All posts by b7003748

A researcher’s view of the UK Energy Storage Conference 2018

CESI PhD researcher, Natalia-Maria Zografou-Barredo, recently attended the fourth UK Energy Storage Conference in Newcastle. In this week’s blog, she takes us through the presentations that took place and summarizes her thoughts on the conference.


About the author 

Natalia-Maria Zografou-Barredo is a PhD researcher at Newcastle University and works with the EPSRC National Centre for Energy Systems Integration (CESI).  Her research focuses on multi-energy systems and microgrid operation.

Contact details: n.zografou-barredo2@newcastle.ac.uk


I recently attended the fourth UK Energy Storage Conference (UKES) held on the 20-22 March 2018. This year it took place in Newcastle in the Urban Sciences Building, and attendance was over 200. A consortium of speakers from academia, industry and policy within the UK and around the world joined the conference.

Presentations provided a holistic view of ongoing research on energy storage and portrayed energy storage as a significant asset in future energy systems. Main subjects covered included:

  • Policy and economics of energy storage systems
  • Operation and control
  • Demonstration and commercial deployment
  • Design, planning and integration of storage in energy systems
  • Energy storage for Future Mobility
  • Energy storage in the built environment
  • Thermal, mechanical, and thermochemical energy storage
  • Electrochemical energy storage
  • Gas storage

I attended different sessions. Nonetheless, presentations during the ‘Demonstration and commercial deployment’ session drew my attention due to some interesting questions and fruitful discussions between the speakers and the audience.

Presentations during this session covered both technical and social matters around energy storage. However, questions posed to the panel were almost exclusively around social acceptance of the future changes related to energy storage. And for good reason.

Electrical energy systems do not represent a ‘passive’ one-directional (i.e. from electrical energy production to consumption) system anymore. It is a fact that energy storage deployment (electric vehicles, demand-side management, energy storage in smart grids & microgrids, etc.) not only affects public life, but also depends on a mutual public cooperation.

Discussions during this session brought to realization that the implementation of future research on energy storage after ‘solving’ any technical challenges should potentially be on how to face (and maybe prevent) social ones. It was concluded that public cooperation poses an additional challenge in the integration of energy storage to future energy systems (apart from any existing techno-economic issues raised on other conference sessions).

Overall, the conference portrayed energy storage as a vital asset in future energy systems. The majority of speakers indicated the value of ongoing research of energy storage systems in order to face the challenges from a technical point of view. Nonetheless, public cooperation seems to be yet another important challenge in the deployment of energy storage systems & technologies that should be addressed in the near future.

UKES Conference Opening Plenary
Keynote speaker –  Prof Phil Taylor, Newcastle University


References

“UK Energy Storage Conference,” [Online]. Available: http://ukenergystorage.co/.

Can the UK kick its coal habit? – Professor Phil Taylor

Do we need to continue to open new coal mines to meet our energy needs? Can a whole systems perspective help the UK to meet its obligations to reduce carbon emissions and also ensure a secure energy supply?

Professor Phil Taylor discusses his input to the Department of Communities and Local Government (DCLG) planning debate about the need for a new open cast mine proposed near Druridge Bay in Northumberland.

About the Author

Professor Phil Taylor

BEng EngD CEng SMIEEE FIET FHEA
Director, EPSRC National Centre for Energy Systems Integration
Siemens Professor of Energy Systems
Deputy Pro Vice Chancellor of SAgE Faculty
Head of the School of Engineering
Newcastle University          

http://www.cesienergy.org.uk                                

 


Do we need to continue to open new coal mines to meet our energy needs? Can a whole systems perspective help the UK to meet its obligations to reduce carbon emissions and also ensure a secure energy supply?

In November 2015 the UK Government laid out plans for all coal-fired power stations to be phased out by 2025 at the latest.  As coal is the most polluting of the UK’s energy sources, including gas, and in light of the Paris Agreement under which the UK and other countries have agreed to undertake rapid reductions carbon emissions, coal is simply uneconomic as a fuel. In order to eliminate carbon emissions, energy companies urgently need to replace coal with cleaner energy sources.

