Approaching Equality, Diversity and Inclusion within research teams

As EPSRC publishes their findings on gender perspectives within their research funding portfolio, our Centre Director, Dr Sara Walker and Centre Manager, Laura Brown discuss the challenges women working to help rebalance the mismatch face.

About the authors: Dr Sara Walker

Dr Sara Walker is Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

About the authors: Laura Brown

Laura is the Centre Manager, EPSRC National Centre for Energy Systems Integration and Energy Research Programme Manager, Newcastle University. Her research tackles the challenges of integration of state-of-the-art thinking and technology into legacy energy systems.

As an academic team, we have a responsibility to consider Equality, Diversity and Inclusion in the way we conduct our teaching, research and knowledge exchange. Doing the right thing is not always easy. We are in no way experts. But surely it is better to try, and accept that we will sometimes get it wrong?

Our research is funded by the EPSRC, for the National Centre for Energy Systems Integration and the Supergen Energy Networks Hub. So, we were interested to read the recently published EPSRC report Understanding our portfolio:  A gender perspective.

Within their report they state, “Underrepresentation of women in the engineering and physical sciences remains one of EPSRC’s largest equality, diversity and inclusion (ED&I) challenges and is a well-known issue in the engineering and physical sciences community.” We applaud the transparency that EPSRC has shown in issuing the report as we know, as scientists and engineers, one of the best ways of tackling problems is by considering the underlying data.

In our opinion, the findings of the report can be considered both worrying and illuminating. For example, higher value awards show significantly lower award rates to female Principal Investigators. Since 2007, applications of value over £10million have been received from 5 females, compared to 80 males. In 2018-19 (the latest year we have data for), just 15% of applications received were from female Principal Investigators.

Factors affecting application rates by female academics are likely to be numerous and complex, affecting individuals in different ways.

Some of these could be:

  • Women win fewer scientific prizes and so the public see fewer “success stories” of women, discouraging women to take up science subjects. (Callier, Conversation,  Jan 2019)
  • Women are evaluated by their students as less effective teachers than male counterparts, which may impact career progression (Basow, JEP, Sep 1987
  • Women are less likely to be selected at application stage for things like access to equipment. This was noted in a study of Hubble telescope time , for example. ( Johnson  & Kirk, HBR, Mar 2020)
  • Women get paid less: “The EPSRC’s analysis of the salaries which applicants request on grants is a very effective illustration of the gender pay gap. Using age as a proxy for career stage, we see men get paid more than women at similar career stages, and this effect increases with seniority level.” From @TIGERinSTEMM
  • The large grant applications are required to come from the Research PVC, of which we have very few women (Donald, Blog, Oct 2020)
  • Women undertake more unpaid work than male counterparts as parents, carers and in household duties, and this impacts the time available for, and consequent success in, delivery of those measures of “success” which are valued for promotion in the workplace. This impact of unpaid work has been particularly marked during COVID lockdown for women in academia ( Gewin, Nature, Jul 2020) and (Pinho-Gomes, BMJ GH Vol 5 Iss 7)

We underline could in the above section, because there is simply a lack of data. Reading “Invisible Women” by Caroline Criado Perez (Vintage, ISBN: 9781784706289) makes you realise that “lack of data in academia” can be replaced with “lack of data in society”.

Data is not available from EPSRC for other protected characteristics, and so our understanding of the academic experience is often limited to our own lived experience. In order to address EDI in our institutions, we often ask those in the protected characteristic groups to represent a heterogeneous mix of people and experience. As two white women we bring our white privilege to the table (a great resource on this is here: Even within white privilege there are intersections with our Northern and Scottish roots, and class, for example.

McIntosh (1989) lists several white privileges, and given recent discussions in the UK of decolonisation of the curriculum and the during the current Black History Month, this one gives pause:

“When I am told about our national heritage or about “civilization”, I am shown that people of my color made it what it is.”

McIntosh (1989) White Privilege: Unpacking the Invisible Knapsack

We are more than white women. We are white, heterosexual, married women who have children. So, as EDI champions, how can we reflect the experience of the full diversity of women? Women of colour, women without children, women who are disabled, women who are homosexual, or people who do not associate with binary expressions of gender? We may be very close to women with different lived experiences and have an appreciation of their experience through family and friends for example. And what role for men, how can they better understand the lived experiences of the full diversity of men? How can our research teams become better environments for all, regardless of difference?

We conclude it behoves each of us to read, observe and educate ourselves about the experiences of others. Be a good example. To take responsibility for our own awareness, to be reflective, and commit to being a better global citizen. To be kind. To be human.

Achieving net-zero in the UK through an integrated energy system

The Communities Secretary, Rt Hon Robert Jenrick MP, recently rejected permission for an open cast mine near Druridge Bay, stating that the proposal “is still not environmentally acceptable”. This announcement follows a lengthy decision process and extensive media coverage, including a Public Inquiry and an appeal to the High Court. In this blog CESI Director, Dr Sara Walker, comments on the case which was supported by evidence presented by CESI’s previous Director, Prof Phil Taylor on CESI’s whole systems approach to energy systems integration.

Druridge Bay, Northumberland

About the author: Dr Sara Walker

Dr Sara Walker is Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

Contact details

In 2014, a proposal was put forward to remove 3 million tonnes of coal from an opencast mine at Highthorn, close to Druridge Bay, on the Northumberland coast. The proposed developer, HJ Banks & Co Ltd, argued coal fired power stations are essential for the security of the UK’s energy supply and in July 2016, planning permission for the mine was approved by Northumberland County Council.

In a landmark move, central Government called a Public Inquiry on the grounds of climate change – the first time any planning permission decision has been called to inquiry on this basis.

