Category Archives: Uncertainty

Techno-Economic-Environmental Analysis of A Smart Multi Energy Grid Utilising Geothermal Energy Storage For Meeting Heat Demand

Researchers based at Newcastle University from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub (SEN), Dr Seyed Hamid Reza Hosseini and Dr Adib Allahham, along with the Coal Authority, Dr Charlotte Adams, will soon publish their journal paper in IET Smart Grid.

About the author: Dr Adib Allahham

Dr Adib Allahham

Dr Adib Allahham is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub (SEN). Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost-efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Contact details:
adib.allahham@ncl.ac.uk
@adiballahham
Profile details

About the paper

The UK Government has committed to a ‘Net Zero’ carbon economy by 2050 [1]. One major source of carbon emission is associated with heat demand from the domestic, commercial and industrial sectors.

Providing for heat demand accounts for around one third of UK carbon emissions [2]. In order to decarbonise the provision of heat, it is essential to increase the penetration of Low Carbon Energy Sources [1] in Smart Multi Energy Grids (SMEGs), i.e. integrated gas, electricity, and district heating and cooling networks [3,4]. This, consequently, has impact on the operation of SMEGs from the Techno-Economic-Environment (TEE) point of view [5,28].

Recent work on the geothermal potential of the UK’s flooded abandoned mining infrastructure has revealed a subsurface resource in place of 2.2 million GWh [11]. The impact of integrating this vast supply and storage potential on the operation and planning of SMEGs needs to be evaluated in terms of TEE aspects.

The paper identifies research gaps, including neglecting the electricity requirements of the components of the geothermal system that is required to boost the hot water quality and presents an evaluation framework for the Techno-Economic-Environmental (TEE) performance of Integrated Multi-Vector Energy Networks (IMVENs) including geothermal energy. Geothermal Energy Storage (GES), offers huge potential for both energy storage and supply and can play a critical role in decarbonising heat load of Smart Multi Energy Grids.

Schematic of SEH, GN & DHN
Fig.1 Schematic of the considered Smart Electricity Network (SEN), Gas Network (GN) and District Heating Network (DHN)

The two most common types of GES, i.e. High Temperature GES (HTGES) and Low Temperature GES (LTGES), were modelled and integrated within the framework which evaluates the impact of different low carbon energy sources including HTGES, LTGES, wind and PV on the amount of energy imported from upstream, operational costs and emissions of IMVENs to meet the heat load of a region.

Data from a real-world case study was used to compare the TEE performance of the considered IMVEN configurations for meeting the heat load. Data included wind and PV generation, as well as the heat and electricity load for a representative winter week of a small rural village in Scotland.

Fig. 2 The schematic of all the possible configurations of IMVEN considered in this paper

The results reveal that the most efficient, cost effective and least carbon intensive configurations for meeting the heat load of the case study are the configurations benefitting from HTGES, from a high penetration of heat pumps and from LTGES, respectively.


References

  1. [1] ‘Net Zero – The UK´s contribution to stopping global warming’, https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf, accessed 20 December 2019
  2. [2] ‘Clean Growth – Transforming Heating: Overview of Current Evidence, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/766109/decarbonising-heating.pdf, accessed 20 December 2019
  3. [3] Ceseña E.A.M., Mancarella P.: ‘Energy Systems Integration in Smart Districts: Robust Optimisation of Multi-Energy Flows in Integrated Electricity, Heat and Gas Networks’, IEEE Transactions on Smart Grid, 2019, 10, (1), pp. 1122-1131
  4. [4] Lund, H., Andersen, A.N., Østergaard, P.A., et al.: ‘From electricity smart grids to smart energy systems – A market operation based approach and understanding’, Energy, 42, (1), pp. 96-102
  5. [5] Hosseini, S.H.R., Allahham, A., Taylor, P.: ‘Techno-economic-environmental analysis of integrated operation of gas and electricity networks’. Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), Florence, Italy, May 2018, pp. 1–5
  6. [28] Hosseini, S.H.R., Allahham, A., Walker, S.L., et al.: ‘Optimal planning and operation of multi-vector energy networks: A systematic review’, Renewable and Sustainable Energy Reviews, 2020, 133, 110216
  7. [11] Adams, C., Monaghan, A., Gluyas, J.: ‘Mining for heat’, Geoscientist, 2019, 29, (4), pp. 10-15

Achieving ‘Net Zero’ targets under uncertainty: A framework to support decision making in an increasingly integrated energy system

Researchers and academics from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub, Dr Hamid Hosseini, Dr Adib Allahham, Dr Sara Walker and Prof Phil Taylor recently published their paper ‘Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance’ in the international, multi-disciplinary journal Energy.