Given this need to replace coal as a fuel, it is worrying that a new large opencast mine has been proposed near Druridge Bay in Northumberland.  The justification for opening the mine is that the coal extracted would be used to fuel power stations – maintaining the UK’s further reliance on coal as a fuel source.

Planning permission for the mine was approved by Northumberland County Council in July 2016.   However, Central Government called the approval for the mine to public inquiry on grounds of climate change.   This is the first time any planning permission decision has been called to public enquiry, on these grounds.

HJ Banks & Co Ltd argument for coal too narrow

During the public inquiry which began May 2017, HJ Banks & Co Ltd, the proposed developer of the site, argued that coal fired power stations are essential for the security of the UK’s energy supply.  Their expert witness argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. Other cleaner sources of energy cannot be relied upon as a consistent source of energy.  Wind power, for example, provides an intermittent source of energy as the wind does not always blow, and so wind turbines cannot be relied upon to satisfy the UK’s energy needs.  Similarly the sun does not always shine, so photovoltaic systems will not generate sufficient energy.  For these reasons, opening the new mine would be an important step in ensuring that the UK maintains good supply of coal for its power stations.

UK needs whole energy system approach

This siloed approach does not take into account the reality of the energy mix. There is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements.  The Department for Business, Energy and Industrial Strategy (BEIS) collate data on the UK’s electricity generation mix which are updated each quarter. These most recent figures were released in June 2017.  These show that compared with a year ago, gas generated energy increased by 3% to 40%, nuclear energy increased by 0.1% (19%) and renewables (wind and solar, hydro and bioenergy) increased 1% to 27%.  During the same period, the proportion of energy generated from coal fell by 5% to 11%.  These figures show coal is declining in importance and that we have many options to replace it.  However, it is just as important to consider flexibility in the energy system as a means of phasing out coal.  This flexibility can help us deal with peaks in demand and variability in the output of renewable energy sources.  This flexibility can be provided by a mixture of energy storage, demand side response (DSR) and interconnectors [i].

It is essential to take a whole systems approach when considering the UK’s energy mix. In order for the UK to meet the climate change commitments of the Paris Agreement, it needs to continue to phase out its coal fired power stations.  This would be possible by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas; and combining this with power produced from renewables such as wind, biomass and PV.

We can use a variety of technologies at a variety of scales to store energy when we have more than is needed, or when there is too much for network cables to carry. This energy can then be used at a time when it’s needed.

Britain also imports energy, via physical links known as interconnectors.  At present, the British energy market has 4GW of interconnector capacity.  The UK energy regulator, Ofgem, forecasts that planned projects will mean that this capacity will increase to 7.3GW by 2021.  In addition, the electricity required could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non-essential items when there is a peak in electricity demand [ii].

The increase in interconnector capacity, energy storage and DSR will help to balance supply and demand on the electricity grid, reducing the need to build new power stations.  An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

Professor Phil Taylor presented this argument at the Public Inquiry into the proposed open cast mine at Highthorn, Northumberland.  His argument represents one of the many decisions we could make to keep the lights on and is an example of the ways we can apply whole systems thinking to energy.   Professor Taylor appeared as an expert witness to the Inquiry for Friends of the Earth on a pro bono basis.  The outcome of the public inquiry is expected in autumn 2017.


References

[i] Department for Business, Energy & Industrial Strategy (2017). Section 5, Electricity. Energy Trends: June 2017 [Online]. Available at: https://www.gov.uk/government/statistics/energy-trends-june-2017 [Accessed 17/7/2017].

[ii]   Ofgem (2017). Electricity Interconnectors. [Online]. Available at: https://www.ofgem.gov.uk/electricity/transmission-networks/electricity-interconnectors [Accessed 21/7/2017].