In March 2018, the Communities Secretary Sajid Javid stated he had concluded the project should not go ahead on the grounds that it would exacerbate climate change. This rejection was the first time any planning permission decision has been refused on this basis, setting a precedent for all future applications.  This was seen as a significant step in taking tackling climate change seriously, showing the UK to be leading in this regard.

Following the announcement of the planning rejection, Banks lodged an appeal in the High Court.  The High Court found in favour of Banks in October 2018, returning the case to the Communities Secretary to reconsider the arguments presented.

At the Planning Inquiry, the expert witness for Banks argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. They also claimed other cleaner sources of energy cannot be relied upon as a consistent source of energy. Wind power, for example, provides an intermittent source of energy as the wind does not always blow. Similarly, the sun does not always shine, so photovoltaic systems will not generate sufficient energy. For these reasons, opening the new mine would have been an important step in ensuring that the UK maintains a good supply of coal for its power stations. However, there is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements. Instead, it is essential to take a whole systems approach when considering the UK’s energy mix.

The Department for Business, Energy and Industrial Strategy (BEIS) collates data on the UK’s energy generation mix.  The latest figures were released in July 2020 [1] and compare data for 2019 against previous years.  The shares of electricity generation by fuel in 2018 and 2019 are illustrated in Figure 1. These show that gas generated electricity increased slightly to 40.6%.  Electricity from renewables (wind, hydro, solar, wave, tidal and bioenergy) achieved a record high of 37.1% (121TWh), which is the first time renewables have provided over a third of the total generation mix. During the same period, the share of electricity generated from coal reduced to 2.1% (6.9TWh).  This represents a record low, down 59% compared to 2018.  The figures show that coal is declining in importance and that we have many options to replace it.

Figure 1 The share of electricity generation by fuel in 2018 and 2019 [1]

An integrated energy system

In his expert witness testimony to the Public Inquiry, CESI’s former Director and current Associate Director, Professor Phil Taylor, emphasised the need to take a whole systems view, highlighting CESI’s research into an integrated energy system. The UK can phase out coal-fired power stations by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas and combining this with power produced from renewables such as wind, biomass and PV. We can store energy when we have more than is needed, or when there is too much for network cables to carry, and then release it when is required. Britain also imports electricity via physical links known as interconnectors. The UK energy regulator, Ofgem, forecasts that planned interconnector projects will lead to a capacity of 7.3GW by 2021 (compared to total GB system generation capacity of 77.9GW in 2019). In addition, the electricity demand could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non‐essential items when there is a peak in electricity demand.

CESI evidence therefore showed that, by balancing supply and demand on the electricity grid, we can phase out coal and reduce the need to build new power stations. An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

“We are delighted that evidence provided by the National Centre for Energy Systems Integration has supported this landmark decision to reject further extraction of coal on grounds of Climate Change. Our work has clearly demonstrated that a Whole Systems approach with Systems Integration can enable us to decarbonise our energy systems whilst maintaining reliability and security of supply”

Director of CESI, Dr Sara Walker

Net Zero

In September 2020, the Communities Secretary, Rt Hon Robert Jenrick MP, rejected the open cast mine, stating that  the “substantial extent of the landscape harm means that the proposal is still not environmentally acceptable, nor can it be made so by planning conditions or obligations”. 

This decision will help the UK to achieve its target to phase out coal by 1 October 2024, announced by Prime Minister Boris Johnson in February 2020. It will also the support the ambitious aims of cutting carbon emissions targets set by councils in the North East of England.  These include Northumberland County Council, which has set the target of being carbon neutral by 2030.  The implications of this decision for our future energy supply are significant and will affect us all.


  1. Digest of United Kingdom Energy Statistics 2020, Department for Business Energy & Industrial Strategy [accessed 9/10/2020]

Where is the value in cost, carbon and resilience in taking an energy systems integration approach to the UK’s energy future?

Researchers and Academics from the EPSRC funded Supergen Energy Networks Hub and the National Centre for Energy Systems Integration (CESI), Dr Adib Allahham, Dr Hamid Hosseini, Dr Vahid Vahidinasab, Dr Sara Walker & Professor Phil Taylor, recently published their journal paper in the International Journal of Electrical Power and Energy Systems on Techno-economic-environmental evaluation framework for integrated gas and electricity distribution networks considering impact of different storage configurations.

About the author: Dr Adib Allahham

Adib is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub.  Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Contact Details
email: @adiballhham

About the Paper

Governments around the world are working hard to reduce their Greenhouse Gas (GHG) emissions. In the UK, the government has set a target of “Net Zero” GHG emissions by 2050 in order to reduce contribution to global warming [1]. This necessitates the integration of more Renewable Energy Sources (RESs) into the energy networks and consequently reduction in the use of fossil fuels while meeting and reducing energy demand.

To achieve this objective flexibly and reliably, it may be necessary to couple the energy networks using several network coupling components such as gas turbine (GT), power-to-gas (P2G) and Combined Heat and Power (CHP) [2]. Also, the energy networks may benefit from different types of Energy Storage Systems (ESSs) in order to be able to compensate for any energy carrier deficit or other constraints in energy supply in any of the networks [3].

In order to comprehensively study multi-vector integrated energy systems and analyse ESS potentials, a Techno-Economic-Environmental (TEE) evaluation framework needs to be designed to investigate the mutual impacts of each of the networks on the operational, economic and environmental performance of others. This is the main aim of this study.

The paper divides ESS into two different categories of Single Vector Storage (SVS) and Vector Coupling Storage (VCS).

