Tag Archives: Net Zero

Who perseveres wins!

About the Author:

Dr Susan Claire Scholes is a post-doctoral researcher within the School of Engineering.  Susan’s current research is in the field of whole systems energy research, working with the Supergen Energy Networks Hub at Newcastle University.

Previous research interests were in bioengineering where Susan was responsible for the investigation of explanted metal-on-metal hip prostheses and explanted knee prostheses.

Matlab and the GB Network System

Let me tell you a story….  It feels like it started a long, long time ago but in reality it has only been 20 months (this may still seem like a long time to some, depending on your age!).  Twenty months of hard work but important work.  This is when I started working on a model of the GB network system.  This model already existed [1, 2] but it needed some work to be done on it to allow it to perform the tasks that I required.

Now, I had minimal experience (or knowledge) on Matlab but I am always eager to learn so I saw this as an opportunity to develop my research skills even further (I’ve been working in academic research for 21 years now, so it’s never too late to learn!).

I familiarised myself with Matlab and the model so I understood the background to my project; and this understanding developed as the time progressed.  The adjustments needed on the model were only small; small in capacity but mammoth in the necessary effort to succeed!

The cost functions of each generation type in the GB network model were already in the model but they were just given as merit order equations; this was so the model was able to calculate the proportion of expected generation from each type of generation provider (wind, gas, coal, nuclear and hydro).  But I needed it to calculate the true costs.

I knew this wouldn’t be easy, or quick!  As a modeller, it is important to analyse results obtained and question their validity; you need to have confidence in the results that your model provides.  It is essential that you compare your results with appropriate published data and relevant work done by others.

Using known data from previous years I was able to identify when the results from my model were not as good as they needed to be; and it allowed me to gain confidence in my work as it developed.  This was an iterative process that required many hours of hard and repetitive work.

To get this done well it required a lot of effort and determination (and a few handkerchiefs to mop up the inevitable tears of frustration!).  For months I was stuck in what seemed to be a never-ending loop:

  • adjust the model, write the script, run the model – no joy
  • adjust the model, adjust the script, run the model – it works!, review the results
  • adjust the model/script, run the model – it works (but sometimes it didn’t!), review the results
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • again, again and again until…
  • adjust the model/script, run the model – it works!, review the results, confirm results, write the paper (with confidence that the model used is the most appropriate and performs the task well) and submit!

So, what have I learned during this time?  Perseverance is key, determination is needed and patience would have been a bonus but I’ve always lacked in that!  Unexpected things, like the University’s cyber security attack, and even a pandemic, can be obstacles but with the correct support they are not insurmountable.  I also needed to learn that all models have their limitations.

You can minimise these limitations to produce the best model for your purpose but your model cannot do all, it will not be suitable for everything.  Spend time on the model, like I say, for it to produce relevant results for your work but understand that there will always be limitations as to what the model can do.

As long as you are aware of these and you are able to explain the limitations imposed on your work (and why these are acceptable) then you should feel proud.  Proud of the valid, valuable work you have achieved and the advancements you have made in your field of research.  It was all worth it in the end!

References

  1. Bell, K.R.W. and A.N.D. Tleis. Test system requirements for modelling future power systems. in IEEE PES General Meeting. 2010.
  2. Asvapoositkul, S. and R. Preece. Analysis of the variables influencing inter-area oscillations in the future Great Britain power system. in 15th IET International Conference on AC and DC Power Transmission (ACDC 2019). 2019.

How green is energy storage? Learnings from a CESI-funded case study

Academics funded by the EPSRC National Centre for Energy Systems Integration (CESI) in the Centre’s first Flexible Funding Call, recently published the results of a study on the impacts of energy storage operation on greenhouse gas emissions, in the journal Applied Energy. Their work is summarised here by the lead author, Dr Andrew Pimm, and the full paper [1] is freely available to all on the journal website. The research team was led by Prof Tim Cockerill of the University of Leeds, and also included Dr Jan Palczewski of Leeds and Dr Edward Barbour of Loughborough University.

About the author: Dr Andrew Pimm

Dr Andrew Pimm is a Research Fellow at the University of Leeds investigating the techno-economics of energy storage, energy flexibility, and industrial decarbonisation. Prior to joining Leeds in 2015, he worked on the development of grid-scale energy storage technologies at the University of Nottingham, where he was involved in offshore trials of underwater compressed air energy storage.

Contact details
Email: a.j.pimm@leeds.ac.uk

Energy storage will be a key part of the future energy system, allowing the deployment of higher levels of non-dispatchable low carbon electricity generation and increased electrification of energy demand for heating/cooling, transport, and industry.

