Category Archives: Policy

Can nuclear power play a large part in getting to net-zero? – Professor Gordon MacKerron

In late 2020, there was a flurry of announcements about climate change and energy – first a ten-point plan for a ‘Green Industrial Revolution’[i] followed a few weeks later by a much–delayed energy White Paper[ii].  Nuclear power figures prominently in both narratives, with three possible ways forward. In this CESI Blog post, Professor MacKerron, CESI Associate Director and Professor of Science and Technology Policy at the Science Policy and Research Unit (SPRU) at the University of Sussex discusses these routes.

About the Author

This image has an empty alt attribute; its file name is image-3.png
Professor Gordon MacKerron

Gordon is Professor of Science and Technology Policy at the Science Policy and Research Unit (SPRU). He specialises in the economics and policy issues of electricity, especially nuclear power, and more broadly in energy security questions. He currently chairs the Research Committee of UKERC and was deputy director of the Strategy Unit, Cabinet office team that wrote the ‘Energy Review’ in 2003.

He is currently overall PI in the Horizon 2020 project TRANSrisk, a collaboration of 11 partner institutes engaged in assessing the risks attaching to different policy pathways consistent with achievement of European 2050 climate change commitments.

Gordon works on a number of CESI Work Packages and is lead for Work Package 1: Commercial, Regulatory & Policy Aspects

Three possible ways forward.

First, there is a long-term hope that a UK-only commercial fusion design will be ready by 2040.  This is frankly wishful thinking and, even if it could be achieved, involves a new type of compact design that would have no impact on 2050 zero-carbon objectives.  This is because it would be a small prototype 100MW machine with a current price tag of £2bn[iii] – three times more expensive per unit of output than the already very expensive twin reactors being built at Hinkley C.  £400m has been ‘already committed’ to this endeavour by Government,[iv] a sum that could have been spent instead on projects that could genuinely contribute to net zero. 

The second possibility is a push (‘aim’) to have one more large nuclear plant brought to final investment decision by 2024, following the almost-decade-late Hinkley C.  As Government makes clear, achieving this will depend on a radically new funding structure.[v]  This could be a regulated asset base model, in which consumers would take on most construction risk, allowing investors a more or less guaranteed rate of return, and/or  Government putting up some taxpayer cash.  Since the White Paper, it has become clear that developments at two of the only three plausible big-reactor sites – Wylfa (abandoned by Hitachi) and Bradwell (paused for a year by EDF/China General Nuclear) – are now effectively no longer in contention.  Only a further Hinkley replica at Sizewell seems at all possible, and large institutional investors have recently made clear they will not put up any of their own money for this.  Significantly, and credibly, Government makes no mention of any further ventures along the large-nuclear path.

What’s wrong with option 1 or 2?

The problems in these two nuclear avenues inevitably throw a lot of weight on to the third strand, the development of so-called modular reactors, both ‘small’ (SMRs) and ‘advanced’ (AMRs).  The relatively near-term part of this involves Government spending up to £215m to help develop a domestic SMR design by the early 2030s.[vi]  The attraction of SMRs is that they could offer the possibility of relatively rapid factory manufacture of components, followed by fairly simple on-site construction. Their main drawback is that they will be based on cut-down versions of existing light water reactor designs, in the process losing the economies of large-scale current nuclear plants. In practice the only credible SMR involves a consortium already built up over several years by Rolls Royce, using its technical know-how as designer and manufacturer of small reactors for UK nuclear-powered submarines. To be at all competitive many SMRs would need to be built, thus achieving economies scale in production to offset the loss of economies of large reactor size. In this pursuit, Rolls Royce want to build up to 16 of these SMRs at a cost currently estimated by them[vii] (and therefore probably optimistic) of just short of £29bn.  This is a highly inflexible proposition, risking very large sums of public money.

