Building physics within an integrated energy system

Mohammad Royapoor and Michael Barclay discuss two presentations made at this year’s UK Energy Storage Conference (UKES2018).  Both presentations highlight the importance of building physics in an integrated energy system

About the authors

Dr Mohammad Royapoor is Research Associate in the School of Engineering at Newcastle University.  A chartered engineer, he has been involved in academia and industry working on the design and optimisation of heating, ventilation and air conditioning services (HVAC) and building fabric since 2003.  His work concerns various aspects of building physics, modelling and energy reduction, building retrofit options and occupant
perception of comfort.

Contact: mohammad.royapoor@newcastle.ac.uk                                 Profile details

Dr Michael Barclay is Architectural Officer in the College of Engineering at Swansea University.  He has academic expertise in building physics and computer simulation and is a member of the research team on a project progressing the concept of Buildings as Power Stations (SPECIFIC), which is looking into addressing the challenge of low carbon electricity and heat by enabling buildings to generate, store and release their own energy, in one system, using only the energy from the sun.


Disciplines such as structural and soil mechanics, advanced materials and construction techniques, renewables and digitalisation have been able to heavily influence modern building design and attract large research resources over the past two decades. More recently, building physics – generally somewhat a dormant science in early 2000s – has been pushed into the forefront of innovation. This is because the interaction between internal mass within well-insulated (and adaptive) envelopes can enable internal zone thermal equilibrium, reduce building peak demands and overheating risks, offer demand side response (DSR) capability and enable owner and operators to use their building as an asset that can offer arbitrage and flexibility to energy suppliers.

The link between two UKES 2018 presentations highlighted the role of building physics as a core component of integrated energy systems research.  The first was the work led by Dr Michael Barclay. He provided an overview of his work into experimentation, modelling and validation of the heat flow in solids.

Temperature change from heat injected into ball-bearings

Fig 1: Temperature change resulting from heat injected into ball-bearings using Transient line source probe [1]

The significance of fundamental research such as this is that it offers building analysts the ability to parameterise mathematical models of complex buildings with validated real-world values. Considerable uncertainty exists in the characteristics of heat transfer in building elements and as a result modelling building energy consumption can carry significant errors [2]. Therefore a more detailed understanding and appropriate characterisation of heat flow in building materials allows much greater prediction accuracy and therefore more appropriate techno-economic appraisals for buildings and indeed the broader integrated energy systems.

The second was a report on Building as a Power Plant project led by Dr Sara Walker, Director of Expertise at Newcastle University’s School of Engineering and Associate Director of the EPSRC National Centre for Energy Systems Integration (CESI). Using Urban Sciences Building (home to the University’s flagship School of Computing and to CESI) as a case-study, the research team is examining the extent to which the building is able to provide DSR to the local electricity network by operating its HVAC, lighting and several other non-critical loads in a more dynamic manner without compromising occupant comfort. Early stage findings points to the possibility of 32 – 35% of the total electrical load of the building being available at any time for DSR at short or no notice (Fig 2).  The integrated nature of UK energy is a reflection of the interconnectivity of our physical world. Investigating the flow of heat in a small tube of ball-bearings enables greater model precision at building level which in turn can inform future control philosophes of a secure, flexible and low carbon electricity network.

Sankey diagram of the energy flows of the USB

Fig 2: A Sankey diagram of energy flow with sub-categories of electrical demand (LHS) in the USB building (RHS) [3]


References

[1] Barclay, M; Feng, Y. T; Perisoglou, E: Experimental and Numerical Investigations of Discrete Heat Storage Materials, UKES 2018 Conference presentation, Newcastle University.
[2]  M. Mirsadeghi, D. Cóstola, B. Blocken, J.L.M. Hensen, Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty, Applied Thermal Engineering, Volume 56, Issues 1–2, 2013, Pages 134-151, ISSN 1359-4311
[3] Royapoor, M; Davison, P; Patsios, H; Walker, S: Building as a Power Plant, UKES 2018 Conference presentation, Newcastle University.

 

A researcher’s view of the UK Energy Storage Conference 2018

CESI PhD researcher, Natalia-Maria Zografou-Barredo, recently attended the fourth UK Energy Storage Conference in Newcastle. In this week’s blog, she takes us through the presentations that took place and summarizes her thoughts on the conference.


About the author 

Natalia-Maria Zografou-Barredo is a PhD researcher at Newcastle University and works with the EPSRC National Centre for Energy Systems Integration (CESI).  Her research focuses on multi-energy systems and microgrid operation.

Contact details: n.zografou-barredo2@newcastle.ac.uk


I recently attended the fourth UK Energy Storage Conference (UKES) held on the 20-22 March 2018. This year it took place in Newcastle in the Urban Sciences Building, and attendance was over 200. A consortium of speakers from academia, industry and policy within the UK and around the world joined the conference.