Passing energy through storage inevitably results in losses associated with inefficiencies, however previous investigations have found that operation of electricity storage can result in increased CO2 emissions even if the storage has a turnaround efficiency of 100% [2]: if the output from a relatively high carbon source (such as unabated gas or coal) is increased to charge the storage, and the output from a relatively low carbon source is reduced when the storage is discharged, then the result will be a net increase in CO2 emissions.

However, these effects had not been considered recently for Great Britain, and little attention had been given to the extent to which they vary by location. We sought to fill this gap in the knowledge through our study.

We made use of data from National Grid’s regional Carbon Intensity API and ELEXON’s P114 dataset to determine the source of electricity consumed in each of Great Britain’s 14 electricity distribution zones for each half-hour period in 2019 (annual sums shown in Figure 1).

Figure 1: The share of electricity consumption by region and source in Great Britain in 2019.

With these data, we used linear regression techniques [3] to calculate half-hourly “marginal emissions factors” for each distribution zone. These tell us the change in CO2 emissions that occurs as a result of a change to grid electricity demand, disaggregated by time and location. These regional marginal emissions factors were then used to assess the impact of electricity storage operation on grid CO2 emissions in three different storage operating scenarios:

  1. Load levelling, whereby storage is charged at times of low demand and discharged at times of high demand.
  2. Wind balancing, whereby storage is charged at times of high wind output and discharged at times of low wind output.
  3. Reducing wind curtailment, whereby storage is charged using excess wind generation that would otherwise be curtailed and discharged at times of high demand.

The resulting emissions reductions are shown for selected distribution zones and Great Britain as a whole in Figure 2. Wind balancing is the only storage operating mode that leads to increased CO2 emissions, and emissions are reduced the most when storage is operated to reduce wind curtailment in regions with high levels of fossil generation.

Across all regions and operating modes, the difference between the highest reduction in emissions and the highest increase is significant, at 741 gCO2 per kWh discharged, and is roughly equivalent to the reduction in emissions per unit achieved by fitting a coal power plant with carbon capture and storage.

Figure 2: Potential emissions reduction through storage operation for the three operating scenarios, in six selected distribution zones and Great Britain as a whole in 2019.

While electricity storage will be a key component in future low carbon energy systems, our work has shown the importance of storage location and operating mode to its operational emissions and the possible dangers of evaluating emissions using average emissions factors. We are currently using these new techniques to investigate the lifecycle emissions of storage and smart EV charging across the EU.


References

[1] Pimm AJ, Palczewski J, Barbour ER, Cockerill TT. Using electricity storage to reduce greenhouse gas emissions. Applied Energy. 2021;282:116199.
[2] Denholm P, Kulcinski GL. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Conversion and Management. 2004;45:2153-72.
[3] Hawkes AD. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy. 2010;38:5977-87.

Achieving net-zero in the UK through an integrated energy system

The Communities Secretary, Rt Hon Robert Jenrick MP, recently rejected permission for an open cast mine near Druridge Bay, stating that the proposal “is still not environmentally acceptable”. This announcement follows a lengthy decision process and extensive media coverage, including a Public Inquiry and an appeal to the High Court. In this blog CESI Director, Dr Sara Walker, comments on the case which was supported by evidence presented by CESI’s previous Director, Prof Phil Taylor on CESI’s whole systems approach to energy systems integration.

Druridge Bay, Northumberland

About the author: Dr Sara Walker

Dr Sara Walker is Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

Contact details
email: sara.walker@ncl.ac.uk

In 2014, a proposal was put forward to remove 3 million tonnes of coal from an opencast mine at Highthorn, close to Druridge Bay, on the Northumberland coast. The proposed developer, HJ Banks & Co Ltd, argued coal fired power stations are essential for the security of the UK’s energy supply and in July 2016, planning permission for the mine was approved by Northumberland County Council.

In a landmark move, central Government called a Public Inquiry on the grounds of climate change – the first time any planning permission decision has been called to inquiry on this basis.

In March 2018, the Communities Secretary Sajid Javid stated he had concluded the project should not go ahead on the grounds that it would exacerbate climate change. This rejection was the first time any planning permission decision has been refused on this basis, setting a precedent for all future applications.  This was seen as a significant step in taking tackling climate change seriously, showing the UK to be leading in this regard.

Following the announcement of the planning rejection, Banks lodged an appeal in the High Court.  The High Court found in favour of Banks in October 2018, returning the case to the Communities Secretary to reconsider the arguments presented.

