Tag Archives: newcastle university

International Women’s Day 2023

#EmbraceEquality

Newcastle University colleagues share their thoughts on #embraceequity International Women’s Day 2023

As we celebrate International Women’s Day, it is important to reflect on the progress made towards gender equality and recognise the work that still needs to be done. The theme for International Women’s Day this year is #embraceequity.

The difference between equality and equity is subtle yet important. Equality means each individual or group of people is given the same resources or opportunities. Equity recognises that each person has different circumstances and allocates the exact resources or opportunities needed to reach an equal outcome. Equity is vital as it recognises that everybody starts from different places in life, and if we embrace equity, it promotes inclusion and diversity in everything we do.

For International Women’s Day, we asked our colleagues three questions.

  • What does equality mean to you?
  • What does equity mean to you?
  • Can you share an example of when something you have undertaken yourself has led to a positive change in terms of gender equity? This could be in your personal or professional life.

We used the responses from the first two questions to create a word cloud, pictured in Figure 1.

“I encouraged a female PhD student to apply for a doctoral prize fellowship which she would not otherwise have considered. She successfully won the fellowship, and it has kickstarted her post-doctoral research career.”

“I had an intern helping me who was a single parent doing her bachelor’s degree and I was happy for her work hours to be flexible around her and made the effort to find her extra funding to continue the work further.”

“I was a mentor to a teenage girl through the Girls Network and hope that I supported my mentee even in small ways to realise her potential as a young woman.”

“A recent funding application was undertaken anonymously and lead to a 50/50 gender split, even age split with more ECRs and more ethnic diversity. All of these attributes help to create a more diverse and positive research culture.”

“In an event me and a few friends were running, we decided to dedicate performance slots to female artists after having male dominated line-ups for a long time. We received a positive response from our female attendees, discovered some great artists and the opportunities have helped several of the artists progress their music careers.”

One of the biggest barriers to equity is the cost of childcare, which disproportionately effects women with children as they are typically the primary care givers. We acknowledge all responses received in our survey and are aware of challenges and barriers that are present. Our colleagues and the processes that are implemented are continuously being improved to ensure that all voices are heard. It is important to challenge behaviour that unfairly discriminates against anyone in the workplace. We hope that our anonymous survey will encourage others to share their stories in the future, as well as embracing the benefits and barriers of embracing equity that exist.

See here for more inspirational stories.

#IWD2023 #EmbraceEquity

CESI Visit Hydrogen Homes

CESI are the first to see the new hydrogen cooking appliances in the UK’s only Hydrogen Homes!

Image preview
CESI Team outside the Hydrogen Homes

To celebrate CESI coming to an end, last month InTEGReL opened up its doors to CESI colleagues and showed us around their fantastic facilities.

InTEGReL has played an important role within the 6 years of CESI. It is one of our largest and most active demonstrator for CESI models and tools, in conjunction with Northern Gas Networks and Northern Power Grid. InTEGReL is the UK’s first multi-vector integrated energy systems research and demonstration facility investigating utility scale infrastructure.

The facilities at InTEGReL will help to tackle the UK’s energy challenges head on, with teams of academics and engineers in CESI working to deliver breakthroughs in the decarbonisation of heat, energy storage and transport, to identify the most affordable and practical solution to moving customers onto low carbon, low-cost energy

On 13th May CESI colleagues were able to visit InTEGReL, hydrogen blending equipment and the Hydrogen Homes at the Low Thornley site in Gateshead. The two semi-detached Hydrogen Homes opened in July 2021 and are the UK’s first houses to include hydrogen domestic cooking appliances, boilers, fires and meters.

Image preview
CESI team outside the hydrogen blending equipment

We were the first group of people to see the new version of the cooking appliances, which are likely to be offered to customers who become the first to use 100% hydrogen in their homes. These appliances were produced through the Hy4heat project.

Orange hydrogen flame on cooking appliances in Hydrogen Home

The Hydrogen Homes visit was well received by attendees, including by CESI researchers and industry:

“Hydrogen homes demonstrated the transition pathway of future homes through the functioning of hydrogen-natural gas blended and pure hydrogen appliances. Visiting InTEGReL was a time travel experience to reimagine how our neighbourhoods would transform and adapt to a new way of energy utilization philosophy.”

