Tag Archives: Energy Networks

International Collaboration – Enhancing Industry and Academic Engagement: Energy Network Challenges and Opportunities

About the Author

Richard Afriyie Oduro is a Research Fellow at the University of Leeds who is jointly appointed by the School of Earth and Environment (SEE), and the School of Chemical and Process Engineering (SCAPE). Richard is working on the policy and society work package of the Supergen Energy Networks Hub’s project on Multi-Vector Energy Networks (MVEN).

Supergen Energy Networks Hub visit to Accra, Ghana (7 – 8th July 2022)

The Supergen Energy Networks Hub (SEN) and Ghana Energy Networks (GEN) (SEN-GEN) workshop, held on the 7-8 July 2022 gathered thirty-one (31) academic and industry stakeholders in the energy network area from the UK and Ghana. The purpose was to promote GEN as a Hub that focuses on energy networks research in Ghana, as well as to formally launch the SEN-GEN collaboration, which was initiated in March 2020, but for which in-person activities had been delayed by the COVID pandemic.

The workshop was designed to encourage greater interactions and collaborations between partners from electricity distribution, transmission, mini-grid operations and development firms, as well as researchers from Ghana and the UK.

Feedback from participants at the workshop was incredibly positive. The workshop met their expectations, and participants would like the SEN-GEN collaboration to grow to provide a bigger platform to facilitate more interactions between industry and academia.

Background of SEN-GEN Collaborations

Ghana Energy Networks (GEN) is an entity formed by the Regional Centre of Excellence in Energy and Sustainability (RCEES) at the University of Energy and Natural Resources (UENR) and The Brew Hammond Energy Centre (TBHEC) at the Kwame Nkrumah University of Science and Technology (KNUST) to focus on energy network infrastructure research across areas such as modelling, regulation and markets, policy, and risk. The Supergen Energy Networks (SEN) Hub is funded by the Engineering and Physical Sciences Research Council and is led by six (6) UK universities including Leeds, Bristol, Newcastle, Bath, Cardiff, and Manchester. The focus is on energy network infrastructure research across vectors including electricity, natural gas, heating and cooling, and hydrogen. The SEN Hub explores how an understanding of the interdependencies and interactions between different energy networks can deal with the challenges that they face.

Participating Organisations

Stakeholders participating in the workshop were drawn from across the energy networks area including regulators, policymakers, electricity distribution companies, electricity transmission companies, mini-grid developers and operators. Other stakeholders included academic institutions and consultancies working on energy networks. Apart from the main collaborators, the organisations that participated included Energy Commission, Ministry of Energy, Northern Electricity Distribution Company, Electricity Company of Ghana, Volta River Authority, Bui Power Authority, and Ghana Grid Company. There were also participants from University of Mines and Technology, Morks Reid Global, and Deloitte.

Presentations

The agenda on the first day covered six areas: a welcome address and background to the SEN-GEN collaboration; overview of the UK and Ghana energy systems; the operation of the energy networks market and regulation in the two countries; networks and data disaggregation; Ghana’s energy transition agenda; and a discussion session on potential areas for future collaboration. The second day focused on energy network management, climate change and energy networks, two demonstration projects, and another discussion session on potential research areas.

Colleagues from the UK spoke on UK energy networks challenges and responses, markets and regulation, data disaggregation, and on the impact of climate change on energy network infrastructure.

Our partners from Ghana gave talks on Ghana’s energy sector, technical regulation of energy networks, electricity distribution in low-income areas, mini-grid developments and operations in island communities, and on Ghana’s energy transition plan.

Further Discussions

The workshop concluded with discussions on next steps and collaboration opportunities between Supergen Energy Networks (SEN) and Ghana Energy Networks (GEN).

A list of short-term and medium-long term research areas were developed, including writing a review and journal paper as well as a report highlighting challenges and opportunities of Energy Networks in Ghana and the possibility to support Early Career Researchers with a 6-month secondment to SEN.

An Industry Advisory Committee (IAC) was also formed to support and review the activities of GEN which will feed into the SEN IAC based in the UK.

Joint Supergen Energy Networks Hub and National Energy Action workshop

Supergen Energy Networks (SEN) Hub is committed not only to researching energy networks solutions/technologies to help achieve net-zero, but also to ensuring that any future transition to net-zero is a ‘just transition’.

National Energy Action (NEA) is the national charity working to end fuel poverty in England, Wales, and Northern Ireland. The work of NEA is more important than ever, with households across the country facing rising energy bills.

