Recognising biodiversity globally

This week marks two special days for environmental sustainability: International Day for Biological Diversity and World Bee Day. While symbolic in scope, the importance of having days dedicated to thought, speech and action for protecting and increasing biodiversity and bees on this planet deserves recognition.

In this short post I want to flag up a video produced at Newcastle University with two brilliant researchers in biology and ecology: Dr Louise Mair and Dr Rike Bolam. They answer a series of questions from young people about animals and biodiversity more generally.

I also want to draw attention to a series of ‘short stories’ that explain a vision of where academic research and conservation needs to go up until 2030 and beyond.

International collaboration is key to reversing the downward trend of biodiversity and protecting the Earth’s key pollinators, without whom we would surely struggle to survive, if not perish.

A species that destroys biodiversity destroys itself

“The health of ecosystems on which we and all other species depend is deteriorating more rapidly than ever. We are eroding the very foundations of our economies, livelihoods, food security, health and quality of life worldwide,” Robert Watson, Chair of the IPBES

There is dire need to prevent the planet’s numerous flora and fauna from going extinct, including the many species that humans depend on for survival.

A recent report on the state of biodiversity from the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) makes clear that nothing less than transformation must happen for humans continues to live on this planet much longer.

Known long before the advent of science, the fate of the human species interconnects with its neighbouring species on the tree of life.

Species’ future existence affects and in many ways determines our own. As humans, the most dominant species on Earth, we fancy ourselves as makers of our own destiny, but time to conserve our biotic lifeline is running out.

Plants provide the air we breathe and the nutrients we consume for survival. They capture and store the solar energy that our bodies cannot absorb directly. Insects in turn pollinate that plants that we eat. Similarly, the animals of the land and the sea that we use as a food source, if they were to come under threat, would place our own species in quite a precarious position. Continue reading A species that destroys biodiversity destroys itself

Tools for making cities better prepared for disasters

If cities are to overcome the numerous challenges they are currently facing, including disasters, then it requires an array of sustainable techniques, methods and approaches for managing them. Cities are robust, often resilient but also fragile in the wake of perplexing environmental problems, such as climate change.

To clarify things a bit – hazards themselves are not disasters until they harm or eliminate life. A large-scale asteroid impact is most certainly a hazard but it will not be a disaster unless it harms life or damages the processes that support it. Earthquakes and flood hazards may be potentially disastrous but only in reference to the living things they are at risk of destroying.

The good news about disasters is that while they are not always preventable, it is possible to reduce their impacts through human means. In this geological epoch, climate change will persist regardless of human intervention, but its future impacts remain an open question – and humans have a strong role to play.

The people involved are as, if not more important, than the technical and scientific tools employed. Now is the time for cities to move forward in using the many available  tools for improving cities, some of which are created and demonstrated through publicly-funded research. Continue reading Tools for making cities better prepared for disasters

How to start interacting with the SDGs

The UN Sustainable Development Goals provide numerous opportunities for science and engineering to make a wider impact globally upon society and the environment. Aligning them with publicly funded research is imperative to their success. Times Higher Education just released their Impact ranking for the SDGs. I am pleased to say that Newcastle University was ranked 23rd in the world for this ranking.

If you’re an academic researcher, and new to the SDGs, one of the things you should know about them is that they are interconnected – each goal relates to, influences and affects the other goals.

There will always be specific goals that an individual or organisation may focus on but this doesn’t mean the others aren’t relevant to your work; indeed the framework is broad enough to enable achieving targets for different goals together. For example, while you thought you were working on clean water and sanitation, you may not have realised that you’re also helping to achieve gender equality.

If you do research or other relevant work to goal 3 – Good Health and Well-Being, likely it will have implications for other goals such as goal 1 – No Poverty and goal 2 – Zero Hunger.

If your research is in energy, which pertains to goal 7 – Affordable and Clean Energy, then it will likely also be relevant to goal 13 – Climate Action and goal 14 – Life Below Water. Clean energy results in decreased greenhouse gas emissions for mitigating climate change, reducing ocean acidification, and energy affordability connects to goal 1 – No Poverty. Got it? Continue reading How to start interacting with the SDGs

Leaving no one behind for clean water and sanitation

How do you ensure that no one is left behind in making clean water and sanitation available to all? The water cycle is not a bad place to start and it can be taken both literally and metaphorically. Water is an integral part of life, and we interact with it often, including the infrastructure that delivers water to the places we live in.

To come to grips with how water exists on this planet no one part of the water cycle can be studied in complete isolation from the other. There are simply too many factors involved that affect water such as climate, pollution, water usage, wastewater treatment, water catchments and so forth.

This graphic illustrates how research in different areas of water are important to the whole picture of the water system which involves human activities like industry and policy as much as ‘natural’ or non-anthropogenic ones. It provides a holistic representation of some of the key research areas at Newcastle University in water, particularly from the School of Engineering.

We think this diagram provides a useful metaphor for how water research is integrated. For example, what is done for climate impacts and adaptation is directly applicable to water resources management, including managing flood risks. Continue reading Leaving no one behind for clean water and sanitation

Remembering women in STEM

As International Women’s Day was just last week it is a good time to reflect upon the  women of today in STEM, and the pioneers of the past.

