Monthly Archives: October 2020

Approaching Equality, Diversity and Inclusion within research teams

As EPSRC publishes their findings on gender perspectives within their research funding portfolio, our Centre Director, Dr Sara Walker and Centre Manager, Laura Brown discuss the challenges women working to help rebalance the mismatch face.

About the authors: Dr Sara Walker

Dr Sara Walker is Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

About the authors: Laura Brown

Laura is the Centre Manager, EPSRC National Centre for Energy Systems Integration and Energy Research Programme Manager, Newcastle University. Her research tackles the challenges of integration of state-of-the-art thinking and technology into legacy energy systems.

As an academic team, we have a responsibility to consider Equality, Diversity and Inclusion in the way we conduct our teaching, research and knowledge exchange. Doing the right thing is not always easy. We are in no way experts. But surely it is better to try, and accept that we will sometimes get it wrong?

Our research is funded by the EPSRC, for the National Centre for Energy Systems Integration and the Supergen Energy Networks Hub. So, we were interested to read the recently published EPSRC report Understanding our portfolio:  A gender perspective.

Within their report they state, “Underrepresentation of women in the engineering and physical sciences remains one of EPSRC’s largest equality, diversity and inclusion (ED&I) challenges and is a well-known issue in the engineering and physical sciences community.” We applaud the transparency that EPSRC has shown in issuing the report as we know, as scientists and engineers, one of the best ways of tackling problems is by considering the underlying data.

In our opinion, the findings of the report can be considered both worrying and illuminating. For example, higher value awards show significantly lower award rates to female Principal Investigators. Since 2007, applications of value over £10million have been received from 5 females, compared to 80 males. In 2018-19 (the latest year we have data for), just 15% of applications received were from female Principal Investigators.

Factors affecting application rates by female academics are likely to be numerous and complex, affecting individuals in different ways.

Some of these could be:

  • Women win fewer scientific prizes and so the public see fewer “success stories” of women, discouraging women to take up science subjects. (Callier, Conversation,  Jan 2019)
  • Women are evaluated by their students as less effective teachers than male counterparts, which may impact career progression (Basow, JEP, Sep 1987
  • Women are less likely to be selected at application stage for things like access to equipment. This was noted in a study of Hubble telescope time , for example. ( Johnson  & Kirk, HBR, Mar 2020)
  • Women get paid less: “The EPSRC’s analysis of the salaries which applicants request on grants is a very effective illustration of the gender pay gap. Using age as a proxy for career stage, we see men get paid more than women at similar career stages, and this effect increases with seniority level.” From @TIGERinSTEMM
  • The large grant applications are required to come from the Research PVC, of which we have very few women (Donald, Blog, Oct 2020)
  • Women undertake more unpaid work than male counterparts as parents, carers and in household duties, and this impacts the time available for, and consequent success in, delivery of those measures of “success” which are valued for promotion in the workplace. This impact of unpaid work has been particularly marked during COVID lockdown for women in academia ( Gewin, Nature, Jul 2020) and (Pinho-Gomes, BMJ GH Vol 5 Iss 7)

We underline could in the above section, because there is simply a lack of data. Reading “Invisible Women” by Caroline Criado Perez (Vintage, ISBN: 9781784706289) makes you realise that “lack of data in academia” can be replaced with “lack of data in society”.

Data is not available from EPSRC for other protected characteristics, and so our understanding of the academic experience is often limited to our own lived experience. In order to address EDI in our institutions, we often ask those in the protected characteristic groups to represent a heterogeneous mix of people and experience. As two white women we bring our white privilege to the table (a great resource on this is here: https://www.racialequitytools.org/resourcefiles/mcintosh.pdf). Even within white privilege there are intersections with our Northern and Scottish roots, and class, for example.

McIntosh (1989) lists several white privileges, and given recent discussions in the UK of decolonisation of the curriculum and the during the current Black History Month, this one gives pause:

“When I am told about our national heritage or about “civilization”, I am shown that people of my color made it what it is.”

McIntosh (1989) White Privilege: Unpacking the Invisible Knapsack

We are more than white women. We are white, heterosexual, married women who have children. So, as EDI champions, how can we reflect the experience of the full diversity of women? Women of colour, women without children, women who are disabled, women who are homosexual, or people who do not associate with binary expressions of gender? We may be very close to women with different lived experiences and have an appreciation of their experience through family and friends for example. And what role for men, how can they better understand the lived experiences of the full diversity of men? How can our research teams become better environments for all, regardless of difference?

We conclude it behoves each of us to read, observe and educate ourselves about the experiences of others. Be a good example. To take responsibility for our own awareness, to be reflective, and commit to being a better global citizen. To be kind. To be human.