At the Planning Inquiry, the expert witness for Banks argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. They also claimed other cleaner sources of energy cannot be relied upon as a consistent source of energy. Wind power, for example, provides an intermittent source of energy as the wind does not always blow. Similarly, the sun does not always shine, so photovoltaic systems will not generate sufficient energy. For these reasons, opening the new mine would have been an important step in ensuring that the UK maintains a good supply of coal for its power stations. However, there is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements. Instead, it is essential to take a whole systems approach when considering the UK’s energy mix.

The Department for Business, Energy and Industrial Strategy (BEIS) collates data on the UK’s energy generation mix.  The latest figures were released in July 2020 [1] and compare data for 2019 against previous years.  The shares of electricity generation by fuel in 2018 and 2019 are illustrated in Figure 1. These show that gas generated electricity increased slightly to 40.6%.  Electricity from renewables (wind, hydro, solar, wave, tidal and bioenergy) achieved a record high of 37.1% (121TWh), which is the first time renewables have provided over a third of the total generation mix. During the same period, the share of electricity generated from coal reduced to 2.1% (6.9TWh).  This represents a record low, down 59% compared to 2018.  The figures show that coal is declining in importance and that we have many options to replace it.

Figure 1 The share of electricity generation by fuel in 2018 and 2019 [1]

An integrated energy system

In his expert witness testimony to the Public Inquiry, CESI’s former Director and current Associate Director, Professor Phil Taylor, emphasised the need to take a whole systems view, highlighting CESI’s research into an integrated energy system. The UK can phase out coal-fired power stations by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas and combining this with power produced from renewables such as wind, biomass and PV. We can store energy when we have more than is needed, or when there is too much for network cables to carry, and then release it when is required. Britain also imports electricity via physical links known as interconnectors. The UK energy regulator, Ofgem, forecasts that planned interconnector projects will lead to a capacity of 7.3GW by 2021 (compared to total GB system generation capacity of 77.9GW in 2019). In addition, the electricity demand could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non‐essential items when there is a peak in electricity demand.

CESI evidence therefore showed that, by balancing supply and demand on the electricity grid, we can phase out coal and reduce the need to build new power stations. An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

“We are delighted that evidence provided by the National Centre for Energy Systems Integration has supported this landmark decision to reject further extraction of coal on grounds of Climate Change. Our work has clearly demonstrated that a Whole Systems approach with Systems Integration can enable us to decarbonise our energy systems whilst maintaining reliability and security of supply”

Director of CESI, Dr Sara Walker

Net Zero

In September 2020, the Communities Secretary, Rt Hon Robert Jenrick MP, rejected the open cast mine, stating that  the “substantial extent of the landscape harm means that the proposal is still not environmentally acceptable, nor can it be made so by planning conditions or obligations”. 

This decision will help the UK to achieve its target to phase out coal by 1 October 2024, announced by Prime Minister Boris Johnson in February 2020. It will also the support the ambitious aims of cutting carbon emissions targets set by councils in the North East of England.  These include Northumberland County Council, which has set the target of being carbon neutral by 2030.  The implications of this decision for our future energy supply are significant and will affect us all.

——————————–

  1. Digest of United Kingdom Energy Statistics 2020, Department for Business Energy & Industrial Strategy https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/924591/DUKES_2020_MASTER.pdf [accessed 9/10/2020]

Getting it done? The UK 2020 Budget and the support for a net-zero transition in the energy sector.


About the authors:

Dr Sara Walker is Reader in Energy at Newcastle University and Director of Newcastle University Centre for Energy.

Professor David Flynn is Professor of Smart Systems at Heriot Watt University

Both Sara and David are Associate Directors of the EPSRC National Centre for Energy Systems Integration, a £20m collaborative research programme with industry and government investigating the social, ecconomic and technical value in energy systems integration.


March 2020 Budget

On 11th March 2020, the Chancellor Rishi Sunak presented to Parliament the Government budget¹. This was an opportunity for the UK Government to clearly signal its commitment to deliver on the net-zero greenhouse gas emissions target for 2050 and to also lay the groundwork for COP26 as the host nation.

Albeit the language of the previous administration associated with “industrial strategy” was dropped, the Government retained a reference to the Grand Challenges, indicating that there is likely to be continued investment into energy innovation and climate change mitigation. A key indication of this is the commitment to at least double investment in the Energy Innovation Programme.