The role of women in STEM cannot be overlooked as it has been fundamental to the growth of science (including social science), technology and society as a whole. The history of science tends to under-represent women, however, there is a range of examples of women in the ranks of physics, chemistry, biology, archaeology, anthropology, civil engineering and many other fields throughout history.

I have had the pleasure of meeting and interviewing many brilliant women scientists, mathematicians and engineers throughout my career. People who have inspired countless others through research, teaching and simply living.

This video showcases some famous women scientists and engineers, some you may have heard of, others perhaps not so much. It’s important that we tell the stories of women in STEM for whom without science would be at a great loss, not to mention our future. Continue reading Remembering women in STEM

Achieving water security for all

Water security is a major challenge for countries throughout the world, especially urban and rural communities in developing countries. Water related disease kills more than 3.4 million people every year, making it the leading cause of death.

While water is a human right according to the United Nations, for everyone to have access to safe, potable drinking water and adequate sanitation requires significant advancement in water infrastructure, governance and education.

To provide the 2.1 billion people on the planet who lack readily available drinking water at home requires more than technological innovation, it demands collaborations that may appear ambitious in scope, but nevertheless are necessary for resolving deep rooted problems of water security.

The GCRF Water Security Hub led by Newcastle University makes possible the collaborations needed to address water security in the developing world in a holistic way. I had the pleasure of speaking with some of the key researchers in the Hub from Newcastle in engineering and the social sciences.

In Part 2 of this episode of the Science Perspective podcast they explain the importance of water security, and how the Hub is working with multiple stakeholders to achieve SDG 6: Clean Water and Sanitation.


You can also catch up on Part 1.


Maths to the rescue for predicting gas demand

While electricity tends to be seen as number one in terms of energy use, gas makes up 22% of the world’s energy needs and it’s growing. Many countries are transferring from coal to gas power stations resulting in reductions in CO2 emissions, methane leakage however is still a problem, which is far from climate friendly. 40% of the UK’s electricity actually comes from gas, and 83% of its homes are heated by gas. The trend is likely to continue globally with China’s future gas demand forecast to grow by 60% in future. This means better infrastructure and demand forecasts are needed

Gas clearly plays a major role in making the low-carbon transition a reality, especially since it’s not only natural gas we’re talking about here – it’s also methane (biogas), hydrogen and other cleaner alternatives. The gas network itself is also an immense infrastructure that could be used to store energy as well as distribute it. But to do this efficiently you need to make accurate forecasts, which can be challenging if you’re a network operator and you don’t know how much gas they will need to satisfy demand.

Continue reading Maths to the rescue for predicting gas demand

What’s this for? The age of human-computer interaction

 …through television and telephony we shall see and hear one another as perfectly as though we were face to face, despite intervening distances of thousands of miles; and the instruments through which we shall be able to do his will be amazingly simple compared with our present telephone. A man will be able to carry one in his vest pocket. Nikola Tesla (1912)

The possibilities of technology are seemingly endless. I would not be writing to you in cyberspace right now if this were not the case, and as Tesla rightly predicted you may be reading it from a device small enough to fit in your pocket. Yet despite the ubiquity of mobile wireless technologies there remain potential applications that have not yet been discovered or used yet.

We tend to take technologies for granted because they are intertwined with our regular lives, but how we interact with them is still far from straightforward.

Sometimes there are problems that are simply too unique, too individual that current off the shelf technologies cannot address them. How do you build devices to solve human problems if they’re not focused on the values and needs of people?

And how do you take available communications technologies and use them to solve real-world problems?

There’s still time to get human-computer interaction right. The ethos behind human computer interaction is not merely to get computing to work better for people, but to find ways for technology to improve and transform their lives, and create agency.

Work in human-computer interaction takes an alternative approach to what is generally assumed – instead of starting with the device, start with the user, understand their own needs and values, and work with them to co-design the technology to meet them. Continue reading What’s this for? The age of human-computer interaction

Four key solutions to sustainable development 2019 & beyond

Looking to the near future — 2019 — there are four topics, four ideas I wish to highlight that could revolutionise not only how we tackle climate change, but many other global challenges the world is facing for sustainable development.

  • Revolutionise the energy system
  • Make circular economy a reality
  • Clean water and sanitation infrastructure for all
  • Spread electric vehicles

Revolutionise energy

Energy? On this planet it all begins with the sun really.

It’s a simple yet powerful (no pun intended) scientific fact that energy underlies everything. If we didn’t have it we wouldn’t exist and without the concept our lives would be radically different from what they are today. But let’s keep it to things like electricity and heat for the moment.

We need to generate more of them and use what we have more wisely, but the energy dense yet carbon heavy materials we’ve relied on since prior to the industrial revolution are a no go for the future. Embarrassingly, they’re on the rise despite progress made in renewables and decarbonisation.

Beyond emissions there were already in place good reasons NOT to burn fossil fuels. Remember acid rain? How about air pollution? Which cities finally seem to be paying attention to again because people are dropping like flies because of air contamination. Did you know that communities downwind of coal fired power stations are more likely to have children with birth defects? How about the impacts coal has on landscapes, water and air, all resources we cannot live without?

Continue reading Four key solutions to sustainable development 2019 & beyond