Akhil joseph, cesi rESEARCHER

“It is great to see some of the facilities we have in the region especially relating to hydrogen. The visit was a great eye opener to the future. Hydrogen is likely to be the most important energy resource after renewables and, possibly, nuclear power.”

jASON hARTIGAN, SUNAMP LTD

The tour of the InTEGReL site was incredibly informative, and although we were seeing brand new technology my key take away from the Hydrogen Homes was just how normal it all was, with the gas cooker and heating all operating as one would expect. The work done by Northern Gas Networks really demonstrates that hydrogen will be a key part of driving domestic decarbonisation in the UK

JEssica Sharples, GHD

The Hydrogen Homes tour was led by Northern Gas Network’ Alex Brightman. She said ‘it was great to welcome guests from CESI to the Hydrogen Home and showcase the hydrogen appliances, which don’t create carbon when used, meaning they can be compatible with climate goals. The homes normalise the use of hydrogen by demonstrating that can be used in the same way as natural gas with minimal changes and disruption to the way we heat and cook.’

Find out more about CESI and InTEGReL’s collaboration:

https://www.ncl.ac.uk/cesi/research/demo/integrel/

More information about the Hydrogen Homes


Contact Hydrogen Homes for more information or to arrange a tour:

hydrogenhome@northerngas.co.uk

EDI Blog Series – Part 3: Adib Allahham

About the Author:

Dr Adib Allahham is Senior Research Associate at School of Engineering, Newcastle University. His research focusses on renewable energy, smart grids, active buildings, electricity distribution, and multi-vector energy systems.

Adib pictured during his PhD studies

Adib is researcher working for the EPSRC National Centre for Energy Systems Integration (CESI), involved in the research activities of the Active Building Centre (ABC), and leading three projects funded by the Royal Academy of Engineering in the field of smart grids, energy storage, and peer-to-peer energy trading.

My journey to one of the top universities in the UK

In September of 2021 I was promoted to Senior Research Associate at Newcastle University. This was a huge career landmark for me.

I was brought up in Damascus, the Syrian capital, which is classified as the oldest continuously inhabited city in the world. It was here where I obtained my bachelor’s degree in Electrical Engineering from Damascus University and secured top rank in the five-year bachelor program.

After securing my degree, I worked as a teaching assistant in the same department and institution for two years where I led the laboratory demonstration, assisted in the teaching activities, and supervised graduation project. It was during this time I received a scholarship from the French government to pursue further studies. I obtained MSc degree from the Grenoble Institute of Technology and awarded PhD from University of Joseph Fourier in 2004 and 2008 respectively.

After completion of my PhD, I worked as a post-doctoral researcher in Grenoble Institute of Technology until 2010. To fulfil my interests in research, teaching and willing to serve the home institution, I took the decision to come back to Syria, and worked as lecturer at Damascus University until 2016. Unfortunately, the Syrian conflict started in March 2011 and changed whole situation. The war forced me to re-think about research career.

How did the Syrian war affect your Engineering career?

My research and teaching duties were heavily increased as students from two other universities located in military conflict areas moved to Damascus University. In addition, I had to work as part-time lecturer in a private university to support my family as the conflict severely affected our economic situation. Due to these unforeseen situations, the safety of my family and to achieve my research goals, I had decided to leave Syria in 2015. Although the right decision, it was hard for me. I had to leave some of my family, friends, and stable job.

What are some of the unexpected challenges you faced?

I obtained a job offer from Grenoble Institute of Technology to work on an industrial project. Unfortunately, I could not obtain the visa and unable to join the French University. This was very disappointing and left me feeling down and frustrated. The most shocking in this visa rejection was that the rejection reasons were not given with the decision letter which took 67 days after the application submission. 

However, I was given hope again! Whilst I was conducting research with my MSc student about Smart Grids demonstrators, I became aware of the Power Systems Group at Newcastle University. Immediately, I contacted the team leader and consequently I was offered the position of visiting researcher at Newcastle University. With this I started a new adventure with Newcastle University from June 2016.

“I took a risk by reaching out, and it paid off!”

I was fortunate to work with friendly and knowledgeable researchers who included me in their research activities and gave the opportunity to develop my own research directions. In 2017, the team started to enlarge its scope of research activities to include not only Power Systems but also the Whole Energy System. This major change started with the launch of EPSRC National Centre for Energy Systems Integration (CESI) led by Newcastle University and involved 5 other universities in which I was worked as a research associate.

In fact, moving to the UK was a challenge for me and my wife and now I’m happy that I made the right decision. At the same time when I moved to Newcastle University, she was also successful in getting a Chevening Scholarship, funded by the British Foreign and Commonwealth Office. She joined and obtained a MSc degree in international development at University of East Anglia. She is now working for Gateshead Council.  