Rolls Royce have also suggested that such reactors might generate at around £60/MWh initially, falling to £40/MWh for later plants.[viii]  By contrast, in terms of real projects, as opposed to very early and potentially optimistic expectations, offshore wind is already committing to deliver in the near-term at auction prices of around £40/MWh.[ix]  According to the White Paper, the global market for modular and advanced reactors might (as ‘estimated by some’ – actually the National Nuclear Laboratory) be worth £250bn to £400bn by 2035.  This is at best heroic, given that the current global market is zero. In any case, the idea that the UK might win a large share of such a market (if it did exist) is made hopelessly implausible by the fact that the UK is well behind several other countries’ SMR development. These include Russia, the USA, Japan and China, with the Rolls Royce planned design only one among over 70 SMR designs currently being pursued around the world.[x]

The second leg of the modular reactor story involves ‘Advanced’ reactors.  The ambition here is to have a demonstrator ready by the early 2030s ‘at the latest’.  For this, the Government may be willing to spend a further £170 m.  Here we are in highly speculative territory.  As the White Paper very briefly explains, AMRs would be reactors that use ’novel cooling systems or fuels and may offer new functionalities (such as industrial process heat).’[xi] Such designs would most likely involve high temperature gas cooling; many such designs have been developed in the past 50 years, none of them proving commercially viable.  It is not clear why work in these challenging technological areas can be expected to do much better in the future.  Even if such technologies eventually prove more commercially tractable, having a demonstrator built by the early 2030s is extremely hopeful. 

Optimism?

The optimism displayed in these plans includes the up-front claim that ‘the UK continues to be a leader in the development of nuclear technologies’[xii] – a proposition, when applied to commercial reactors, that has no basis in fact whatever.  However, Government does qualify its enthusiasm by making clear that its plans, including expenditure, remain conditional. For a large reactor, bringing a project to fruition depends on ‘clear value for money for both consumers and taxpayers’[xiii] and the £385 m apparently to be spent on SMRs and AMRs reactors is ‘subject to future HMT [Treasury] Spending Reviews’.[xiv]  But even if all nuclear plans worked out as the White Paper hopes – in terms of developing new low-carbon capacity on the predicted time-scale – it is far from clear that this would be achieved at anywhere near competitive cost.  Even if nuclear power does well, large reactors will play, at best, a very small part in the move to net zero carbon by 2050. While modular reactors could do more, there is huge uncertainty, probable extended timelines and no guarantee of any kind of success.


[i] HM Government (2020) The Ten Point Plan for a Green Industrial Revolution November

[ii]  HM Government (2020) The Energy White Paper. Powering our Net Zero Future December CP337

[iii]  ‘UK takes step towards world’s first nuclear fusion power station’ New Scientist, 2 December 2020.  Numbers are quoted from the UKAEA, the fusion R&D proponent

[iv]  The Energy White Paper, p. 51.

[v]  Ibid., p. 49

[vi] ibid. p. 50

[vii] World Nuclear News ‘Rolls Royce on track for 2030 delivery of UK SMR’ 11 February 2021

[viii]  ibid.

[ix]  https://www.greentechmedia.com/articles/read/prices-tumble-as-u-k-awards-5-5gw-of-offshore-wind

[x] IAEA Advances in SMR technology development 2020 September 2020, in which 72 designs are listed

[xi] The Energy White Paper, p. 51

[xii] ibid. P.50

[xiii] ibid. p.49.

[xiv] ibid. p.50

A CESI researcher’s secondment journey to the Government – Dr Zoya Pourmirza

The year 2020 will be remembered as an extraordinary year with the news of COVID outbreak. In January 2020, I started my one-year secondment as an advisor providing technical consultation to the UK Government Office for Zero Emission Vehicles (OZEV)”.

About the Author

dsc01229

Dr Zoya Pourmirza, is a research associate at Newcastle University within the School of Electrical and Electronic Engineering. She was awarded her PhD in Information and Communication Technology (ICT) Architecture for Smart Grids from University of Manchester in 2015. Her research expertise includes Smart Grids ICT networks, cyber-security, communication energy efficiency, and data compression.

