World Toilet Day: Waste Management & Antibiotic Resistance

The United Nations have designated the 19th November as “World Toilet Day”, whilst the title may seem chuckle worthy, it actually exists to inspire action to tackle a very serious global crisis. 60% of the world’s population do not have access to adequate toilet facilities in their home – this can lead to wastewater flowing back into the ecosystem completely untreated, which in turn exposes humans to potentially fatal bacteria and diseases.

Newcastle University’s Professor David Graham, who investigates antibiotic resistance, was involved in a study which focused on the Ganges River in the foothills of the Himalayas. Each year masses of pilgrims descend on sacred sites along the river to bathe in the water. The existing waste handling systems in these areas cannot cope with the demand and ultimately, untreated human wastes ends up in the river.

Water sediment samples from the rivers show strains of antibiotic resistant gene levels about 60 times greater per capita when the pilgrims are present compared with other times of the year.  Once in the water these genes may then be ingested by other users of the river, potentially creating widespread antibiotic resistance.

Professor David Graham explains: “In the age of international travel, antibiotic resistance genes and organisms in the gut of individuals as a result of inadequate sanitation can be carried anywhere, exposing wider populations to such resistance.

We know that many ‘hotspots’ of antibiotic resistance exist around the world, particularly in densely populated areas, such as urban Africa, the subcontinent and Latin America, where there is inconsistent sanitation and generally poorer water quality.

If we can stem the spread of such antibiotic resistant genes locally – possibly through improved local sanitation and waste treatment – we have a better chance of limiting its spread on a global scale.”

Professor Graham’s work has influenced policy on an international level; presenting evidence to the  US Presidential Advisory Council on Combatting Antibiotic-Resistant Bacteria he explained that that current policy underestimates the importance of improving water quality and waste management at global scales, which is key to reducing antibiotic resistance in health systems around the world.

For more information on how Newcastle University is working towards the UN’s Sustainable Development Goals visit ncl.ac.uk/globalchallenges.

Measuring the Lake District

Every year our first year Surveying and Mapping  Sciences and GIS students take part in an eight day field trip to the Seathwaite Valley in the heart of the Lake District. In this blog post Tim Hadja tells us about his experience of it last Easter.

Tim Hadja, BSc Surveying and Mapping Science student at Newcastle University
We arrived at Glaramara House, our hotel which served as a base for the fieldcourse, on Thursday morning after a scenic two-and-a-half hour coach ride from Newcastle.  The setting was stunning: a pastoral valley of green fields, dry stone walls and streams, surrounded by craggy fells, waterfalls and oak forests.  Our mission was to create a detailed map of the valley, so our first task was to lay the foundations by creating a network of known reference points.

Newcastle University surveying students setting up targets
Practicing setting up targets in front of the Glaramara House, our base for the fieldcourse

Shortly after arriving we donned our high-vis and waterproofs to brush up on the surveying skills we’d be using over the next eight days.  The valley is famous for being the wettest inhabited place in England, and it definitely lived up to its reputation.  After a soggy afternoon of measuring angles and levelling, we dried off and enjoyed what would be the first of many delicious dinners.

On Friday morning we enjoyed a full English breakfast before beginning our next task: establishing the primary control stations (reference points) throughout the valley.  We were divided into teams and taken by minibus to our assigned locations.  We spent the rest of the day measuring the angles and distances between points.  We would be using this data later to compute the coordinates of the stations.  The blustery weather was a challenge but we persevered.

Saturday’s assignment was to determine the height of points around the valley using spirit levelling.  Simple enough…or so we thought.  My team quickly realized that those lovely green fields were essentially giant mud pits and the stone walls an endless maze to navigate through, but it was a great feeling when we arrived at our last benchmark.  Another job finished and I’ve never been more grateful for a hot shower!

On Sunday the GIS students joined us, along with the sunshine – and we went out in teams to create secondary control networks around the valley.

Geomatic students walking in the Seathwaite Valley
Heading out into the field to design a control network.

One of my favourite aspects of the fieldcourse was working with my course mates.  It provided a great opportunity to get to know each other better.  Certain team members had particular strengths and we all worked together to complete our assigned tasks.  At the end of the exercise it was a great feeling to look at our finished maps together and be able to say, “we made this!”