Presentations provided a holistic view of ongoing research on energy storage and portrayed energy storage as a significant asset in future energy systems. Main subjects covered included:

  • Policy and economics of energy storage systems
  • Operation and control
  • Demonstration and commercial deployment
  • Design, planning and integration of storage in energy systems
  • Energy storage for Future Mobility
  • Energy storage in the built environment
  • Thermal, mechanical, and thermochemical energy storage
  • Electrochemical energy storage
  • Gas storage

I attended different sessions. Nonetheless, presentations during the ‘Demonstration and commercial deployment’ session drew my attention due to some interesting questions and fruitful discussions between the speakers and the audience.

Presentations during this session covered both technical and social matters around energy storage. However, questions posed to the panel were almost exclusively around social acceptance of the future changes related to energy storage. And for good reason.

Electrical energy systems do not represent a ‘passive’ one-directional (i.e. from electrical energy production to consumption) system anymore. It is a fact that energy storage deployment (electric vehicles, demand-side management, energy storage in smart grids & microgrids, etc.) not only affects public life, but also depends on a mutual public cooperation.

Discussions during this session brought to realization that the implementation of future research on energy storage after ‘solving’ any technical challenges should potentially be on how to face (and maybe prevent) social ones. It was concluded that public cooperation poses an additional challenge in the integration of energy storage to future energy systems (apart from any existing techno-economic issues raised on other conference sessions).

Overall, the conference portrayed energy storage as a vital asset in future energy systems. The majority of speakers indicated the value of ongoing research of energy storage systems in order to face the challenges from a technical point of view. Nonetheless, public cooperation seems to be yet another important challenge in the deployment of energy storage systems & technologies that should be addressed in the near future.

UKES Conference Opening Plenary
Keynote speaker –  Prof Phil Taylor, Newcastle University


References

“UK Energy Storage Conference,” [Online]. Available: http://ukenergystorage.co/.

Keeping warm: deep geothermal potential of the UK – Professor Jon Gluyas and Dr Charlotte Adams

Jon Gluyas and Charlotte Adams discuss  recent CESI research which looks at how the UK’s heat supply can be decarbonized and national energy security improved.


About the authors

Dr Charlotte Adams is Assistant Professor in the Department of Geography at Durham University and a Mid Career fellow in the Durham Energy Institute.  She is Manager of BritGeothermal, a UK-based consortium focusing on deep geothermal research both in the UK and internationally.

Contact: c.a.adams@durham.ac.uk      Profile Details

 

 

Professor Jon Gluyas is an Associate Director of CESI,
Executive Director of Durham Energy Institute and
holds the ØRSTED/IKON Chair in Geoenergy, Carbon Capture & Storage in the Department of Earth Sciences at Durham University.  Jon has published widely, including text books, memoirs and over 100 per review papers

Contact:  j.g.gluyas@durham.ac.uk      Profile Details


Two recent papers to emerge from CESI examine the potential to decarbonize the UK’s heat supply and simultaneously improve national energy security. It is likely that most will view improvement of UK energy security as the priority given threats to UK gas supplies resulting from the diplomatic fall out between the UK and Russia. The link between gas supply and heat is straightforward.

About half the UK’s energy consumption is used to generate heat for domestic, commercial and industrial spaces and burning natural gas generates most of that heat. Since 2005 the UK has been progressively more dependent upon gas imports to meet demand. Currently, we can supply around 35-40% of our needs with about the same coming from Norway via the Langeled Pipeline. Much of the remainder is supplied as LNG from Qatar leaving about 5% that comes via the interconnectors from Belgium and the Netherlands. No single molecule of methane travels from Moscow to London but that 5% from Europe is essentially controlled by Russia because of its dominance on the European gas supply market. To exacerbate the situation, the UK has but a few days gas storage supply, mostly though changing the pressure in the nationwide gas network. This compares very unfavourably with both Germany and France both of which have about 3 months stored supply.

Gas supply warnings, though infrequent, demonstrate how precarious the situation is. The most recent was issued on 1st March 2018 amid the icy conditions of a late-winter cold snap. Others have accompanied similarly freezing weather in 2010 and problems with the Langeled Pipeline in 2009. The ongoing tiff between Qatar and Saudi Arabia has not yet had an impact on supplies of LNG but it could. National Grid was able to withdraw its warning after about 24 hours but it remains highly likely that UK gas and hence heating supplies could be interrupted by either political or technical issues. We are vulnerable!