Zoya carries out a wide range of research for CESI in the area of cyber-security on energy and transport systems.

Contact:- Zoya.Pourmirza@newcastle.ac.uk

The UK Government’s Office for Zero Emission Vehicles (OZEV) is a cross-government team between the Department for Transport and the Department for Business, Energy and Industrial Strategy, supporting the transition to zero emission vehicles (ZEVs). As soon as I started, following a warm welcome from the team, I was impressed by devotion and dedication of the team. Within a few months into the role, while I was enjoying working with the team and gaining new experiences, the UK went into the lockdown. In the following months, we moved all our activities to online platforms which are known to all of us.

This secondment was planned to assist shaping a more secure EV eco-system in future. In 2019, Government consulted on cyber security requirements for smart chargepoints. There is an intention to follow with legislation mandating requirements for smart chargepoints, including cyber security, in 2021. My work was intended to help informing Government approach in 2021 legislation.

My tasks during this Secondment was to support different workstreams with OZEV and wider work in BEIS on smart energy cybersecurity. This included:

Project 1 – EVHS grant scheme

Electric Vehicle Homecharge Scheme (EVHS) is a grant provided by the OZEV, designed to offer an additional incentive to EV drivers. EV manufacturers who wish to apply for authorisation for chargepoints under EVHS should confirm they comply with EVHS technical specifications. In terms of cyber security specifications, OZEV requires chargepoints to be accessed by using the Open Charge Point Protocol (OCPP v1.6 or above). During my time at DfT I assessed how many EVHS grant applications were likely meeting or not complying with requirements on cyber security, and if these applications are considering a similar level of cyber security measures provided in the OCPP. I also recommended some specific changes to be made to the scheme requirements, which are being considered by Government.

Project 2BSI PAS review

The British Standards Institution (BSI) has been sponsored by Government to develop two PAS standards. The PAS 1878 is for Energy Smart Appliances (ESA), including smart chargepoint cyber security requirements and PAS 1879 is for a Demand Side Response (DSR) framework. The DSR framework PAS is intending to develop the ‘environment’ within which ESAs can operate. Both PAS’s involved cyber security considerations. The cyber security approaches employed in these standards are encryption and Public Key Infrastructure (PKI). The end-to-end secure framework is intended to:

  • provide secure assets, these assets are such as Energy Smart Appliance (ESA) and Consumer Energy Manager (CEM)
  • verify the actors such as Demand Side Response Provider (DSRSP)
  • provide a secure communication between ESA and CEM, and between CEM and DSRSP

During my time at BEIS, I reviewed the draft PAS standards at different stages of their development and recommended a series of changes to improve the standard and better embed cyber security within them. These comments were welcomed by the standard leads, and it is expected to be reflected in the final version.

Project 3 Cyber risk assessments – I worked along the BEIS team and the PA consulting on cyber risk assessment for smart energy systems to identify the risks and shape appropriate mitigations techniques. This work is underway within the BEIS team and will be completed in 2021. In this study we realised that as the proliferation of smart energy devices including EV smart chargepoints and associated smart energy platforms increases, the cyber security risks will grow too. These risks will become material in 2025. For example, the ability for a large number of smart energy devices to be switched on or off at the same time, which will cause a large power swing on the electricity network, is one of the main risks identified by the team.

Project 4 – Reports and recommendations

I shaped a report for the Government discussing the cyber security challenges in smart energy system and EV chargepoints, the risks and mitigation techniques, and the future roadmap. The recommendation provided in this report could potentially inform the legislation this year.

Thoughts on the experience

All these tasks were carried out to pave the way for a more secure future of the EV ecosystem. My sincere thanks to both teams at the Newcastle University and the Government who provided this unique opportunity for me to get involved in Government’s policy development and legislation process and develop new skills. This was an extremely valuable experience working at the heart of civil service to provide consultation and apply my expertise to help meet the key government objectives for EV smart charging.