How does having an ORCiD contribute to open research?

Who are ORCiD?

ORCiD, which stands for Open Researcher and Contributor ID, is a global, not-for-profit organization sustained by fees from member organizations. They are community-built and governed by a Board of Directors representative of membership with wide stakeholder representation. ORCiD is supported by a dedicated and knowledgeable professional staff.

Established in 2012 their mission is:

To enable transparent and trustworthy connections between researchers, their contributions, and their affiliations by providing a unique, persistent identifier for individuals to use as they engage in research, scholarship, and innovation activities.

What is an ORCiD ID?

It is a free, unique, persistent identifier (PID) for individuals to use as they engage in research, scholarship, and innovation activities.

An ORCiD has 16 digits e.g. 0000-0002-1825-0097

Why get an ORCiD?

Researchers can benefit from having an up-to-date ORCiD in many ways. It reduces admin burden, allowing more time for research. It ensures your work is correctly attributed to you by attaching it via your unique identifier not just your name, which may be the same or similar to another researcher. It also tracks your work throughout your career even if you change name or institution. Many publishers and funders now ask for your ORCiD.

How does ORCiD contribute to open research?

If you choose to have your privacy settings set to everyone, it makes your work more discoverable, not just publications but also your employment history, education, funding record and peer reviews. When depositing work to our data repository, it ensures it is correctly attributed. The more accurate we can make the data, the more accessible it is.

ORCiD collaborates with other scholarly PID services, providing transparent reporting of research activities. This fosters global collaboration in research.

For more information on how to link your ORCiD to MyImpact click here. For more information on the benefits of ORCiD for researchers click here.

Stacey Wagstaff – Research Integrity Project Officer, Newcastle University

Guest post: Making Astronomy Research More Reproducible

Chris Harrison, as an astronomer who is a Newcastle University Academic Track Fellow (NUAct). Here he reflects on the good and bad aspects of reproducible science in observational astronomy and describes how he is using Newcastle’s Research Repository to set a good example. We are keen to hear from colleagues across the research landscape so please do get in touch if you’d like to write a post.

I use telescopes on the ground and in space to study galaxies and the supermassive black holes that lurk at their centres. These observations result in gigabytes to terabytes of data being collected for each project. In particular, when using interferometers such the Very Large Array (VLA) or the Atacama Large Millimetre Array, (ALMA) the raw data can be 100s of gigabytes from just one night of observations. These raw data products are then processed to produce two dimensional images, one dimensional spectra or three dimensional data cubes which are used to perform the scientific analyses. Although I mostly collect my own data, every so often I have felt compelled to write a paper from which I wanted to reproduce the results from other people’s observational data and their analyses. This has been in situations where the results were quite sensational and appeared to contradict previous results or conflict with my expectations from my understanding of theoretical predictions. As I write this, I have another paper under review that directly challenges previous work. This has been after a year of struggling to reproduce the previous results! Why has this been and what can we do better?

On the one hand most astronomical observations have incredible archives where all raw data products ever taken can be accessed by anyone after the, typically 1 year long, proprietary period has expired (great archive examples are ALMA and the VLA). These always include comprehensive meta-data and is always provided in standard formats so that it can be accessed and processed by anyone with a variety of open access software. However, from painful experience, I can tell you that it is still extremely challenging to reproduce other people’s results based on astronomical observational data. This is due to the many complex steps that are taken to go from the raw data products to a scientific result. Indeed, these are so complex it is basically not possible to adequately describe all steps in a publication. The only real solution for completely reproducible science would be to publicly release processed data products and the codes that were used both to reproduce these and analyse them. Indeed, I have even requested such products and codes from authors and found that they have been destroyed forever on broken hard drives. As early-career researchers work in a competitive environment and have vulnerable careers, one cannot blame them for wanting to keep their hard work to themselves (potentially for follow-up papers) and to not expose themselves to criticism. Discussing the many disappointing reasons why early career research are so vulnerable – and how this damages scientific progress – is too much to discuss here. However, as I now in an academic track position, I feel more confident to set a good example and hopefully encourage other more senior academics to do the same.

In March 2021 I launched the “Quasar Feedback Survey”, which is a comprehensive observational survey of 42 galaxies hosting rapidly growing black holes. We will be studying these galaxies with an array of telescopes. With the launch of this survey, I uploaded 45 gigabytes of processed data products to data.ncl (Newcastle’s Research Repository), including historic data from pilot projects that lead to this wider survey. All information about data products and results can also easily be accessed via a dedicated website. I already know these galaxies, and hence data, are of interest to other astronomers and our data products are being used right now to help design new observational experiments. As the survey continues the data products will continue to be uploaded alongside the relevant publications. The next important step for me is to find a way to also share the codes, whilst protecting the career development of the early career researchers that produced the codes.

To be continued!

Image Credit: C. Harrison, A. Thomson; Bill Saxton, NRAO/AUI/NSF; NASA.

Guest post: Can we be better at sharing data?

David Johnson, PGR in History, Classics and Archaeology, has followed up his post on rethinking what data is with his thoughts on data sharing. We are keen to hear from colleagues across the research landscape so please do get in touch if you’d like to write a post.

But if I wanted the text that much, the odds are good that someone else will, too, at some point.

Recently I wrote about how my perceptions of data underwent a significant transformation as part of my PhD work.  As I was writing that piece, I was also thinking about the role data plays in academia in general, and how bad we are at making that data available.  This is not to say we aren’t really great at putting results out.  Universities in this country create tremendous volume of published materials every year, in every conceivable field.  But there is a difference between a published result and the raw data that created that result.  I am increasingly of the mind that we as academics can do a much better job preserving and presenting the data that was used in a given study or article.