The two papers referred to at the start of this article lay out the resource potential of low enthalpy geothermal heat in the UK. The article by Gluyas et al on ‘Keeping warm: a review of deep geothermal potential of the UK’ examines how much heat could be extracted from sedimentary basins and granite bodies while Adams and Gluyas article on ‘We could use old coal mines to decarbonize heat – here’s how’ looked at the resource potential of ultra-low enthalpy heat in abandoned flooded coal mines. A very conservative estimation indicates that at current levels of heat use there is an absolute minimum of 100 years heat supply from these sources. Moreover, such heat sources have a near zero carbon footprint.

Are we ready for the hydrogen energy revolution? – Matthew Scott

In the drive to decarbonise heat in the UK, extensive engineering research and development is being carried out on the technology and infrastructure to allow us to utilise hydrogen as a replacement for natural gas. But it isn’t only a technological challenge.  How will society react to this change? What are their thoughts? CESI researchers Dr. Gareth Powells, Lecturer in Human Geography, and Matthew Scott, PhD student and teaching assistant are investigating this. Matthew writes here on the results of their initial surveys.


About the Author 

Matthew Scott is Teaching Assistant and PhD Researcher in the School of Geography, Politics and Sociology at Newcastle University.

Contact:-  matthew.scott@newcastle.ac.uk


 

Midway through Jules Verne’s 1874 novel The Mysterious Island, when the protagonists are musing about the ever-increasing burning of coal by Western civilisations, the railway engineer Cyrus Harding abruptly proposes water as the most obvious future energy source. “Water!” exclaims one of his companions, “water as fuel for steamers and engines! water to heat water!” “Yes, my friends,” Harding replies, “I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together, will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable.”

“I should like to see that,” replies Harding’s companion, presumably with more than a hint of incredulity. Although the scepticism of Harding’s companion was probably well placed in 1874, the possibilities of using water – and more specifically hydrogen – as an energy source is now the subject of research being carried out by members of CESI at Newcastle University –  Dr. Gareth Powells, Lecturer in Human Geography, and myself, Matthew Scott, a PhD student working as an RA on the project.

Researchers and energy systems stakeholders increasingly believe that hydrogen may have an important role to play in any future shift to a low-carbon economy. Unlike its cousin natural gas, which releases carbon dioxide into the atmosphere when burned, burning hydrogen releases only water into the atmosphere. And while there are still considerable technological uncertainties surrounding how a transition to hydrogen energy might be achieved, several initiatives in the UK are now exploring it more detail; Aberdeen’s hydrogen bus project and Leeds’ H21 Citygate Project being two of the most recent demonstration examples.

However, a great deal hinges on whether or not hydrogen can become an accepted and uncontroversial part of the general public’s everyday energy use. We currently do not know much about how families, communities, and businesses will respond the prospect of using hydrogen in their everyday lives. Furthermore, much depends on how the introduction of hydrogen might transform the way we all go about our core practices of cooking our food, heating our homes, and travelling on the road.

These are the issues that this research is seeking to investigate. Over the summer of 2017 we asked members of the public at different locations in the North East of England what they think about hydrogen, and how they thought using hydrogen might change their everyday lives. We were interested, firstly, in what (if any) existing knowledge people had about hydrogen and its potential use as an energy carrier. This was not only a case of asking about peoples’ knowledge of hydrogen’s properties as a gas, but also about what people associate with hydrogen more generally – if hydrogen is associated with danger, or fire, then this will undoubtedly have implications on the extent to which it can be accepted in the home, regardless of how safe it might be proven to be.

We also asked about whether or not people thought using hydrogen would change the way they cooked and heated their homes, and how it would impact upon their methods of personal transport. As well as emitting no greenhouse gasses when burned, hydrogen also emits no carbon monoxide, and burns with a flame that is almost invisible in daylight conditions. Many of our participants did not know this before speaking to us. We consequently asked participants to imaginatively place themselves in their homes: cooking, turning on the heating, running a bath, and posed – if you were doing all of this using hydrogen, how do you think you would do them differently? And just as importantly, would any change in how you do these things be acceptable to you, or would they be an insurmountable obstacle and therefore push you away from potentially using hydrogen in the future?

As well as this, we sought to explore what worries and fears people might have about using hydrogen, and how this compared to concerns they had about their existing sources of energy like electricity and natural gas. Finally, we also sought to determine, given most people’s knowledge of hydrogen was low, what forms of evidence and information would be valued knowledge about and confidence in hydrogen, and who the public would trust to provide them with it.

The day when hydrogen replaces natural gas in our pipes and boilers might be some time away yet, but Cyrus Harding may have been eerily prescient when, back in 1874, he referred to hydrogen as “the coal of the future.” Yet hydrogen can only be implemented effectively if we appreciate and understand the complex ways it would change our everyday lives and the extent to which any potential changes could weave themselves into our daily practices. As a result, we hope that this research will produce insights of relevance to researchers, industry, and governmental organisations investigating the ways in which hydrogen might be used in the UK energy system.