On 5th April the SEN Hub and NEA hosted a joint workshop to discuss the ‘Opportunities for DNOs to address the energy crisis.’ The purpose of the workshop was to better understand the opportunities for energy networks – particularly Distribution Network Operators (DNO) – to support vulnerable customers during the energy crisis and overcome barriers that they may encounter to ensure all customers can benefit in the transition to net zero.

Aims and Objectives:

The workshop, attended by NEA, SEN researchers and industrial representatives, was successful in identifying multiple areas where DNOs could further support fuel-poor households in the context of increased energy prices. There was agreement that:

  • In the short term, DNOs can help ensure low-income and vulnerable households are better supported through the current energy crisis and can use their role to press for more progressive outcomes in network charging and the recovery of supplier failure costs.
  • Local Authorities and DNOs should be key partners in helping to deliver a fair and affordable transition to net zero.
  • Energy efficiency forms one of three key pillars to ensuring network costs can be kept at a minimum, alongside flexibility and network upgrades, but it is the element that has been the least utilised to date.
  • There is a need for greater clarity from the Government and Ofgem on the role of DNOs regarding the energy efficiency of domestic properties.
  • Considerable work has been undertaken to improve the affordability of upgraded connections to the electricity network for all customers.
  • More research will be required to better understand the impact of upgraded connections on the low voltage networks, including the impact on cables and EV integration, and how to enable smoother connections to the grid in a way that does not put pressure on the network.

Collaboration

Continued collaboration including a report and next steps from NEA which makes the following recommendations for both DNOs and research institutions:

  1. Bring together DNOs and Combined Authorities for more constructive working.
  2. Ensuring fairer recovery of Supplier of Last Resort (SOLR) levy costs.
  3. Providing clarity to DNOs regarding Energy Efficiency.
  4. DNOs should develop an energy efficiency beacon project
  5. DNOs should ensure no fuel-poor households must pay to upgrade their connection when installing a heat pump.
  6. Researching the impact of shallow connection costs
  7. DNOs and research organisations should conduct research to better understand the impact of upgraded connections on the low voltage network.

If you would like to find out more about the workshop and collaboration please get in contact with the SEN Admin Team.

COP26: Implications for Energy Networks

Conference of the Parties (COP) is arguably one of the most important international conferences, bringing together governments and policymakers from across the globe to deliberate on matters concerning global climate.

About the Author

Dr. Andreas Elombo is a Research Associate in Future Energy Networks within the Supergen Energy Networks (SEN) Hub, under the School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics (SCEEM) at the University of Bristol.

He holds a Doctor of Philosophy (PhD) in Engineering Science from the University of Oxford (United Kingdom), and a Master of Science (MSc) in High Voltage Engineering from the University of Stellenbosch (South Africa).

 

Conference of the Parties (COP)

Since the first COP meeting in 1995, member countries have convened annually to agree guidelines that could be adopted by all member countries in order to commit to abating the global threat of climate change.

The Paris Agreement (2015) took on the mandate to hold to account all its signatories on the pledges they have made to reduce their greenhouse gas emissions, and commit to working together to limit global warming to below 2℃ or, more ambitiously, below 1.5℃ compared to pre-industrial levels.  

Figure 1 shows the Climate Action Tracker thermometer, an independent scientific tool that tracks government climate action and measures it against the globally agreed Paris Agreement targets.

Figure1: Climate Action Tracker Thermometer

Key Outcomes of COP26

In the context of the renewed urgency brought about by the fast-rising global temperatures, COP26 was a meeting at which countries of the world were faced with the pressure to arrive at a concrete agreement that helps put into action all tools required to move toward a net-zero global economy by 2050. Two key outcomes that capture the essence of this urgency are the Glasgow Climate Pact, as well as the finalization of the Paris Rulebook.

What do the outcomes of COP26 mean for energy networks?

There is an international consensus that now is the time to act with renewed efforts toward alleviating the impact of climate change and ensure that the factors contributing to the climate change crisis are abated.

Specific outcomes include the intensified drive to limit global temperatures below 1.5℃, the phasing down of coal-based power and the phase-out of fossil fuel subsidies, climate change and adaptation finances, and carbon markets incentives.  

From the perspective of energy networks, it means that the energy networks will need to adapt to the new energy resources and applications by essentially undergoing a rapid transformation that enables these networks to serve as a well-suited conduit for delivering energy to customers. The important function of energy networks is to deliver energy to customers in a reliable, sustainable, and cost-effective manner.  