It’s no secret that there is a reproducibility crisis in many areas of research.  A study is published which points to an exciting new development, but then some time later another person or group is unable to reproduce the results of that study, ultimately calling into question the validity of the initial work.  One way to resolve this problem is to preserve the data set a study used rather than simply presenting the final results, and to make that data as widely available as possible.  Granted, there can be serious issues related to privacy and legality that may come into play, as studies in medicine, psychology, sociology, and many other fields may contain personal data that should not be made available, and may legally need to be destroyed after the study is finished. But with some scrubbing, I suspect a lot of data could be preserved and presented within both ethical and legal guidelines.  This would allow a later researcher to read an article, and then actively dig into the raw material that drove the creation of that article if desired.  It’s possible that a reanalyses of that material might give some hints as to why a newer effort is not able to replicate results, or at least give clearer insights into the original methods and results, even if later findings offers a different result.

In additional to the legal and ethical considerations, there are other thorny issues associated with open data.  There is the question of data ownership, which can involve questions about the funding body for the research work as well as a certain amount of ownership of the data from the researchers themselves.  There may also be the question of somebody ‘sniping’ the research if the data is made available too soon, and getting an article out before the original researchers do.  As with textual archives, there can also be specific embargoes on a data set, preventing that data from seeing the light of day for a certain amount of time.

Despite all the challenges, I still think it is worth the effort to make as much data available as possible.  That is why I opted last year to put the raw data of my emotions lexicon online, because to my knowledge, no one else had compiled this kind of data before, and it just might be useful to someone.  Granted, if I had just spent the several weeks tediously scanning and OCRing a text, I may be a little less willing to put that raw text out to the world immediately.  But if I wanted the text that much, the odds are good that someone else will, too, at some point.  Just having that text available might stimulate research along a completely new line that might otherwise have been considered impractical or impossible beforehand.  Ultimately, as researchers we all want our work to matter, to make the world a better place.  I suggest part of that process should be putting out not just the results we found, but the data trail we followed along the way as well.

Image credit: Kipp Teague (https://flic.kr/p/Wx3XYx)

Guest Post: Rethinking What Data Is

This is our first guest post on the Opening Research blog. We are keen to hear from colleagues across the research landscape so please do get in touch if you’d like to write a post. But the honor of debut guest blogger goes to David Johnson, PGR in History, Classics and Archaeology.


The trainings on open publishing and data storage fundamentally changed my perspective on what constitutes data.

Coming to start my PhD from a background in history and the humanities, I really didn’t give the idea of data much thought.  I knew I was expected to present evidence about my topic in order to defend my research and my ideas, but in my mind there was a fundamental difference between the kind of evidence I was going to work with and ‘data’.  Data was something big and formal, a collection of numbers and formulae that people other than me collated and manipulated using advanced software.  Evidence was the warm and fuzzy bits of people’s lives that I would be collecting in order to try and say something meaningful about them, not something to ‘crunch’, graph, or manipulate.  This was a critical misconception that I am pleased to say I have come to terms with now.

What I had to do was get away from the very numerical interpretation of the term ‘data’, and start to think in broader terms about the definition of the word.  When I was asked about a data plan for my initial degree proposal, I said I didn’t have one.  I simply didn’t think I was going to need one.  In fact, I had already developed a basic data plan without realising what it was called.  My initial degree proposal included going through a large volume of domestic literature and gathering as many examples of emotional language as I could find to create a lexicon of emotions words in use during the nineteenth century.  In retrospect, it’s obvious that effort was fundamentally based in data analysis, but my notion of what ‘data’ was prevented me from seeing that at the time. 

What changed my mind was some training I went to as part of my PhD programme, which demonstrates how important it is to engage with that training with an open mind.  The trainings on open publishing and data storage fundamentally changed my perspective on what constitutes data.  Together these two training events prompted me to reconsider the way I approached the material I was collecting for my project.  My efforts to compile a vocabulary of emotions words from published material during the nineteenth century was not just a list of word, but was a data set that should be preserved and made available.  Likewise, the ever-growing pile of diary entries demonstrating the lived emotional experiences of people in the nineteenth century constitutes a data set.  Neither of these are in numerical form, yet they both can be qualitatively and quantitatively evaluated like other forms of data.

I suspect I am not alone in carrying this misconception as far into my academic work as I have.  I think what is required for many students is a rethinking of what constitutes data.  Certainly in the hard sciences, and perhaps in the social sciences there is an expectation of working with traditional forms of data such as population numbers, or statistical variations from a given norm, but in the humanities we may not be as prepared to think in those terms.  Yet whether analysing an author’s novels, assessing parish records, or collecting large amounts of diary writings as I am, the pile of text still constitutes a form of data, a body of material that can be subjected to a range of data analysis tools.  If I had been able to make this mind shift earlier in my degree, I might have been better able to manage the evidence I collected, and also make a plan to preserve that data for the long term.  That said, it’s still better late than never, and I am happy say I have made considerable progress since I rethought my notions of what data was.  I have put my lexicon data set out on the Newcastle Data Repository, so feel free to take a look at https://doi.org/10.25405/data.ncl.11830383.v1.

Image credit: JD Handcock Photos: http://photos.jdhancock.com/photo/2012-09-28-001422-big-data.html