How concerned should I be about my smart meter security? – Dr Zoya Pourmirza

With Smart Grids comes data and communication infrastructure and the associated unease of how we keep this data and infrastructure safe.  This article aims to raise awareness, by sharing knowledge about cyber-security considerations behind the UK smart metering infrastructure and it’s rollout.


About the Author

dsc01229

Dr Zoya Pourmirza, is a postdoctoral research associate at Newcastle University within the School of Electrical and Electronic Engineering. She was awarded her PhD in The Information and Communication Technology (ICT) Architecture in the Smart Grid from University of Manchester. Her research expertise includes Smart Grids ICT networks, cyber-security, communication energy efficiency, and data compression.

Zoya carries out a wide range of research for CESI in the area of cyber-security on energy systems.

Contact:- Zoya.Pourmirza@newcastle.ac.uk


Smart Grids comprise a number of different networks that offer communication infrastructure at the various levels within the power grid. For example:

  • Supervisory control and data acquisition (SCADA)
  • Advanced Metering Infrastructure (AMI)
  • Customer Energy Management Systems

Amongst these communication networks, the AMI system has received significant concerns. These disquiets are mostly around security and privacy of consumers. Most of these concerns could be the result of negative media coverage or lack of knowledge of the AMI system operating as a whole system, while its components are interacting together.

A peace of mind for the Smart Grid customers

It is worth noting that the smart metering infrastructure is not a single component or function, but it is a whole system. This implies that looking into the cyber-security issues of a single component such as a smart meter, individually, would probably give invalid results.

Accordingly, the Department of Energy & Climate Change (DECC) and GCHQ designed the AMI system in such a way that no single compromise would offer a significant impact. The DECC/GCHQ security team developed practical cyber-security control by using the “trust modelling” and “threat modelling” approaches. The former model refers to understanding how different players in the AMI system interact, and where trust needs to be managed. The latter model considers a set of hypothetical intentional/unintentional attack model that could cause an impact. Therefore, cyber-security should not be viewed as a hindrance to the GB smart meter roll out.

Components of the Advanced Metering Infrastructure (AMI)

Organisations involved in the design of the whole smart metering system are:

  • Gas and electricity meters, and related equipment
  • Distributed Network Operators (DNOs)
  • Data Communication Company (DCC)
  • Communication Service Provider (CSP)
  • Third parties (e.g. price comparison websites)
How to curtail the impact of vulnerabilities in a Meter

Although it is not possible to build a 100% secure system, but the best practice is to minimise the impact of the vulnerabilities by providing a balance between security, affordability, and business needs, while meeting the policy and national security objectives.

The following chart visualises security concerns, potential attacks, and countermeasures in the AMI system through a number of phases where an attacker tries to gain access to the smart meter to create a negative impact on the power grid.

 

This article, however, does not suggest that it is impossible to compromise the AMI system, but it discusses it would be a relatively arduous process to cause severe impact on the power grid, and customers are not as vulnerable as what they think they are. Therefore, while researchers should take the security and data privacy into consideration, we can focus our energy and resources on cyber-securing other segments of the Smart Grid, which can cause greater negative impacts on the power grid infrastructure and customers.

 Reference:

Gov.uk. (2014). Smart Metering Implementation Programme: Great Britain Companion Specification version 0.8 – GOV.UK. [online] Available at: https://www.gov.uk/government/consultations/smart-metering-implementation-programme-great-britain-companion-specification-version-08.

Exploring Smart Meter Data using Microsoft Power BI – Dr Mike Simpson

With the huge explosion in data volumes that the smart energy era brings, here at the National Centre for Energy Systems Integration our Computing Science researchers are utilising world-leading innovative techniques in data analytics. In this weeks blog, Dr Mike Simpson explains how the interactive visualizations and analysis capabilities of Microsoft’s Power-BI software can make light work of smart meter data.


Dr Mike Simpson is a Research Associate working part-time with CESI. His background is in programming, game development and visualisation, and he is currently working as a Research Software Developer in the Digital Institute at Newcastle University.
Contact details: mike.simpson@ncl.ac.uk  – Profile Details


Exploring Smart Meter Data using Microsoft Power BI

As data scientists, we are often asked to help our colleagues to process the data that they have collected. Often, they will have a set of research questions that they want to attempt to answer, and, in that case, there are plenty of tools that we can use to analyse the data and visualise the results. But what if you don’t know exactly what questions you want to ask? What if you have a dataset that you suspect might hold some additional value, but you’re not sure how to extract that value? These are not uncommon problems, and I’ve been looking at one potential solution.