Firstly

The first mention of issues related to energy in the Chancellor’s speech came with an announcement to continue the freeze on fuel duty. For comment on this, and other transport initiatives in the Budget, we refer you to DecarboN8’s review². In a separate announcement, Business Secretary Alok Sharma previously confirmed a £36.7 million investment to design, test and manufacture electric machines. £30 million will be used to create a national network cutting-edge centers led from Newcastle University – based in Newport, Nottingham, Strathclyde, and Sunderland – to research and develop green electric machines including planes, ships, and cars. This represents the “demonstrator” element of the Industrial Strategy Challenge Fund Driving the Electric Revolution Challenge.

And then …

The second mention of energy came in an announcement, as part of the Research and Development (R&D) spend, of £900m funding for nuclear fusion, space, and electric vehicles. As employees of research organizations, we welcome the announcement of £22bn per year by 2024-25, in research and development. However, the role of new nuclear in the Committee on Climate Change Net Zero technical report³ is relatively minor.
On housing, the Budget refers to £12.2bn for the Affordable Homes Programme over 5 years, a push for 300,000 new homes per year, and reforms to planning to accelerate development. No commitment is made to the standard of new homesª, or retrofit of existing homes, which is inconsistent with the Committee on Climate Change Net Zero report, which found that high levels of energy efficiency are needed to get close to the zero targets.

What does this mean for energy sector? 

There is a clear need to improve the quality of UK homes, in a way that reduces energy use and moves us towards heating systems that use lower-carbon fuels. We need to make urgent changes in this area, from research to improve the performance of individual technology like heat pumps, to understanding possible future housing performance and the energy needs associated with that. The EPSRC National Centre for Energy Systems Integration (CESI) is looking at these types of research challenges.

The meat of the Budget from an energy perspective is in the Budget report section on “Growing a greener economy”. There is an announcement to double the size of the Energy Innovation Programme as mentioned previously, although some of this money is for R&D and therefore likely to be included in the figures above. A further £800m was announced by the Chancellor for the development of two Carbon Capture and Storage (CCS) sites through the creation of a CCS Infrastructure Fund. CCS support was removed by previous administrations but is integral to many scenarios within the Committee on Climate Change Net Zero report.

No figures are mentioned, but the Budget report includes a new support scheme for biomethane funded by a Green Gas Levy, and a Low Carbon Heat Support Scheme to enable the installation of biomass boilers and heat pumps. £270m is promised to enable new and existing heat networks to adopt low carbon heat sources, to follow on from funding of £97m for the final year of the Heat Networks Investment Project (HNIP). There is a rise in the Climate Change Levy on gas (for 2022-23 and 2023-24). The Renewable Heat Incentive is extended to 31st March 2022. Furthermore, £10m in 2020-21 is to support the design and delivery of net zero policies and programs. Heat networks are an area of research for the EPSRC National Centre for Energy Systems Integration (CESI), and we also expect to investigate more scenarios with hydrogen and CCS now that the goal for the UK has changed from 80% to a net-zero target.

And Finally

Given the critical interdependencies of our energy infrastructure to other vital services e.g. water, transport, services from public buildings, we also see opportunities to accelerate and distribute the efforts in decarbonisation by utilising the opportunities of the Making the most of Government knowledge assets initiative. The public sector holds around £150 billion of knowledge assets (intellectual property, tech, data, etc.), which is vital in shaping the operation and planning of decarbonised services. However, the absence of any Budget support for solar, wind, and storage – elements seen as vital with renewable generation four times current levels in some Committee on Climate Change scenarios – is of great concern. As is the lack of investment to decarbonise the building stock.

Getting it done isn’t the same as getting it right. And for the UK energy sector, there is very little in the budget which gives confidence that we are doing enough, let alone doing it well.

References

  1. https://www.gov.uk/government/speeches/budget-speech-2020
  2. https://decarbon8.org.uk/budget-2020-transport-we-cant-build-our-way-out-of-the-climate-challenge/ with for example: £403m for the Plug-In Car Grant; £129.5m to extend the scheme to vans, taxis and motorcycles; Vehicle Excise Duty exemption; £500m over 5 years to roll out rapid charging; removing red diesel tax relief; £304m for NOx reduction; freeze of fuel duty; £20m midlands rail hub; £5bn for new buses and cycling; £500m pothole fund; all dwarfed by the £27bn between 2020 and 2025 for road investment. Aviation is also mentioned with regards regional connectivity.
  3. https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-Technical-report-CCC.pdf

ªhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/871799/Budget_2020_Web_Accessible_Complete.pdf “2.95 Future Homes Standard – The government is committed to reducing emissions from homes and to helping keep household energy costs low now and in the future. In due course, the government will announce plans to improve the standards of new built homes.”