Figure 1: A conceptual representation of SVS and VCS storage devices in an Integrated Gas and Electricity Distribution Network (IGEDN)

A literature review looked at models which have been used to perform planning of the whole energy system of several countries taking into account all layers of the energy system, as well as different types of energy storage in multi-vector energy networks. As well as using a case study from a rural area in Scotland which is connected to the electricity distribution network only, also benefitting from a small wind farm and roof-top PV’s.

Fig. 2. The schematic of the studied rural area in Scotland including the separate gas and electricity networks (without considering P2G and VCS) and IGEDN (with considering P2G and VCS) [4]

A framework was developed as a result of the literature review carried out and this was tested on the real-world rural area in Scotland.  The evaluation framework provides the ability to perform TEE operational analysis of future scenarios of Integrated Gas and Electricity Distribution Networks (IGEDN).  Several specifications and achievements from this study are identified in the paper which is available to read online and will be published in the November issue of the Journal.

[1] Committee on Climate Change. Net Zero – The UKś contribution to stopping global warming, 2019. Google Scholar
[2] S. Clegg, P. MancarellaIntegrated electrical and gas network flexibility assessment in low-carbon multi-energy systems IEEE Trans Sustainable Energy, 7 (2) (2016), pp. 718-731 CrossRefView Record in ScopusGoogle Scholar
[3] S.H.R. Hosseini, A. Allahham, P. TaylorTechno-economic-environmental analysis of integrated operation of gas and electricity networks 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1-5 CrossRefView Record in ScopusGoogle Scholar
[4] EPSRC National Centre for Energy Systems Integration (CESI)., 2017.

Optimal planning and operation of multi-vector energy networks: A systematic review [1]

Academics from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub Dr Hamid Hosseini, Dr Adib Allahham, Dr Sara Walker and Prof Phil Taylor recently published their journal paper in Elsevier’s prestigious journal Renewable & Sustainable Energy Reviews (impact factor 12.11).

About the author

Dr Hamid Hosseini joined Newcastle University in 2017 as a postdoctoral research associate to the EPSRC National Centre for Energy Systems Integration (CESI).  Since joining the team, Hamid has been actively involved in research looking at planning, optimisation and operational analysis of integrated multi-vector energy networks. He also collaborated with a multi-disciplinary team on the UKRI Research and Innovation Infrastructure (RII) roadmap project, advising UKRI on the current landscape and future roadmap of Energy RIIs. He has supported and collaborated with several CESI Flex Fund projects to investigate further various aspects of Energy Systems Integration (ESI). Moreover, he is working with the Executive Board of Northern Gas Networks to identify the potential energy systems challenges that could be investigated at the Customer Energy Village of the Integrated Transport Electricity Gas Research Laboratory (InTEGReL), through collaboration with a multi-disciplinary team of  energy experts in industry and academia.

Contact email: and profile details

The international aspiration to reach net zero carbon in energy systems by 2050 is growing. In the UK, the government has set a target of ‘Net Zero’ Greenhouse Gas (GHG) emissions by 2050 in order to reduce contribution to global warming [2]. This necessitates performing energy evaluation through a system-of-systems approach, in order to understand the intrinsic properties of the main layer/sections of the Integrated Energy Systems (IESs), from natural resources and distribution to the final energy user as well as the interactions and interdependencies within each layer/section [3].

This paper provides a systematic review of recent publications on simulation and analysis of integrated multi-vector energy networks (rather than energy hubs) and carries this out through the lens of the internationally accepted concept of the energy trilemma, i.e. Flexibility of Operation, Security of Supply and Affordability. The significant detail included in the paper and the link to the trilemma is required in order to identify gaps and directions for an appropriate future applied research for facilitating the path to a decarbonised economy.

A systematic literature review of nearly 200 published papers was carried out using keywords to analyse Integrated Energy Networks (IENs). The papers have a wide, international authorship (Figure 1), showing that the topic of energy networks analysis is an important topic for governments around the world, as this supports meeting carbon reduction targets. 

Figure 1 The number of reviewed papers from different countries, based on the affiliation of the first author

The reviewed papers were classified into three groups (i) Operational analysis (ii) Optimal dispatch and (iii) Optimal planning, focussing on energy networks including gas, electricity and district heating networks as well as their interactions and interdependencies.

Figure 2 The three subject groups of papers reviewed and their topics

A detailed evaluation of the energy trilemma was carried out for each of the three groups of papers.

The paper looks at key findings, provides insights for the energy research community towards pursuit of low carbon transition and makes recommendations for future research priorities including: (i) development and demonstration of cyber resilient smart energy management frameworks, (ii) ways to overcome organisational and regulatory barriers for future increased energy networks integration, (iii) uncertainty analysis of the future performance of IENs, (iv) potential economic value of energy systems integration and (v) deployment of smart multi-energy regions.

The full paper, will appear in the November 2020 issue of the Elsevier Journal, Renewable and Sustainable Energy Reviews, and is available to view online.



[1] Hosseini, SHR, Allahham, A, Walker, SL, Taylor, P. (2020). Optimal planning and operation of multi-vector energy networks: A systematic review. Renewable and Sustainable Energy Reviews, 133. DOI: j.rseer.2020.110216

[2] Committee on Climate Change. Net Zero – the UK’s contribution to stopping global warming. 2019. accessed, net-zero-the-uks-contribution-to-stopping-global-warming/. [Accessed 28 October 2019].

[3] Eusgel I, Nan C, Dietz S. System-of-systems approach for interdependent critical infrastructures. Reliab Eng Syst Saf 2011;96(6):679–86.

How far does the Ofgem Decarbonisation Action Plan support the transition to a net zero UK?

Dr Sara Walker and Professor Janusz Bialek comment on the recently published Ofgem Decarbonisation Action Plan.