Microsoft Power BI is a suite of analytics tools that can be used to produce a number of different visualisations by aggregating and filtering data in different ways. It includes a desktop application that can connect to a wide variety of data sources and an online platform that allows the results to be shared with collaborators or embedded on other websites. However, as well as simply displaying the data using static graphs and charts, it can also create dynamic, interactive reports, like the one shown in the screenshot below.

Here, we have taken some sector customer average electricity smart meter data from the Customer-led Network Revolution (CLNR) and produced a visualisation of the data from the participating Small Business Enterprise customers. The first graph shows the average daily energy usage profile for each Sector (the average across the whole week). But what if you want to ‘drill down’ deeper and explore the data in more detail? Well, in this example you can use the ‘Slicer’ – the checklist to the side of the graph – to select individual days within the study, which will adjust the graph to display the filtered data for that day only. Alternatively, you could use the slicer to select other time ranges within the data. In the example below, one graph shows only the data for Monday to Friday and the other graph shows only the data for Saturday and Sunday.

Now it is possible to see the distinct difference in usage patterns between the different sectors during weekdays and at weekends. You can see that, for example, Industrial usage is lower at weekends, as you would expect, while agricultural usage is fairly similar.

We’ve done something similar with the graphs below, which are part of the same report and show the average daily usage for each day of the week, as well as the average for weekdays/weekends.

As before, we can drill down into the data by using the Slicer to select different months and sectors, which filters the visualisation accordingly. This allows us to study how usage changes for each sector over the course of the year.

These are fairly simple examples, but they show how Power BI can be used to create visualisations that not only display your data, but are also interactive and also allow you to explore the data by filtering it in different ways. A Power BI report can include a number of different visualisations, including Scatter Graphs, Pie Charts, and even Maps, in addition to the Line and Bar Graphs shown in the examples above.

Using Power BI in this way allows you to explore the data that you have collected to look for unexpected patterns, and may help to reveal new Research Questions that you can answer, or may help you discover new ways to extract value from the dataset.

The role of the building engineer within the development of energy systems – Dr David Jenkins

National Centre for Energy Systems Integration (CESI) Co-Investigator, Dr. David Jenkins, is a research specialist in sustainable buildings.  In this week’s blog, he discusses how buildings can be considered in future energy systems and how his CESI research is shaping this consideration.


About the Author

Dr David Jenkins is an Associate Professor in the Institute of Sustainable Building Design at Heriot-Watt University. He has over 70 publications in the area of low- energy buildings, energy policy, and climate change adaptation. He has worked on a number of EPSRC projects concerned with the energy use of the built environment, such as Tarbase,  Low Carbon Futures, ARIES and CESI and has contributed to a number of reports in these areas for UK and Scottish Governments. He is currently PI of the CEDRI project, looking to apply community energy analyses to case studies in India.

Contact details:- d.p.jenkins@hw.ac.uk  Profile Details


The built environment has always been of great importance in any discussion of carbon saving targets in the UK. 13% of UK carbon emissions emanate from heating/cooking in residential buildings alone[1]. 29% of emissions are linked to “energy supply” (including electricity supply to the built environment), with other sectors (e.g. “business” at 17% and “industrial processes” at 3%) also having energy consumption that is heavily linked to the built environment. Therefore, as we map out our future energy systems (gas/electricity grids and other energy pathways) we must have an understanding of the evolving energy demand characteristics of the diverse range of buildings that we occupy.

A practitioner with a particularly good understanding of this detail, the building engineer, often has their professional boundaries drawn around the building itself. Therefore, the sizing of a boiler, assessment of general building performance, and choices related to low-carbon design are not always placed in the context of other important factors within the energy supply chain.

Whilst this focus is to some extent defendable – the challenges of low-carbon building design are, in themselves, considerable – it does run the risk that crucial knowledge of building performance is not reflected in energy system modelling. This is particularly true when we investigate the steep vectors of change facing our energy systems in the coming decades. Coincident changes in climate, technologies, fuels, and operation, provide a landscape of uncertainty that must be consistently reflected in projections of every aspect of our energy system: supply, infrastructure/distribution, storage, and demand. For example, a future projection assuming the continued existence of an established mains gas grid for heating homes is not necessarily consistent with the installation of several million heat pumps for residential heating. The latter change should, therefore, be accompanied by an assumption on the supply-side that the gas grid will either be reduced in scale or used for something else. Policy in these different areas must also be similarly synergistic.

The building modeller is crucial to our understanding of energy demand but, with energy systems (e.g. National Grid) involving multiple actors from different disciplines, a key challenge is to provide guidance and future projections that are translated into different discipline-specific vernaculars. Integration across the disciplines must be reflected in modelling approaches, policy-making frameworks, and outputs. The CESI project, where novel modelling techniques are being used to explore the effect of future buildings on national energy systems, sees this as a key challenge in producing actionable guidance to a range of practitioners.