I learned a lot of valuable lessons – good communication was vital, not only among team members but also with other teams to make sure everyone got the measurements they needed.  I also learned the importance of checking instrument settings before going out into the field and how important it is to book accurately and clearly with good sketches.  There are few things as frustrating as trying to decipher muddled notes after a long day in the field!

Newcastle University geomatics student surveying the Seathwaite Valley
Enjoying a sunny day of surveying in the beautiful Seathwaite Valley.

Another part of what made the fieldcourse enjoyable was the support of the staff and the surveying industry.  Throughout the trip, the staff were always ready to patiently answer questions, transport us to and from the field and give us helpful tips.  One evening, representatives from Leica Geosystems visited to present information about their company and entering the surveying industry.  It was a great opportunity to learn more about the jobs we’ll be doing after graduation.

All in all, it was a fantastic week at Glaramara and it shows what makes Newcastle University’s geomatics courses different from other universities’.  The hands-on learning approach using top-of-the-line equipment, in a beautiful setting, all with the constant support of a knowledgeable and patient staff, made it a truly fun and rewarding experience.

Protecting our Coral Reefs

Coral reefs are among the most bio-diverse eco-systems on the planet, but climate change and human interference threaten to destroy these essential marine environments. Research led by Newcastle University focuses on adapting and restoring coral in order to protect reefs.

What is coral and why is it important?

Corals are what are known as “sessile” animals, this means that they permanently take root to the ocean floor, much like a plant, however, corals are not plants as they do not produce their own food. Each coral is made up of thousands of tiny coral creatures known as polyps. Corals have a symbiotic relationship with a form of algae known as “zooxanthellae” that lives inside the corals’ tissues – the algae are what give coral its bright colours.

Coral reefs provide a habitat for around 25% of all marine life, with estimates suggesting reefs support the livelihood of around 2 million different species. In addition to the essential role they play in sustaining ocean health, coral reefs also contribute to the prevention of coastal erosion as well as helping to provide food security and income for millions of people in coastal communities.

 Beautiful, bright coral reefs provide homes for an array of creatures such as this crinoid. Photos by Tim Dixon.

What threatens the survival of coral reefs?

Human interference with marine life, through practices such as fishing, tourism and pollution have a negative effect on the health of coral reefs. One of the biggest threats which is likely to cause coral reefs to bleach, and eventually die, is climate change. Corals are sensitive to changes in water temperature and cannot survive if the temperature rises too much. Climate change has already had an effect on water temperatures in certain areas of the world, and this is predicted to get worse over the coming decades.

A clown fish peeks out from a sea anemone attached to a coral reef. Photo by Tim Dixon.

What is being done to protect coral reefs?

Assisted Evolution

Whilst existing conservation measures such as Marine Protected Areas are vital when it comes to protecting reefs from the damages of human impact, other solutions are required to help coral species adapt to changes in environmental conditions such as increasing sea temperatures.

With the continued threat of climate change and how it might affect corals hanging over their heads, scientists at Newcastle University are conducting a pioneering study into the “feasibility of using selective breeding and an innovative mass re-population method to help corals affected by bleaching.”

Professor of Coral Reef Biology, John Bythell, explains: “During coral bleaching events, it is possible to observe healthy colonies next to bleached colonies, suggesting that some corals are better adapted to higher temperatures. This means that one possible solution could be to selectively breed corals that can withstand higher than normal temperatures and successfully pass this onto offspring.”

The ground-breaking five-year “Assisting Coral Reef Survival in the Face of Climate Change” project will face many challenges; Dr Guest explains that the assisted evolution approach will “involve certain risks for recipient populations such as resource trade-offs between heat tolerance, growth and reproduction.”

If the team are successful in passing on the desirable traits to coral offspring they will then transplant the coral onto damaged reefs using a technique already developed by Newcastle University.

 Coral reefs support the livelihood of a huge array of creatures. Photos by Tim Dixon. 

Coral Transplantation

After challenging expensive and often ineffective existing coral transplantation strategies which focus on “attaching fast-growing coral species onto damaged reefs to speed their recovery”, a team of scientists at Newcastle University developed a more cost-effective solution centered around the use of more robust, slow-growing coral species.

Using plastic wall plugs,  an object more commonly used to fit screws into brickwork, Newcastle University’s team created coral “plug-ins”, where they grow healthy corals on cement cylinders which have been embedded with the plastic wall plugs. These coral “plug-ins” can then be slotted into pre-drilled holes in damaged reefs.