About the authors

Dr Sara Walker is Associate Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

Contact details:

Profile details

Professor Janusz Bialek FIEEE is Professor of Power Energy Systems in the School of Engineering, Newcastle University. Janusz’s background is in power systems but he has closely collaborated with economists, mathematicians and social scientists. He has published widely on technical and economic integration of renewable generation in power systems, smart grids, power system dynamics, preventing electricity blackouts and power markets.

Contact details:

Profile details

While most our worries relate now to the COVID-19 pandemic, we should not forget about the biggest long-term threat to the human race – the climate emergency. In this blog we comment on a recently published “Ofgem decarbonisation action plan” which is a welcome opportunity to see the thoughts of the regulator on the unprecedented need for rapid transitions in our energy systems.

The plan provides some context to the 2050 net zero target with a graph (Fig. 1), showing a 40% reduction in GHG emissions over the period 1990 to 2017. However, the linear reduction proposed from 2017 to 2050 is perhaps misleading the sector in thinking the 27 year 40% reduction to 2017 is similar to the rate of change we now need moving forward. This is not the case, we need an exponential decrease in emissions if we are to come close to the targets set by the Conference of the Parties in Paris. Also it should be appreciated that the closer we get to the net-zero target, the more difficult and costly it will be to reduce the emissions any further. The reason is that once the cheapest means have been exhausted (so-called low-hanging fruits), more expensive ones will have to be used.

Source: Ofgem (2020) Ofgem decarbonisation action plan. London, Ofgem.

Much of the discussion in the Ofgem plan talks about the need for better interconnection across the energy vectors, and across uses/users. In discussing the power sector, the report refers to key scenarios in the Committee on Climate Change (CCC) report and therefore Ofgem assume Carbon Capture and Storage is needed in order for gas generation to continue. This is an area of contention for the CCC report, since Carbon Capture and Storage technology is currently not commercially available. Alongside gas is nuclear generation, and the Ofgem report assumes nuclear and gas will generate 50% of the UK’s electricity needs. The competitiveness of new nuclear is uncertain, with new offshore wind prices under the Contracts for Difference Scheme being cost competitive with the fixed price of electricity to be generated by the new Hinkley power plant (although one has to acknowledge that nuclear power provides a better security of supply than relatively highly variable and less predictable wind power).

Greater strategic co-ordination and increased investment in generation, network infrastructure, stoppage and other flexibility services are all raised as important in the plan. However, what has not been made clear is a need for a substantial network investment in view of electrification of transport and heat. The report concentrates on the need for proper price controls for network companies but does not address the question by how much the current power network has to be expanded and how to do it in the face of fierce public opposition to construction of new lines.

To understand the problem, check the diagram below which shows seasonal variations in the demand for electricity (blue), non-daily-metered gas demand (red) and total gas demand (amber). Clearly gas demand (which largely corresponds to the heat demand) dwarfs the electricity demand both on average and in terms of seasonal variations. The Ofgem plan recommends that decarbonisation of heat be through a combination of heat pumps, hydrogen and heat networks, but that heat pumps will likely contribute the majority of the heat demand.

Source: Deakin et al (2020) Calculations of System Adequacy Considering Heat Transition Pathways (arXiv:2002.11570v1)

With regards transport, the Ofgem plan talks about the current >30 million cars in the UK in 2019, and the expected 46m electric vehicles by 2050. “Increased uptake of electric vehicles creates a rare opportunity for a win-win-win for society”. 46m electric cars in the UK by 2050 will mean significant increases in congestion, and significant increase in electricity demand, along side some (albeit reduced) emissions. We would welcome a greater emphasis on public transport, rail and the heavy and light goods vehicle sectors.
Hence electrification of heat (either directly or by heat pumps) and transport would require not only a substantial new generation capacity but also a significant strengthening of both the transmission and distribution networks. But how to do it when any attempts in the past to build a new, or even strengthen an existing, transmission line (see the case of Beauly-Denny line) led to years of arguing and public enquiries? We simply do not have time for that. This is a big elephant in the room.

Flexibility is key to minimise the overall system costs (again check the diagram above to appreciate large fluctuations in energy demand) but the needs are currently highly uncertain given the assumptions around generation from wind, solar and nuclear (all of which are relatively inflexible), along with a potential reduction in load flexibility if significant energy efficiency measures are achieved in future.

Currently the Electricity System Operator (ESO) monitors only transmission connected wind and solar generation and has no direct means of monitoring the distribution-connected generation (DG). This makes it difficult for the ESO to balance the system, and DG was already one of the contributing factors to the GB outage on 9 August 2019. The situation is becoming increasingly difficult to manage, as DG was already 1/3 of installed generation capacity in 2018 and is bound to increase more. In other countries, like e.g. Ireland, the System Operator has visibility of all plants bigger than 5 MW and we see no reasons why GB should be any different.

The Ofgem plan states that regulator has a responsibility to consider the distribution of costs for system changes, particularly for vulnerable customers. Early adopters of technology such as EVs and smart controls are better placed to benefit from energy transitions (since early adopters are usually more wealthy), and those left behind are often in the lowest socio-economic groups. If the costs and benefits of energy transitions fall on different groups, in different locations, at different points in time, then the regulator will need to consider trade-offs in light of its core priorities of protecting the environment, supporting customers, and delivering competition. Perhaps these core priorities need to be weighted, or revised, in light of the Climate Emergency.

What will the UK’s future energy research and innovation infrastructure look like?

Dr Zoya Pourmirza and Dr Hamid Hosseini talk about their recent work as part of a team of energy experts from Newcastle University helping UK Research & Innovation with an analysis of the UK’s existing research landscape and future infrastructure requirements.