Another issue that often dissuades the traditional building modeller/engineer from interacting with wider energy system analysis is “scale”. Modelling a building is quite different to modelling buildings. Capturing the energy demand characteristics of a community of buildings (e.g. such as might be served by a substation) requires an understanding of the diversity of energy use. A “spikey” electrical demand profile of a single dwelling (showing kettle’s boiling and toasters toasting) is quite different to that of a 200-dwelling profile, where different behaviours and activities are summated together in a smoother profile. Likewise, asking a building engineer to consider the aggregated demand profile of, say, 200 gas boilers working at slightly different schedules is a step change from a detailed hourly profile of a single boiler. Yet this level of detail is particularly valuable when we consider what might happen to energy demand at specific times in the future. Will electric heat pumps create national electrical demand profiles that are more difficult to meet for energy suppliers? Or are such changes perfectly manageable providing storage and management solutions are utilised at the correct point in the network? And what happens if millions of people wish to home-charge their electric vehicles at similar times in the evening? What does a new residential electrical demand profile now look like for the UK? This, therefore, does not just require an understanding of scale, but also that of temporal resolution; daily averages of energy use will not indicate where and when such problems might be manifest, and what their solutions might be.

The future building engineer will be required to build on existing core skills to reflect the above context. Changes to energy supply (such as carbon intensity) will, ultimately, alter our assumptions of “good” and “bad” technologies for the built environment. Conversely, technological and behavioural change in the built environment will change our assumptions on how to supply that energy efficiently. This co-evolution of change across sectors is central to CESI and encapsulates the challenge to, but also the value of, multi-disciplinary energy system modeling.

[1] 2015 UK GREENHOUSE GAS EMISSIONS, FINAL FIGURES, 7th Feb 2017 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/604350/2015_Final_Emissions_statistics.pdf

An IET debate on the role of smart meters – Dr David Greenwood

CESI researcher, Dr. David Greenwood, recently participated in an IET debate event discussing the rollout of smart meters in the UK. In this week’s blog, he talks us through the highlights of that debate.


About the Author

David Greenwood

Dr David Greenwood is a researcher with the National Centre for Energy Systems Integration (CESI) and is based at Newcastle University. His research focuses on taking advantage of flexibility within energy systems and understanding sources of uncertainty and variability such as customer demand and intermittent generation. He believes that Smart Metering can play a crucial role in both of these areas, but that the approach currently being followed the UK will deliver neither the flexibility nor the understanding that we need to ensure a reliable, sustainable, and affordable energy supply.

Contact Details:- david.greenwood@ncl.ac.uk    Profile Details 


I recently traveled to Guildford represent the National Centre for Energy Systems Integration (CESI) in a panel discussion around Smart Meters, arranged by IET Surrey. The event took place at the University of Surrey, and attendance was over 150.

Along with my fellow panelists –  Craig Lucas from the UK Government’s Department for Business, Energy and Industrial Strategy, and Andrew Jones from EDF Energy – I answered a variety of questions from the audience around the technical, commercial, and social aspects of Smart Metering. The audience was often combative, particularly when discussing issues around the GB Smart Meter roll-out, which has received substantial negative media coverage. There were concerns around the cost of the rollout, whether the supply companies were going to complete it within the mandated timeframe, and data privacy, along with significant doubts around what the benefit would be to an individual customer, and to society at large.

While the other panellists focussed on the technical aspects of the rollout, I used my answers to describe the place of smart metering in an integrated energy system, on the need for more customer flexibility in a future energy system, and on the trade-off between data privacy and a more reliable, affordable, and sustainable energy system. I tried to get the audience on side by drawing an analogy between Smart Metering and the Google Maps traffic system; this system uses personal speed and location data from smartphone users to identify areas of heavy traffic, and in doing so provides a benefit to all of its users. Smart Meters have the potential to deliver similar benefits to electricity and gas customers by identifying when and where energy is being used and allowing network and system operators to make better-informed decisions as a result.

The event was thought-provoking for me, the audience was certainly engaged with the topic, and it was enlightening to be speaking alongside the other panelists who brought different perspectives and expertise from my own. Whilst I know we didn’t persuade everyone in the audience, I still think Smart Metering can and will deliver substantial benefits to our energy system, but many other enablers – including innovative tariffs and charging structures, better user education, and more smart home devices – are necessary for the rollout to fulfill its potential. Traditional metering will soon – as I told one audience member who was determined not to be upgraded – belong in a museum.

