future. In this context, taking into consideration regional aspects along with clean energy technologies currently available was recommended to accelerate the energy transition towards net-zero carbon emissions.

What was like to be in Glasgow during the COP26 Energy Day?

For many participants like me, COP26 – and the Supergen COP26 Fishbowl in particular – brought the first opportunity to attend a conference in person after the pandemic lockdowns and travel restrictions had been lifted in the UK. This made the opportunity to be in Glasgow during COP26 – and during the COP26 Energy Day in particular – even more unique.

The city was overbooked and fully decorated with COP26 banners, some of which also including reminders of how individual choices contribute to greenhouse gas emissions in different ways. The atmosphere in Glasgow was tense, as the decisions to be made during the next few days of COP26 were expected to determine the world’s ability to curb global warming. Expectations among the COP26 attendees were high, given the importance and urgency of climate change mitigation and adaptation worldwide and the lack of ambitious commitments linked to action plans at the previous conferences. During the COP26 Energy Day and the Supergen COP26 Fishbowl event, I was happy to see and engage in interesting discussions about the role of energy networks in climate change adaptation and mitigation.

Now that COP26 is over and the Glasgow Climate Pact is ready, I hope to see governments implementing ambitious action plans that lead to rapid decarbonization worldwide. Ultimately, I look forward to seeing bold climate commitments put into practice towards net-zero carbon emissions in the next few years.

An Interdisciplinary Research Perspective on the Future of Multi-Vector Energy Networks

About the Author:

Dr Dragan Cetenovic is a Postdoctoral Research Associate at the University of Manchester, where he works as a part of the core research team of the Supergen Energy Network Hub to develop approaches for advanced monitoring and control of multi-energy systems using novel sensor, ICT and Big Data approaches. My focus is on development of methods for advanced state-estimation for dynamic security assessment of integrated multi-energy networks, integration of signals from different types of sensors into a data acquisition platform, and development of efficient methods for real-time Big Data processing and knowledge extraction in future energy networks.

Introduction

Despite their vital importance to the UK’s energy sector, industry and society, there is no current whole systems approach to studying the interconnected and interdependent nature of energy network infrastructure and the challenges it faces. Inspired by this, team of Researchers and Academics from the Supergen Energy Networks Hub, led by Hub Director, Professor Phil Taylor, recently published their joint paper in the International Journal of Electrical Power and Energy Systems (IJEPES).

The paper is available online and will be published in the February 2022 issue of the Journal. The paper has been written through a well-organized coordination and professional commitment of all signed authors. It is now a good starting point for moving forward with new publications in high impact papers. The IJEPES is a highly respected, Q1‑journal (IF=4.63), with a tradition of 40 years of successful publication of high-quality research papers in the field of power and energy systems.

About the paper

The energy sector worldwide is facing considerable pressure arising from the growing demand for clean energy, the need to reduce carbon emissions substantially while adapting to the inevitable impacts of climate change and coping with the depletion of fossil fuels and geopolitical issues around the location of remaining fossil fuel reserves. In this regard, UK Government has committed to a net zero carbon economy by 2050 [1]. Energy networks are vitally important enablers in the global pursuit of a just transition to net zero [2].

The transition to net zero and the energy trilemma (energy security, environmental impact and social cost) present many complex interconnected international challenges. There are different challenges regarding systems, plants, physical infrastructure, sources and nature of uncertainties, ICT requirements, cyber security, big data analytics, innovative business models and markets, and policy and societal changes. As technology and society changes, so do these challenges, and therefore the planning, design and operation of energy networks needs to be revisited and optimised.

Current energy networks research does not fully embrace a whole systems approach and is therefore not developing a deep enough understanding of the interconnected and interdependent nature of energy network infrastructure [3, 4]. This paper provides a novel interdisciplinary perspective intended to enable deeper understanding of multi-vector energy networks. The expected benefits would be enhanced flexibility and higher resilience, as well as reduced costs of an integrated energy system.

Considering drivers like societal evolution, climate change and technology advances, this paper describes the most important aspects which have to be taken into account when designing, planning and operating future multi-vector energy networks. For this purpose, the issues addressing future architecture, infrastructure, interdependencies and interactions of energy network infrastructures are elaborated through a novel interdisciplinary perspective. Aspects related to optimal operation of multi-vector energy networks, implementation of novel technologies, jointly with new concepts and algorithms, are extensively discussed. The role of policy, markets and regulation in facilitating multi-vector energy networks is also reported. Last but not least, the aspects of risks and uncertainties, relevant for secure and optimal operation of future multi-vector energy networks are discussed.

Fig. 1 Block-diagram of the framework for investigation of interfaces between modelling, policy, markets, ICT and risks in multi-vector energy networks.

References

  • Committee on Climate Change, “Net Zero: The UK’s contribution to stopping global warming”, May 2019.
  • International Energy Agency Report, “World Energy Outlook 2020”, IEA, Paris, 2020 https://www.iea.org/reports/world-energy-outlook-2020
  • H. R. Hosseini, A. Allahham, S. L. Walker, P. Taylor, “Optimal planning and operation of multi-vector energy networks: A systematic review”, Renewable and Sustainable Energy Reviews, vol. 133, 2020. doi: 10.1016/j.rser.2020.110216
  • Mancarella, “MES (multi-energy systems): An overview of concepts and evaluation models”, Energy, vol. 65, pp. 1–17. 2014. doi: 10.1016/j.energy.2013.10.041