About the authors

Dr Zoya Pourmirza is a Research Associate in Newcastle University’s School of Engineering. She is involved in a number of research and teaching projects. Her principle research interests are in smart energy systems and information and communication technology (ICT) with particular emphasis on making the ICT infrastructure energy aware and cyber secure.

Contact details:
Profile details

Dr Hamid Hosseini is a Research Associate in Newcastle University’s School of engineering. His principle research interest is in the simulation and analysis of energy system. In his work for the EPSRC National Centre for Energy Systems Integration (CESI), Hamid has been investigating the planning, optimisation and operation analysis of integrated energy networks.

Contact details:
Profile details

UK Research & Innovation (UKRI) has recently published two reports giving an analysis of the UK’s existing research landscape and identifying its future infrastructure requirements. These reports make recommendations across six broad research sectors key to ensuring the UK remains a global leader. These six research sectors are Biological Sciences, Health and Food; Physical Sciences and Engineering; Social Sciences, Arts and Humanities; Environmental Sciences; Computational and e-infrastructure and Energy.

As members of a multi-disciplinary team of EPSRC National Centre for Energy Systems Integration (CESI) academics and researchers from Newcastle University, we were commissioned by UKRI to consult with the energy community. The team, led by CESI’s Director, Professor Phil Taylor, worked with UKRI to draft reports detailing our findings and recommendations. In carrying out this work, we made a substantial contribution to the preparation of the energy sections of the UKRI Research Landscape and Research Infrastructure reports.

Consultation exercise

The consultation exercise had three main aims: to inform future research and innovation infrastructure priorities, to provide the groundwork to ensure the UK remains a global leader in research and innovation and to set out the essential infrastructure needed to reach this long-term vision.

The team consulted extensively with leading UK energy industry and academics with expertise across a wide range of sectors, including nuclear, renewables, hydrogen, conventional technologies and whole energy systems. The consultation process was also extensive, including two questionnaires, four facilitated workshops at different locations across the UK and over one hundred 1-1 interviews with experts.

Initial analysis and findings

Based on the feedback received in the first stage of the consultation process, we drafted an interim report to UKRI giving an initial analysis of the UK Energy research infrastructure and a description of the existing energy research landscape. This interim report was included as a chapter in the UKRI Infrastructure Roadmap report alongside chapters for each of other five key research sectors.

An important finding of our initial consultation exercise was that opportunities to grow future energy research and innovation infrastructure could be classified in seven key themes. These informed further rounds of consultation, and are listed in the UKRI initial analysis report as follows:

  • Whole energy systems, including energy demand and power distribution networks
  • Fuel cells and hydrogen
  • Energy storage
  • Renewable energy sources
  • Alternative fuels
  • Nuclear energy – fission and fusion
  • Carbon capture and storage
Energy sector themes overview [Graphic: UKRI]

Final reports

Following this second consultation exercise, we incorporated our findings into two detailed reports for UKRI on the existing energy research and innovation landscape and on the sector’s future infrastructure requirements. These formed the basis of the Energy sections in the two recently published UKRI reports:

These reports referenced key energy research undertaken across the UK, including research involving multi-disciplinary teams from Newcastle University such as CESI and the Active Building Centre (ABC).

Key findings and recommendations

As a result of the consultation exercise, we helped to develop a snapshot view of existing infrastructure of regional, national and international importance. We identified thirty-three dedicated energy infrastructures and help to write case studies of existing key energy research infrastructure which were published in the Landscape Analysis report.

In the report identifying opportunities to grow our capacity, our findings contributed to recommendations for how the energy themes can be progressed and identifying case studies for each. The published case studies include one of CESI’s research demonstrators, The Integrated Transport Electricity Gas Research Laboratory (InTEGReL), as infrastructure offering a whole-systems approach to the UK’s energy use. Newcastle University is working in partnership with Northern Gas Networks and Northern Powergrid to develop the site. Its aim will be to allow academia, industry and government to explore and test new technologies in the electricity, gas and transport sectors in one place, delivering a more secure, affordable, low-carbon energy system.

The Integrated Transport Electricity Gas Research Laboratory (InTEGReL) [Graphic:Northern Gas Networks]

Of particular relevance to CESI are the recommendations for the whole energy systems theme. These include a new interdisciplinary centre for excellence in energy analysis integration and a decarbonisation of heat demonstrator, both of which will make an important contribution to investigations into how we might achieve a net-zero energy future.

UKRI Research and Innovation Infrastructure: Energy
Project team

Professor Phil Taylor
Dr Damian Giaouris
Dr Sara Walker
Dr Zoya Pourmirza
Dr Hamid Hosseini
Laura Brown
Alison Norton

Getting it done? The UK 2020 Budget and the support for a net-zero transition in the energy sector.

About the authors:

Dr Sara Walker is Reader in Energy at Newcastle University and Director of Newcastle University Centre for Energy.

Professor David Flynn is Professor of Smart Systems at Heriot Watt University

Both Sara and David are Associate Directors of the EPSRC National Centre for Energy Systems Integration, a £20m collaborative research programme with industry and government investigating the social, ecconomic and technical value in energy systems integration.

March 2020 Budget

On 11th March 2020, the Chancellor Rishi Sunak presented to Parliament the Government budget¹. This was an opportunity for the UK Government to clearly signal its commitment to deliver on the net-zero greenhouse gas emissions target for 2050 and to also lay the groundwork for COP26 as the host nation.

Albeit the language of the previous administration associated with “industrial strategy” was dropped, the Government retained a reference to the Grand Challenges, indicating that there is likely to be continued investment into energy innovation and climate change mitigation. A key indication of this is the commitment to at least double investment in the Energy Innovation Programme.