The hope is that through the use of the innovative techniques developed by Newcastle University led research, coral reefs will be given the ability to thrive and continue to provide a habitat for millions of marine species for generations to come.

A pygmy seahorse camouflaged among the coral. Photo by Tim Dixon. 

If this post has sparked your interest and you want to find out more about Newcastle University’s research then head over to ncl.ac.uk/nes/research/marine.

Marie Curie’s legacy lives on at Newcastle University

Marie Curie in her laboratory
Marie Curie in her laboratory

Today we are celebrating the 150th anniversary of the birth of Marie Sklodowska-Curie. She was a remarkable scientist whose ground-breaking research into radioactivity led to the development of cancer treatment with radioactive isotopes, and mobile X-ray units for field hospitals during World War 1.

Dr Curie was the first woman to win a Nobel prize, and the first person ever to win it twice and in two different sciences (Chemistry and Physics).

The Marie Sklodowska-Curie Fellowship

The European Commission set up the Marie Sklodowska-Curie Research Fellowship Programme which provides two years of funding for researchers across the world and promotes interdisciplinary research and collaboration.

We talked to Dr Ruth Rodriguez-Barrueco, one of the recipients of a Fellowship, about her research in Newcastle University’s Institute of Genetic Medicine:

Dr Rodriguez-Barrueco, Marie Sklodowska-Curie Fellow, Newcastle University
Dr Rodriguez-Barrueco, Marie Sklodowska-Curie Fellow, Newcastle University

What does your research involve?

Ruth’s research is looking at finding a new therapeutic approach to certain aggressive types of breast cancer. She is targeting a small population of cells found within tumours that have stem cell characteristics and is hoping to describe the vulnerabilities of these cells so that new drugs can be designed that target them specifically.

Ruth is using new technologies called CRISPR libraries which allow the elimination of different pieces of DNA to identify which genes are essential for the cancer cells to survive.

All of her findings will then be published in international journals and the CRISPR library will be deposited in a public repository which is available for other cancer researchers to access.

What brought you to Newcastle University?

Ruth is originally from Barcelona and has spent time working in Spain as well as at Columbia University in New York. She explained that she enjoyed the collaborative aspect of working at Newcastle University. The proximity of the Royal Victoria Infirmary and the Northern Institute for Cancer Research also means that she is able to work on real patient tissue samples to validate her findings. She went on to praise the supportive environment within the University and her colleagues.

What do you hope your research will lead to?

Ruth hopes that the  long term result of her research will be the development of new drugs that will target these currently incurable breast cancers. She would also like to see the clinical trials happening at Newcastle as there is a good structure and resources available that would allow this to happen in a short time frame.

What has the Marie Sklodowska-Curie Fellowship allowed you to do?

Ruth explained that the Fellowship has allowed her to establish the methods and collaborations which will lead to a bigger research project. She started her research in March of this year and has already started to see the benefits of the Fellowship.

 

“One never notices what has been done; one can only see what remains to be done”

Marie Sklodowska-Curie

Bonfire Night | The Science of Fire

Remember, remember the 5th of November, gunpowder, treason and plot! We see no reason why the science of fire should ever be forgot!

For this bonfire night, we are looking into the gravity defying properties of water using fire!

Step 1

Pour the water into your container and add the food colouring to colour the water to whatever colour you like, we chose blue.

Step 2

Place the candle in the middle of the water but make sure the wick and wax of your candle stays dry.

Step 3

Get an adult to help you light the candle and make sure the wick is burning for about 20 seconds before moving onto step 4.

Step 4

Place your glass/plastic cup over the candle, this will push all the water away from the candle

Step 5

Wait for a few moments and watch the candle go out and the water rise on the inside of the cup!

The science!

First of all, why does the candle go out?

Fire needs three things to burn; oxygen, fuel and heat. These three things make up the fire triangle which you can see below.

If one of them is taken away, the fire is put out. By putting the cup over the candle, the oxygen is taken away from the fire so it goes out!

But… it doesn’t go out straight away. This is because there is still some oxygen trapped inside the cup but once the fire has used up all the oxygen there is none left so the candle goes out.

So, why does the water in the cup rise after the flame goes out? When the candle is lit, the particles in the air take in some of the heat from the flame and get hotter. When the particles get hotter, they have more energy so move faster and this increases the pressure inside the cup.