Electric Vehicles

The electrification of motor vehicles has already given rise to the introduction of electric vehicles onto the energy networks. This is a new load that must be served by the energy networks. The charging of these vehicles, as one can imagine, will be very stochastic in nature. Combining the stochasticity of the charging of these vehicles with the intermittency in energy generation gives rise to a chaotic reality.

Heating

The heating sector is also undergoing a rapid revolution of decarbonization. It is believed that green hydrogen will act as cushion that will allow us to transition from fossil-based oil and gas dependency into an era of low-carbon heating. Existing heating fuel will most likely adopt green hydrogen in place of methane-based gas heating. What this means for energy networks is that the existing gas networks will need to undergo re-designing or some sort of adaptation in order to be able to transport green hydrogen reliably and securely.

Conclusions

The role of the energy sector in bringing about a net-zero reality is immense. Fossil fuels will be replaced with low-carbon energy resources such as solar, tidal, and wind energy resources, motor vehicles will be electrified, and heating will adopt green hydrogen as a form of fuel. All of this requires energy networks that are capable to deliver energy to customers in a reliable, sustainable, and cost-effective manner while navigating the complexity that arises from the integration of the variable energy sources (solar, tidal, and wind energy) and smart energy applications (V2G, demand-side response (DSR)).

The race is on. The task is decarbonization. It is a global task. Collaboration is essential in accomplishing this task.  

The full article is available to download.

 

RA Catchup Event

On December 9th 2021, Research Assistants (RAs) met in Bristol for dinner ahead of the final Supergen networking event before the new year. On the 10th, in the magnificent ‘Engine Shed’ events hub, RAs presented research updates to their colleagues and discussed the possibility of collaborative research efforts in the future. This RA catchup event was an opportunity to share their achievements, progress, and ideas with others in the Supergen network. It was also a reminder of breadth of expertise among Supergen’s researchers:

“I personally consider that the team has a unique range of skills and research interests” – Andrei-Nicolas Manea

The opportunity to share ideas and receive feedback from colleagues with different research interests showed a real strength of the Structure of the Supergen network. The multidisciplinary research team was able to offer a range of insights that very few other workshops could.

“I shared my recent work and got meaningful feedback, thanks to this forum” – Wie Gan

Throughout a difficult 2021, the RAs in the wider Supergen network have shown themselves to be resilient to the challenges facing academic enquiry. Despite these hurdles, RAs have managed to continue their research, produce new papers and disseminate their work at conferences and COP events. Meeting face to face, after an extended period dominated by online networking events, therefore came as a welcome change:

“It was fantastic to meet other researchers face to face, having only very limited opportunities to do so since starting my PhD” – Jonathan Amirmadhi.

“It was great to meet colleagues after almost 2 years of remote working” – Muditha Abeyseker.

Once those who presented their research had done so, the event ended with a discussion, chaired by Laiz Souto, on the future direction of the Supergen RA investigations, specifically ‘what understanding, shaping and challenging is still required for a move towards Net Zero?’

Discussants covered several topics:

  • The role of energy networks/companies in future decision making.
  • The financial burden of upgrading/developing networks.
  • The transportation of energy throughout the country.
  • The concerns of energy firms/distributors regarding risk.
  • Possible energy futures, and what an integrated energy future might look like.

Discussants mentioned that more interactions with policymakers/regulators would be beneficial and that their suggestions could be directly investigated and tested by Supergen RAs. Summarising these discussions, it was suggested that RAs should meet again for further workshops and should work towards coauthoring a piece of work that could be presented to appropriate policymakers/regulators. This idea has been very well received among the RAs:

“I am excited to see how the group could produce a coherent collaborative piece of work” – Jonathan Amirmadhi.

“Lots of opportunities are present for further collaboration between each of the different institutions, and there is a feeling among the researchers that we could bring our ideas together to deliver a single body of work” – Daniel Carr

Overall, the event demonstrated the importance of face-to-face meetings for large projects, especially those with researchers from different academic institutions with a range of research interests. The entire catchup event was optimistic, constructive, and set the foundations for future collaborations. It is hoped that, in the coming year, Supergen RAs will be able to meet more frequently, supporting each other’s research.