The first mention of issues related to energy in the Chancellor’s speech came with an announcement to continue the freeze on fuel duty. For comment on this, and other transport initiatives in the Budget, we refer you to DecarboN8’s review². In a separate announcement, Business Secretary Alok Sharma previously confirmed a £36.7 million investment to design, test and manufacture electric machines. £30 million will be used to create a national network cutting-edge centers led from Newcastle University – based in Newport, Nottingham, Strathclyde, and Sunderland – to research and develop green electric machines including planes, ships, and cars. This represents the “demonstrator” element of the Industrial Strategy Challenge Fund Driving the Electric Revolution Challenge.

And then …

The second mention of energy came in an announcement, as part of the Research and Development (R&D) spend, of £900m funding for nuclear fusion, space, and electric vehicles. As employees of research organizations, we welcome the announcement of £22bn per year by 2024-25, in research and development. However, the role of new nuclear in the Committee on Climate Change Net Zero technical report³ is relatively minor.
On housing, the Budget refers to £12.2bn for the Affordable Homes Programme over 5 years, a push for 300,000 new homes per year, and reforms to planning to accelerate development. No commitment is made to the standard of new homesª, or retrofit of existing homes, which is inconsistent with the Committee on Climate Change Net Zero report, which found that high levels of energy efficiency are needed to get close to the zero targets.

What does this mean for energy sector? 

There is a clear need to improve the quality of UK homes, in a way that reduces energy use and moves us towards heating systems that use lower-carbon fuels. We need to make urgent changes in this area, from research to improve the performance of individual technology like heat pumps, to understanding possible future housing performance and the energy needs associated with that. The EPSRC National Centre for Energy Systems Integration (CESI) is looking at these types of research challenges.

The meat of the Budget from an energy perspective is in the Budget report section on “Growing a greener economy”. There is an announcement to double the size of the Energy Innovation Programme as mentioned previously, although some of this money is for R&D and therefore likely to be included in the figures above. A further £800m was announced by the Chancellor for the development of two Carbon Capture and Storage (CCS) sites through the creation of a CCS Infrastructure Fund. CCS support was removed by previous administrations but is integral to many scenarios within the Committee on Climate Change Net Zero report.

No figures are mentioned, but the Budget report includes a new support scheme for biomethane funded by a Green Gas Levy, and a Low Carbon Heat Support Scheme to enable the installation of biomass boilers and heat pumps. £270m is promised to enable new and existing heat networks to adopt low carbon heat sources, to follow on from funding of £97m for the final year of the Heat Networks Investment Project (HNIP). There is a rise in the Climate Change Levy on gas (for 2022-23 and 2023-24). The Renewable Heat Incentive is extended to 31st March 2022. Furthermore, £10m in 2020-21 is to support the design and delivery of net zero policies and programs. Heat networks are an area of research for the EPSRC National Centre for Energy Systems Integration (CESI), and we also expect to investigate more scenarios with hydrogen and CCS now that the goal for the UK has changed from 80% to a net-zero target.

And Finally

Given the critical interdependencies of our energy infrastructure to other vital services e.g. water, transport, services from public buildings, we also see opportunities to accelerate and distribute the efforts in decarbonisation by utilising the opportunities of the Making the most of Government knowledge assets initiative. The public sector holds around £150 billion of knowledge assets (intellectual property, tech, data, etc.), which is vital in shaping the operation and planning of decarbonised services. However, the absence of any Budget support for solar, wind, and storage – elements seen as vital with renewable generation four times current levels in some Committee on Climate Change scenarios – is of great concern. As is the lack of investment to decarbonise the building stock.

Getting it done isn’t the same as getting it right. And for the UK energy sector, there is very little in the budget which gives confidence that we are doing enough, let alone doing it well.


  2. with for example: £403m for the Plug-In Car Grant; £129.5m to extend the scheme to vans, taxis and motorcycles; Vehicle Excise Duty exemption; £500m over 5 years to roll out rapid charging; removing red diesel tax relief; £304m for NOx reduction; freeze of fuel duty; £20m midlands rail hub; £5bn for new buses and cycling; £500m pothole fund; all dwarfed by the £27bn between 2020 and 2025 for road investment. Aviation is also mentioned with regards regional connectivity.

ª “2.95 Future Homes Standard – The government is committed to reducing emissions from homes and to helping keep household energy costs low now and in the future. In due course, the government will announce plans to improve the standards of new built homes.”

UPDATED: What does the power outage on 9 August 2019 tell us about GB power system?

About the author:

Professor Janusz Bialek is Professor of Power and Energy Systems at Newcastle University, UK.

9th of August Power Outage on GB system

UPDATED to include reference to the authors, Energy Policy Research Group working paper with Cambridge University¹ 

The power outage on 9th August 2019 that affected over 1 million customers in England and Wales and caused a major disruption to other critical infrastructures was a major news item and sparked wide-spread discussions about who is to blame. Power outages are like stress tests exposing strengths and weaknesses of the power system as the whole and its constituent elements and other critical infrastructures connected to it so our main aim is to consider the title question: what does the power outage tell us about the state of GB power system?

A uniformly accepted (N-1) reliability criterion stipules that there should be enough fast power reserves to respond to a loss of one power station, as the probability of two power stations simultaneously failing is very low. On 19 August a lightning strike caused two power stations to trip, so it was (N-2) event. Consequently, frequency dropped below the statutory limits to 48.8 Hz which triggered under-frequency load shedding. Frequency was then returned to 50 Hz in about 5 mins and power supplies were restored within 40 mins. The main adverse effect of the blackout was a severe disruption to rail service around London due to an unexpected failure of trains when frequency dropped below 49 Hz. Hence, everything seemed fine as the power system itself responded exactly how it was designed to. Should we then be happy about the state of the GB power system? The answer is: not really. The blackout has uncovered important fault lines which may significantly affect reliability of the system in a near future.