The IET panel 

The Role of the System Architect – Prof P Taylor and Dr S Walker

Professor Phil Taylor, Director and Dr Sara Walker, Associate Director of the National Centre for Energy Systems Integration have revisited the notion of the System Architect (IET 2014; Taylor 2014). How does this role need to change to reflect the ongoing evolution of the UK’s energy system? They have prepared a discussion article to articulate what this role might be and what organisation (or group of organisations) might be challenged with delivering its activities.

A copy of their paper is available from this link The Role of the System Architect – CESI Publications CESI-TF-0006


About the Authors

Professor Phil Taylor is the Director and Principal Investigator at CESI. He is an internationally leading researcher and industrial expert in energy systems, electrical distribution networks, smart grids and energy storage integration and control. He is the Siemens Professor of Energy Systems, Deputy Pro Vice Chancellor of SAgE Faculty and Head of the School of Engineering at Newcastle University.

Contact details: phil.taylor@ncl.ac.uk

Dr Sara Walker is an Associate Director and Co-Investigator at CESI. Her research focus is regarding renewable energy technology and transitions to low carbon systems, with a particular focus on policy and building scale solutions. She is Director of Expertise for Infrastructure at the School of Engineering at Newcastle University.

Contact details: sara.walker@ncl.ac.uk


About the National Centre for Energy Systems Integration

The £20M EPSRC National Centre for Energy Systems Integration (CESI) brings together an interdisciplinary team of experts to gain a deeper understanding of the value of taking a whole systems energy approach to the energy trilemma. Led by Newcastle University, CESI is a consortium of five research intensive universities and a wide range of public and industrial sector partners.

Working with Industry

CESI currently has over 34 industrial and government organisations collaborating with our team of academics and researchers. They provide:

  • a steer on the relevance of our work
  • access to their experts for consultation
  • access to resources such as engineers, labs, data and other valuable assets
  • front-line insight to the needs of the industry and their customers

Executive Summary

Energy infrastructure is considered a critical infrastructure for the UK, vital to economic prosperity. Current and future changes to the way we use energy will increasingly impact on local and national energy infrastructure. These energy issues require long term solutions based around a systems thinking approach which is immune to short term commercial and political pressures. This is important given that investment decisions can take decades to be realised and can be locked in for the next 50 years or more.

The challenges of creating a UK energy system which meets the needs of a modern economy have led to the notion of a System Architect. The original concept was assumed to be a centralised planner role but this maybe too prescriptive. In this paper, the System Architect concept is revisited.

The authors have proposed a System Architect which takes a long term, non-political, non-commercially based view of energy industry and system strategy. The System Architect can be flexible to enable bottom up initiatives as well as top down UK system overview.

The proposed System Architect is to have a role within policy making as well as policy implementation. This raises issues of governance and transparency. There is a need to ensure that a System Architect has some accountability and legitimacy.

The top down manifestation of the System Architect idea could include the System Operator function working alongside organisations such as the Energy Systems Catapult, the National Infrastructure Commission, and NGOs such as National Energy Action. A key question is whether a national level System Architect of this nature could coexist with a number of regional bottom up System Architects. The Centre for Energy Systems Integration is interested in investigating this.

What is clear, arising out of consideration of the UK’s long term energy future, is that whole systems thinking is complex but it enables:

  • more options, considering, for example, shared storage and shared assets
  • longer term thinking
  • a holistic approach to energy trilemma

Decision making will be more complex, however, needing an interdisciplinary approach and greater co-ordination. It also means that leaving things to the market is difficult.

However, the benefits of a System Architect approach which embraces whole systems thinking have a value to the sector as we move forward. These benefits include:

  • improved whole system efficiency
  • increased asset utilisation
  • increased utilisation of renewable energy
  • improved system reliability
  • improved system flexibility
  • and importantly, decision making appropriate to geography and/or energy vector

Without the role, we risk a fragmented, costly and ultimately ineffective energy system which fails to deliver a low-carbon modern energy system to UK industry and society.

The authors look forward to your views on their vision of the System Architect role, so please do not hesitate to contact us with your thoughts.

Contact details: cesi@ncl.ac.uk

As a reminder – a copy of their paper is available from this link  The Role of the System Architect – CESI Publications CESI-TF-0006


References

Taylor, P. 2014. ‘We need an independent architect to redesign the UK energy industry’, The Guardian.

IET. 2014. “Britain’s Power System The case for a System Architect.” In. London: IET.

Can the UK kick its coal habit? – Professor Phil Taylor

Do we need to continue to open new coal mines to meet our energy needs? Can a whole systems perspective help the UK to meet its obligations to reduce carbon emissions and also ensure a secure energy supply?

Professor Phil Taylor discusses his input to the Department of Communities and Local Government (DCLG) planning debate about the need for a new open cast mine proposed near Druridge Bay in Northumberland.