“I hope to continue to communicate with my friends and colleagues and do more for the Supergen project together” – Wei Gan

“The was real enthusiasm for the work that we are all doing, and I am looking forward to future face to face meetings over the duration of the research project” – Daniel Carr

Attendees:

  • Daniel Carr, Cardiff
  • Nicolas Manea, Cardiff
  • Laiz Souto, Bristol
  • Amirreza Azimipoor, Cardiff
  • Wei Gan, Cardiff
  • Jonathan Amirmadhi, Cardiff
  • Andrei Manea, Cardiff
  • Muditha Abeyseker, Cardiff
  • Richard Oduro, Leeds
  • Minghao Xu, Bath
  • Phil Taylor, Bristol
  • Furong Li, Bath
  • Jack Dury, Bristol

An Interdisciplinary Research Perspective on the Future of Multi-Vector Energy Networks

About the Author:

Dr Dragan Cetenovic is a Postdoctoral Research Associate at the University of Manchester, where he works as a part of the core research team of the Supergen Energy Network Hub to develop approaches for advanced monitoring and control of multi-energy systems using novel sensor, ICT and Big Data approaches. My focus is on development of methods for advanced state-estimation for dynamic security assessment of integrated multi-energy networks, integration of signals from different types of sensors into a data acquisition platform, and development of efficient methods for real-time Big Data processing and knowledge extraction in future energy networks.

Introduction

Despite their vital importance to the UK’s energy sector, industry and society, there is no current whole systems approach to studying the interconnected and interdependent nature of energy network infrastructure and the challenges it faces. Inspired by this, team of Researchers and Academics from the Supergen Energy Networks Hub, led by Hub Director, Professor Phil Taylor, recently published their joint paper in the International Journal of Electrical Power and Energy Systems (IJEPES).

The paper is available online and will be published in the February 2022 issue of the Journal. The paper has been written through a well-organized coordination and professional commitment of all signed authors. It is now a good starting point for moving forward with new publications in high impact papers. The IJEPES is a highly respected, Q1‑journal (IF=4.63), with a tradition of 40 years of successful publication of high-quality research papers in the field of power and energy systems.

About the paper

The energy sector worldwide is facing considerable pressure arising from the growing demand for clean energy, the need to reduce carbon emissions substantially while adapting to the inevitable impacts of climate change and coping with the depletion of fossil fuels and geopolitical issues around the location of remaining fossil fuel reserves. In this regard, UK Government has committed to a net zero carbon economy by 2050 [1]. Energy networks are vitally important enablers in the global pursuit of a just transition to net zero [2].

The transition to net zero and the energy trilemma (energy security, environmental impact and social cost) present many complex interconnected international challenges. There are different challenges regarding systems, plants, physical infrastructure, sources and nature of uncertainties, ICT requirements, cyber security, big data analytics, innovative business models and markets, and policy and societal changes. As technology and society changes, so do these challenges, and therefore the planning, design and operation of energy networks needs to be revisited and optimised.

Current energy networks research does not fully embrace a whole systems approach and is therefore not developing a deep enough understanding of the interconnected and interdependent nature of energy network infrastructure [3, 4]. This paper provides a novel interdisciplinary perspective intended to enable deeper understanding of multi-vector energy networks. The expected benefits would be enhanced flexibility and higher resilience, as well as reduced costs of an integrated energy system.

Considering drivers like societal evolution, climate change and technology advances, this paper describes the most important aspects which have to be taken into account when designing, planning and operating future multi-vector energy networks. For this purpose, the issues addressing future architecture, infrastructure, interdependencies and interactions of energy network infrastructures are elaborated through a novel interdisciplinary perspective. Aspects related to optimal operation of multi-vector energy networks, implementation of novel technologies, jointly with new concepts and algorithms, are extensively discussed. The role of policy, markets and regulation in facilitating multi-vector energy networks is also reported. Last but not least, the aspects of risks and uncertainties, relevant for secure and optimal operation of future multi-vector energy networks are discussed.

Fig. 1 Block-diagram of the framework for investigation of interfaces between modelling, policy, markets, ICT and risks in multi-vector energy networks.

References

  • Committee on Climate Change, “Net Zero: The UK’s contribution to stopping global warming”, May 2019.
  • International Energy Agency Report, “World Energy Outlook 2020”, IEA, Paris, 2020 https://www.iea.org/reports/world-energy-outlook-2020
  • H. R. Hosseini, A. Allahham, S. L. Walker, P. Taylor, “Optimal planning and operation of multi-vector energy networks: A systematic review”, Renewable and Sustainable Energy Reviews, vol. 133, 2020. doi: 10.1016/j.rser.2020.110216
  • Mancarella, “MES (multi-energy systems): An overview of concepts and evaluation models”, Energy, vol. 65, pp. 1–17. 2014. doi: 10.1016/j.energy.2013.10.041