Achieving net-zero in the UK through an integrated energy system

The Communities Secretary, Rt Hon Robert Jenrick MP, recently rejected permission for an open cast mine near Druridge Bay, stating that the proposal “is still not environmentally acceptable”. This announcement follows a lengthy decision process and extensive media coverage, including a Public Inquiry and an appeal to the High Court. In this blog CESI Director, Dr Sara Walker, comments on the case which was supported by evidence presented by CESI’s previous Director, Prof Phil Taylor on CESI’s whole systems approach to energy systems integration.

Druridge Bay, Northumberland

About the author: Dr Sara Walker

Dr Sara Walker is Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

Contact details
email: sara.walker@ncl.ac.uk

In 2014, a proposal was put forward to remove 3 million tonnes of coal from an opencast mine at Highthorn, close to Druridge Bay, on the Northumberland coast. The proposed developer, HJ Banks & Co Ltd, argued coal fired power stations are essential for the security of the UK’s energy supply and in July 2016, planning permission for the mine was approved by Northumberland County Council.

In a landmark move, central Government called a Public Inquiry on the grounds of climate change – the first time any planning permission decision has been called to inquiry on this basis.

In March 2018, the Communities Secretary Sajid Javid stated he had concluded the project should not go ahead on the grounds that it would exacerbate climate change. This rejection was the first time any planning permission decision has been refused on this basis, setting a precedent for all future applications.  This was seen as a significant step in taking tackling climate change seriously, showing the UK to be leading in this regard.

Following the announcement of the planning rejection, Banks lodged an appeal in the High Court.  The High Court found in favour of Banks in October 2018, returning the case to the Communities Secretary to reconsider the arguments presented.

At the Planning Inquiry, the expert witness for Banks argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. They also claimed other cleaner sources of energy cannot be relied upon as a consistent source of energy. Wind power, for example, provides an intermittent source of energy as the wind does not always blow. Similarly, the sun does not always shine, so photovoltaic systems will not generate sufficient energy. For these reasons, opening the new mine would have been an important step in ensuring that the UK maintains a good supply of coal for its power stations. However, there is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements. Instead, it is essential to take a whole systems approach when considering the UK’s energy mix.

The Department for Business, Energy and Industrial Strategy (BEIS) collates data on the UK’s energy generation mix.  The latest figures were released in July 2020 [1] and compare data for 2019 against previous years.  The shares of electricity generation by fuel in 2018 and 2019 are illustrated in Figure 1. These show that gas generated electricity increased slightly to 40.6%.  Electricity from renewables (wind, hydro, solar, wave, tidal and bioenergy) achieved a record high of 37.1% (121TWh), which is the first time renewables have provided over a third of the total generation mix. During the same period, the share of electricity generated from coal reduced to 2.1% (6.9TWh).  This represents a record low, down 59% compared to 2018.  The figures show that coal is declining in importance and that we have many options to replace it.

Figure 1 The share of electricity generation by fuel in 2018 and 2019 [1]

An integrated energy system

In his expert witness testimony to the Public Inquiry, CESI’s former Director and current Associate Director, Professor Phil Taylor, emphasised the need to take a whole systems view, highlighting CESI’s research into an integrated energy system. The UK can phase out coal-fired power stations by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas and combining this with power produced from renewables such as wind, biomass and PV. We can store energy when we have more than is needed, or when there is too much for network cables to carry, and then release it when is required. Britain also imports electricity via physical links known as interconnectors. The UK energy regulator, Ofgem, forecasts that planned interconnector projects will lead to a capacity of 7.3GW by 2021 (compared to total GB system generation capacity of 77.9GW in 2019). In addition, the electricity demand could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non‐essential items when there is a peak in electricity demand.

CESI evidence therefore showed that, by balancing supply and demand on the electricity grid, we can phase out coal and reduce the need to build new power stations. An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

“We are delighted that evidence provided by the National Centre for Energy Systems Integration has supported this landmark decision to reject further extraction of coal on grounds of Climate Change. Our work has clearly demonstrated that a Whole Systems approach with Systems Integration can enable us to decarbonise our energy systems whilst maintaining reliability and security of supply”

Director of CESI, Dr Sara Walker

Net Zero

In September 2020, the Communities Secretary, Rt Hon Robert Jenrick MP, rejected the open cast mine, stating that  the “substantial extent of the landscape harm means that the proposal is still not environmentally acceptable, nor can it be made so by planning conditions or obligations”. 

This decision will help the UK to achieve its target to phase out coal by 1 October 2024, announced by Prime Minister Boris Johnson in February 2020. It will also the support the ambitious aims of cutting carbon emissions targets set by councils in the North East of England.  These include Northumberland County Council, which has set the target of being carbon neutral by 2030.  The implications of this decision for our future energy supply are significant and will affect us all.

——————————–

  1. Digest of United Kingdom Energy Statistics 2020, Department for Business Energy & Industrial Strategy https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/924591/DUKES_2020_MASTER.pdf [accessed 9/10/2020]