About the Author

Professor Phil Taylor

BEng EngD CEng SMIEEE FIET FHEA
Director, EPSRC National Centre for Energy Systems Integration
Siemens Professor of Energy Systems
Deputy Pro Vice Chancellor of SAgE Faculty
Head of the School of Engineering
Newcastle University          

http://www.cesienergy.org.uk                                

 


Do we need to continue to open new coal mines to meet our energy needs? Can a whole systems perspective help the UK to meet its obligations to reduce carbon emissions and also ensure a secure energy supply?

In November 2015 the UK Government laid out plans for all coal-fired power stations to be phased out by 2025 at the latest.  As coal is the most polluting of the UK’s energy sources, including gas, and in light of the Paris Agreement under which the UK and other countries have agreed to undertake rapid reductions carbon emissions, coal is simply uneconomic as a fuel. In order to eliminate carbon emissions, energy companies urgently need to replace coal with cleaner energy sources.

Given this need to replace coal as a fuel, it is worrying that a new large opencast mine has been proposed near Druridge Bay in Northumberland.  The justification for opening the mine is that the coal extracted would be used to fuel power stations – maintaining the UK’s further reliance on coal as a fuel source.

Planning permission for the mine was approved by Northumberland County Council in July 2016.   However, Central Government called the approval for the mine to public inquiry on grounds of climate change.   This is the first time any planning permission decision has been called to public enquiry, on these grounds.

HJ Banks & Co Ltd argument for coal too narrow

During the public inquiry which began May 2017, HJ Banks & Co Ltd, the proposed developer of the site, argued that coal fired power stations are essential for the security of the UK’s energy supply.  Their expert witness argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. Other cleaner sources of energy cannot be relied upon as a consistent source of energy.  Wind power, for example, provides an intermittent source of energy as the wind does not always blow, and so wind turbines cannot be relied upon to satisfy the UK’s energy needs.  Similarly the sun does not always shine, so photovoltaic systems will not generate sufficient energy.  For these reasons, opening the new mine would be an important step in ensuring that the UK maintains good supply of coal for its power stations.

UK needs whole energy system approach

This siloed approach does not take into account the reality of the energy mix. There is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements.  The Department for Business, Energy and Industrial Strategy (BEIS) collate data on the UK’s electricity generation mix which are updated each quarter. These most recent figures were released in June 2017.  These show that compared with a year ago, gas generated energy increased by 3% to 40%, nuclear energy increased by 0.1% (19%) and renewables (wind and solar, hydro and bioenergy) increased 1% to 27%.  During the same period, the proportion of energy generated from coal fell by 5% to 11%.  These figures show coal is declining in importance and that we have many options to replace it.  However, it is just as important to consider flexibility in the energy system as a means of phasing out coal.  This flexibility can help us deal with peaks in demand and variability in the output of renewable energy sources.  This flexibility can be provided by a mixture of energy storage, demand side response (DSR) and interconnectors [i].

It is essential to take a whole systems approach when considering the UK’s energy mix. In order for the UK to meet the climate change commitments of the Paris Agreement, it needs to continue to phase out its coal fired power stations.  This would be possible by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas; and combining this with power produced from renewables such as wind, biomass and PV.

We can use a variety of technologies at a variety of scales to store energy when we have more than is needed, or when there is too much for network cables to carry. This energy can then be used at a time when it’s needed.

Britain also imports energy, via physical links known as interconnectors.  At present, the British energy market has 4GW of interconnector capacity.  The UK energy regulator, Ofgem, forecasts that planned projects will mean that this capacity will increase to 7.3GW by 2021.  In addition, the electricity required could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non-essential items when there is a peak in electricity demand [ii].

The increase in interconnector capacity, energy storage and DSR will help to balance supply and demand on the electricity grid, reducing the need to build new power stations.  An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

Professor Phil Taylor presented this argument at the Public Inquiry into the proposed open cast mine at Highthorn, Northumberland.  His argument represents one of the many decisions we could make to keep the lights on and is an example of the ways we can apply whole systems thinking to energy.   Professor Taylor appeared as an expert witness to the Inquiry for Friends of the Earth on a pro bono basis.  The outcome of the public inquiry is expected in autumn 2017.


References

[i] Department for Business, Energy & Industrial Strategy (2017). Section 5, Electricity. Energy Trends: June 2017 [Online]. Available at: https://www.gov.uk/government/statistics/energy-trends-june-2017 [Accessed 17/7/2017].

[ii]   Ofgem (2017). Electricity Interconnectors. [Online]. Available at: https://www.ofgem.gov.uk/electricity/transmission-networks/electricity-interconnectors [Accessed 21/7/2017].