After the flame has gone out, the particles cool down and move more slowly and this decreases the pressure in the cup. The pressure outside the cup is then higher than inside the cup so the water is pushed inside the cup until the pressure outside the cup is the same as the pressure inside the cup.

#TryThisTuesday Halloween Special!

Slime Two Ways

Happy Halloween! Here’s two of our favourite ways to make spooky slime with things you’ll find lying around the house, or in your local supermarket.

Magnetic Slime

Step 1

Ask an adult to help you remove the ink tube from the highlighter using a pair of scissors and squeeze the ink into the bowl. You might want to wear some plastic gloves to avoid getting the ink all over your hands!

Step 2

Add the liquid glucose and mix (we added Halloween confetti at this point for an extra spooky edge!)

Step 3

Gradually add cornflour and mix to get a slimy consistency, then add iron filings and mix, adding more as necessary.

Step 4

Move the magnet on the outside of the cup, and watch as the slime creeps up the side!

Step 5 (optional)

If you have access to a black light, shine this at the cup to make your slime glow in the dark!

      

The science!

The cornflour and liquid glucose mix together to create a non-Newtonian fluid, a fluid that changes in viscosity (how runny it is) with a change in pressure applied to it.

When the iron filings are added and dispersed throughout the slime this makes the mixture magnetic!

The black light emits ultraviolet light which is invisible to the naked eye, but when shone on the highlighter it emits a brilliant glow!

Reversible blood slime

Step 1

Carefully cut open the lining of the nappy and shake out the crystals from inside onto a sheet of paper. You may get some cotton coming out too so just be careful to take this out before step 2!

Step 2

Put the crystals from the nappy into the bowl or container, you’ll only need about a tablespoon full, and add about 250ml water and a splash of red food colouring

Step 3

Stir the mixture and watch closely as the water is absorbed by the crystals and begins to look like a thick slime! Again, we added Halloween confetti to ours to make it even more mysterious!

Step 4

To reverse this process, and turn the slime back into water and food colouring, all you have to do is add salt and mix and watch as the process takes place.

 

The science!

The crystals that are in the lining of nappies are known as a hydrogel. The hydrogel here is a polymer (a long chain of repeated molecules) called sodium polyacrylate and is superabsorbent, meaning it expands when it comes into contact with water and can hold a huge amount of liquid!

When the salt is added, the polymer collapses due to the a change in the ionic concentration of the solution and so the water-holding ability of the hydrogel is broken.

The Science of Baking: Cake

For the next instalment in Science of Baking series, just in time for the Bake-Off
Final, Charlie Wilkinson has looked into the science of making the perfect cake.

Cake is a wonderful thing, there’s nothing quite like the first slice of homemade cake to cheer you up. We use it to celebrate birthdays for a reason! There is science in baking a cake, even if you don’t realise it.

cake

The basic ingredients for cake include the use of flour, eggs, sugar and butter. The flour and eggs are strengthening ingredients for building structure in the cake while the sugar and butter are structure weakening. A good cake feels light in texture, this lightness is due to air bubbles formed throughout the batter which creates a structure of thin layers of cake separated by those air bubbles.

Baking a cake starts with creaming your fat and sugar, this action incorporates all that air which is required to form the light texture of cake. At this point eggs are added to the mixture, beaten egg essentially protects the air bubbles in the cake from collapsing during the baking process. Flour is then gently added into the mixture, gently to protect those precious air bubbles. The addition of flour is essential for the structure of the cake, forming gluten to add structure. This is a delicate process, however – too much gluten creates a heavy consistency like bread. This is why the type of flour used is important, with cake flours with lower protein content and heavy strong bread flours with higher.

As the cake bakes air expands as water vapour and carbon dioxide is released, the egg cooks and coagulates forming a permanent risen form of the cake. Browning reactions take place on the cake surface which enhance the flavour of the cake, creating a final form of browned, risen, light, airy, delicious cake.

Black History Month: Influential Figures in STEM

October is drawing to a close, which means it’s time for our final installment of profiles for Black History Month. We take a look at astronaut and scientist, Mae Jemison, and renowned zoologist, Ernest Everett Just. We’ve barely scratched the surface of the achievements of black people in the STEM industries, but we hope we have inspired you with some amazing stories. If there’s anyone else you’d like to share with us don’t forget to comment below!