August 2019 blackout frequency drop

Changing landscape 

Over the last 10 years or so the GB power system has changed quite rapidly and significantly with renewables, often embedded in the distribution level, replacing traditional gas/coal generation and increasing deployment of energy storage, active demand and smart grids technologies. To put in simple terms, it means that a lot of new gear and controls were added to the system in a very short time. Hence it is increasingly difficult for the Electricity System Operator (ESO) to fully monitor, model and control the whole system. As a consequence, the probability of hidden common modes of failures, affecting one than more unit, has increased – as exemplified by the 9 August outage. This would suggest that it might be prudent to strengthen the old (N-1) security standard by providing extra security margin.

There were also other issues highlighted by the outage. Embedded generation reached such a high penetration level that it cannot be treated any longer as negative demand. Its importance for real-time power balancing and in a response to disturbances requires a new approach. Traditional under-frequency load shedding disconnects indiscriminately all customers on the disconnected feeders, including embedded generation and frequency response units which are essential for the system to survive. With rapid advances in telecommunication, it should be possible to assess in real time the actual loading on individual feeders so that load shedding has the maximum possible effect and perhaps also implement load shedding at 11 kV level, rather than 33 kV, hence allowing more selective operation.

Lessons learned

As power systems are more likely to be affected by large disturbances due to the reasons outlined above, the ability of critical infrastructures and services to ride through the disturbances has to be closely monitored and tested. Not only back-up supplies have to be regularly checked but also compliance with the regulations must be enforced to make sure that the infrastructures can survive large frequency deviations.

Finally a question arises why some GB outages that affected hundreds of thousands of people over the last two decades attracted a public attention and media coverage and others did not. Our conclusion is that short-duration outages matter only if they affect critical infrastructures, especially transport, in London and the surrounding areas. What really matters to the public is not the number of people affected by a power outage but how the disturbance affects their life. Hence if a disturbance is of a relatively short-duration and does not disrupt significantly critical infrastructures, it does not attract much attention. Also outages affecting metropolitan areas such as London are more likely to attract the attention of media than those happening elsewhere.



Heads or tails: achieving Net Zero by 2050 – Claire Copeland

As part of our Year 3 review of CESI research, we are re-publishing a SPRU blog written by Claire Copeland, CESI researcher on Future Energy Scenarios.

About the author:

Claire Copeland is a Research Fellow in SPRU (SPRU – Science Policy Research Unit) at the University of Sussex.

Her principal research interest is in energy futures focusing on the development of narrative scenarios for the UK and the role of energy-economy models in scenario development processes.

Contact details: Profile Details

First published on the SPRU Blog site – May 17th, 2019

Another climate report and another urgent call for action, along with a dizzying array of graphs and figures. The Committee on Climate Change (CCC), who advise the UK government on policies and planning for a low carbon economy, have produced their analysis and recommendations on how to stop UK’s contribution to global warming by 2050. This follows the “Paris Agreement” signed in December 2015 where the UK, along with 196 other countries, agreed to reduce their nation’s greenhouse gas emissions in efforts to limit global warming to 1.5°C above pre-industrial levels.

The CCC’s excellent and thorough report makes for some tough reading; not for its 277 pages and plethora of statistics and figures, but for the scale of collective effort required. The benign-sounding estimate of costs – 1-2% of GDP – disguises the extent of system change and efforts required, not only of government and businesses, but households as well.

Technological fix is not enough

For net zero emissions in the UK; industry and transport need to be completely decarbonised as well as almost entirely how we heat buildings. CCC suggests this can be achieved with electrification and hydrogen technologies, requiring deployment of four times the current level of renewables. Critically, this also depends on the deployment of carbon capture and storage (CCS), including net negative technologies such as bio-energy carbon capture and storage (BECCS), and some direct air capture (DAC) to take CO2 from the air and sequester underground. BECCS and DAC are needed because of the difficulties in decarbonising aviation and shipping.

Carbon capture and storage technology in Alberta, USA (Free image)

The UK has so far had little success in getting CCS off the ground: In 2015, the then chancellor George Osborne, said it was “too costly” and pulled the plug on £1 billion of government funding. This makes deployment of CCS at the scale required much more difficult. However, there has been recent renewed interest from the government in CCS, but this is with a smaller pot (£20 million) and with broader ambitions to include industrial decarbonisation.

Much is made in the report about progress to date and the fall in the cost of deploying renewable technologies, particularly from wind. The CCC’s estimate of costs, incredibly, is a similar size relative to GDP as they estimated for achieving the Climate Change Act 2008. However, the UK is not on track to meeting its obligations set out in 2008, and there is also no guarantee that renewables will remain low cost. Wind turbines have towers made from steel and industrial decarbonisation efforts, whether here or elsewhere, could lead to that steel becoming substantially more expensive. For example, a fossil free steel plant initiative in Sweden, predict rising global demand could result steel prices increasing 20-30%. This will impact on the cost of wind power and potentially result in questionable financial viability if deploying in places that are less favourable for wind.

Rampion Wind Farm seen from the coast of Brighton. Photo by Dominic Alves shared under CC BY 2.0 license

But all these technologies will not be enough. As has been highlighted by some news articles so far, efforts to change consumer behaviour will also be needed: Flights will need to be curbed and a switch in diets away from meat, poultry, fish and dairy will be needed, impacting on UK’s livestock farmers. If consumer behaviour overall does not shift in the direction and to the extent required, then this will need to be compensated for elsewhere and could result in higher costs.

No better than the toss of a coin?