About the author: Dr Hamid Hosseini

Dr Hamid Hosseini

Hamid joined Newcastle University in 2017 as a postdoctoral research associate to the EPSRC National Centre for Energy Systems Integration (CESI). Since joining the team, Hamid has been actively involved in research looking at planning, optimisation and operational analysis of integrated multi-vector energy networks. He also collaborated with a multi-disciplinary team on the UKRI Research and Innovation Infrastructure (RII) roadmap project, advising UKRI on the current landscape and future roadmap of Energy RIIs. He has supported and collaborated with several CESI Flex Fund projects to investigate further various aspects of Energy Systems Integration (ESI). Moreover, he is working with the Executive Board of Northern Gas Networks to identify the potential energy systems challenges that could be investigated at the Customer Energy Village of the Integrated Transport Electricity Gas Research Laboratory (InTEGReL), through collaboration with a multi-disciplinary team of energy experts in industry and academia. Hamid is author of several papers published in prestigious journals and conferences on the review and techno-economic-environmental operational analysis of integrated multi-vector energy networks.

Contact email: hamid.hosseini@newcastle.ac.uk
Profile details


Like many Governments, the UK has committed to significantly reduce Greenhouse Gas (GHG) emissions, setting a target of ‘Net Zero’ by 2050 [1]. In many regions, the focus has been on the electrification of heat to ensure these targets are achieved. There is a growing interest in exploring and quantifying the impact of integrating energy systems to decarbonise them. This includes the integration of the gas and electric networks and increased use of renewables and energy storage [2], [3], [4].

However, there is great uncertainty associated with forecasted loads, generation of renewables, energy prices and other operational costs, as well as the emissions associated with future networks and energy conversion technologies. To provide a basis for making well-informed and risk-based design choices towards the GHG emission targets, it is essential to consider the impact of different sources of uncertainty on the Techno-Economic-Environmental (TEE) performance of Integrated Energy Networks (IENs). In addition to these uncertainties, the TEE impact of different Energy Storage Systems (ESSs) and different levels of integration of the networks [5] need to be investigated in detail.

In this paper, we present a framework to assess the Techno-Economic-Environmental (TEE) impact of Integrated Gas and Electricity Networks (IGENs). We look at how different levels of networks’ integration and storage devices affect the performance of IGENs. Using Monte Carlo Simulation, we sampled probabilistic distributions to model the sources of uncertainty including loads, RESs, economic and environmental factors. More detailed information of the inputs and outputs of the TEE framework is shown in Figure 1.

Figure 1 The algorithm of the TEE evaluation framework considering several sources of uncertainty

The framework carries out a TEE operational analysis of IGENs for possible future energy scenarios to calculate the energy imported from upstream networks, operational costs, and emissions. As the framework considers uncertainties in this analysis, it helps robust decision making in designing an energy system to meet 2050 carbon targets.

In the paper, we give a comprehensive analysis of the results when the framework is applied to a real-world case study. 

The key findings of this analysis include:

  • Efforts to improve the efficiency of coupling components by equipment manufacturers are very important goals in pursuit of lower TEE performance parameters in future integrated networks.
  • Given that demand reduction and decarbonisation of electricity and gas networks is a priority, the coupled configurations are likely to become more attractive between now and 2050.

These findings hold true for all the values considered in the uncertainty analysis.

The full paper will appear in the Elsevier Journal, Energy, and is available to view online [6].


References

[1] Committee on Climate Change. Net Zero – The UK’s contribution to stopping global warming, 2019. Google Scholar

[2] P. Rachakonda, V. Ramnath, V.S. Pandey. Uncertainty evaluation by monte carlo method, MAPAN, 34 (3) (2019), pp. 295-298. CrossRef View Record in Scopus Google Scholar

[3] Han Jie, Chen Huaiyan, and Cao Yun. Uncertainty evaluation using monte carlo method with matlab. In IEEE 2011 10th International Conference on Electronic Measurement & Instruments, volume 2, pages 282–286. IEEE, 2011. Google Scholar

[4] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Optimal planning and operation of multi-vector energy networks: A systematic review. Renewable and Sustainable Energy Reviews, 133 (2020), 110216. Google Scholar

[5] Seyed Hamid Reza Hosseini, Adib Allahham, and Phil Taylor. “Techno-economic-environmental analysis of integrated operation of gas and electricity networks.” In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5. IEEE, 2018. https://doi.org/10.1109/ISCAS.2018.8351704

[6] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance, Energy, 2021, 119968, ISSN 0360-5442. https://doi.org/10.1016/j.energy.2021.119968