Even if CCC’s recommendations are implemented, and replicated around the world, the chances of limiting warming to 1.5°C would be over 50%. This means that the chances of success could be little better than the toss of a coin. It is curious that the CCC’s estimate of costs for action under the Climate Act 2008, used higher chances (66%) in limiting warming (to 2°C). By setting the chances of succeeding lower, CCC has reduced the costs and efforts required. Presumably so as to make this politically palatable.

This does not appear to be consistent with the Paris Agreement’s requirement for the “highest possible ambition” and there are calls for the UK to cut emissions even faster and be net zero. However reducing emissions faster, say the CCC, would be “very risky”– particularly for the UK economy that would see capital being terminated too early and scrapped.

Talking the talk, but not walking…

While UK Parliament has declared a climate emergency, recent decisions made by the UK government are at odds with halting contribution to climate change: Expansion of Heathrow with an extra 16 million long haul seats available by 2040, and overriding local concerns for shale gas development. While attempts were made to overturn the government’s Heathrow expansion decision this was not successful. Furthermore, without the deployment of CCS, there is absolutely no room for developing new natural gas reserves for UK to become a net zero emissions nation.

Heathrow Airport runway (free image)

Where the burden of costs should fall is going to be a highly politicised issue. The CCC state clearly that the distribution of costs should not only be determined (by the government) as fair, but be perceived to be fair. No matter what the cost is in proportion to the GDP is overall – what will matter is not only the appetite, but crucially the ability, to absorb costs whether it be a particular project, business, employee, consumer, or household.

Costs of mitigating climate change became a hot topic in the recent elections in Finland. The Finns Party campaigned against those costs and resulted in coming second in the election. Given our own problems with whether or not and how to leave the EU, and the lack of understanding of (or even regard to) the financial consequences of doing so, action to mitigate climate change is likely to be a contentious issue.

While there are signs that the public mood is changing, there is no room for complacency and action is needed by each of us, since politics and technological fixes alone will not get the UK to net zero emissions. The right noises have come from UK’s politicians, but this has yet to be translated into the urgent action needed to steer our energy system and economic activity onto the right track. As individuals we also need to do our bit and be willing to change our lifestyles, before nature does this for us. Making sure this transition happens in a way that is fair and just to all is going to be critical to its success.

The Future of Energy – Dr David Greenwood

Dr David Greenwood discusses talks delivered at a recent Cafe Scientifique event by three CESI researchers on their vision for the future of energy .

About the author:

Dr David Greenwood is a researcher with the National Centre for Energy Systems Integration (CESI) and is based at Newcastle University.

His research focuses on taking advantage of flexibility within energy systems and understanding sources of uncertainty and variability such as customer demand and intermittent generation.

Contact details:        Profile details

Inspired by the Great Exhibition of the North, Newcastle University hosted a series of Café Scientifique events at the Urban Sciences Building, part of the rapidly expanding Newcastle Helix site.

The National Centre for Energy Systems Integration organised one of these events, with the title “The Future of Energy”, where three CESI researchers presented the vision of the UK’s energy future, and how we can get there.

Cafe Scientifique:  The Future of Energy  at Newcastle University’s Urban Sciences Building

Dr David Jenkins – who had travelled from Heriot-Watt University for the event – gave his thoughts from the perspective of energy demand, how it could change it, and how we could meet it. Dr Jenkins talked about the data challenges in modelling energy demand. This includes the temporal and spatial scale of the available data, and the effects of aggregating large numbers of energy users, which generally works in a modeller’s favour by giving a smoother, more predictable pattern of demand. The impact of a number of low-carbon technologies, such as electric vehicles and heat pumps, which are vital if heat and transport are to be decarbonised by moving them onto the electricity system, was examined, with the summation of these changes resulting in the potential for a substantially different demand pattern to that experienced today.

Figure 1: The potential difference between present and possible future energy demand

Next, Dr David Greenwood spoke about the need for flexibility within the energy system, and the challenges in procuring it through the markets and mechanisms that are currently used by the energy industry and in particular the electricity system operators. Dr Greenwood’s main argument was that we need flexibility – which already exists on the system in many forms – to address uncertainty on a variety of timescales ranging from when a customer plugs in their electric car, to how quickly and substantially low carbon technologies are adopted, to when new power stations are completed, all with the possibility of a failure anywhere in the system at any time. He concluded by presenting a flexibility case study based around energy storage, and showing how uncertainty and flexibility can be included within operational decision making processes.

The final presentation of the evening was given by Dr Andrew Jenkins, and had a focus on the whole energy system. Dr Jenkins talked about how the whole energy system can deliver cross-sector flexibility while still fulfilling the needs of its customers. He demonstrated this with a case study on electric vehicles using Vehicle to Grid charging technology, which could meet a set of system requirements whilst ensuring that their drivers would have enough energy to complete their journeys at the end of the day. He concluded with a detailed description of the university’s new InTEGReL site – a joint venture with Northern Powergrid and Northern Gas Networks which will showcase the potential for heat, transport, gas, and electricity to operate synergistically, providing cross-vector energy flexibility, and allowing validation of models and theory arising from academic research.

Figure 2: An overview of the InTEGReL site

The evening ended with a discussion with the audience – a range of attendees; consumers, prosumers, consultants, academics – which broadened the debate to include the political landscape, and more input from the perspective of the energy consumer. The audience had a breadth of technical knowledge, and their questions reflected this. Electric vehicles – which link the electricity and transport sectors – were the most popular topic for discussion, but the potential of power to gas, sources of inertia in zero-carbon energy systems, and the impact of energy efficient homes were also discussed. The event ended by a resounding agreement from the audience that they would like to attend another event on the topic of energy.

If you would like to suggest a topic for a future event, please get in touch at