What piece of advice would you give to someone who might be in a similar situation as yours?

“As long as you plan your life and you are surrounded by supportive people, you will achieve your goals sooner or later.”

EDI Blog Series – Part 2: Sara Walker

About the Author:

Professor Sara Walker is the Director of The Centre for Energy, in the School of Engineering. Her research focusses on renewable energy and energy efficiency in buildings, energy policy, energy resilience, and whole energy systems.

Sara is Director of the EPSRC National Centre for Energy Systems Integration, Deputy Director of the EPSRC Supergen Energy Networks Hub, and Deputy Research Director of the Active Building Centre.

My journey to professorship – struggles and triumphs

In November of 2021 I was promoted to Professor of Energy at Newcastle University. This has felt like such a career landmark for me.

I was brought up by my parents in Cramlington, a town to the north of Newcastle. When I was young my father was made redundant and the family moved into council housing. I never considered myself as poor, but I do remember we grew potatoes in the garden to save on food shopping and me and my younger sister would wear hand-me-down clothes. My older sister left school at 16 and got a job working in hospitality, and as my parents’ financial situation improved they were able to purchase their council house, but we were by no means affluent! At 15 I got a Saturday job at Whitley Bay ice rink in the cafeteria, and I started to earn my own money which was very empowering.

When I went to university at Leicester I noticed that my financial situation wasn’t the same as others around me. I had a grant from the council to cover most of my living costs and my parents also contributed to top my grant up. I got a part time job working at the bar in the students union, and also worked part time in a local pub. During summer vacations I always worked, normally bar work.

I remember waiting to use the public telephone one weekend to chat to my parents whilst at university, and watching the person on the phone in front of me crying crocodile tears to her dad. She needed money to buy a ball gown since it wasn’t fair for her to be expected to wear her existing ball gown that she’d already worn.

That’s when it really struck me that some of my fellow students were really well off! I didn’t join expensive societies like skiing and horse riding, I didn’t go to lots of balls and social events. For my graduation ball I hired my dress.

When I finished my undergraduate course in physics I was offered a PhD by my personal tutor at the university. I didn’t really know what a PhD was, I had been first in my family to go to university, and I turned it down. Instead, I did a teacher training course and got a job as teacher. After teaching for a short while I decided to go back to university to do a masters course in environmental science, because I had got really interested in energy issues through voluntary work. This led onto a research job, and an opportunity to complete a PhD part time whilst working as a researcher. I think this is the only way I could have completed a PhD since I didn’t have the financial resources to support myself on a student bursary. The part time PhD took five years whilst I worked as researcher and during that time I had my son Toby.

My early experience of academia was still affected by my background somewhat. I had to think carefully about attending academic conferences, because I didn’t know how long it would take for my expenses to be paid back. One time an expensive overseas trip wasn’t paid in time before I had to pay the credit card bill, and I could only pay the minimum and incurred interest, something I couldn’t claim back from my employer. Conference dinners were a minefield, I didn’t have lots of spare cash to spend on cocktail dresses. Even work suits were often bought from the catalogue and paid for monthly when I first started out. Later in my career, financially and socially I found myself excluded from social events and the associated networking opportunities of corporate boxes at football, or golf at exclusive members courses.

Academic statistics do not portray the full picture

HESA statistics are available, to tell us something of the makeup of our UK professoriate. In 2019/20 there were 22,810 professors, of which 6,345 are “female”, 16,415 “male” and 50 “other” gender. Of the 21,055 professors with known ethnicity, 2,285 are BME. 735 professors are known to have a disability. Looking just at engineering, this discipline areas has the lowest proportion of female academics (see figure below). There are no statistics for socio-economic group, and no statistics for intersectionality (i.e. we don’t know how many BME are female, or how many BME have a disability, for example). There are also statistics for grant applications and success from EPSRC, by gender. Data for other protected characteristics are lacking.

Source: Departmental demographics of academic staff

Source: EPSRC Understanding our Portfolio

I am acutely aware of the lack of role models in academia from lower socio-economic backgrounds. But there are also a lack of role models who are LGBTQ+, minority ethnic, disabled, non-white, from different faiths, or any combination of these. In seeking out these role models, we expect people to be open about their protected characteristics, regardless of the discrimination this may attract.

Moving forward…

Raising up colleagues, giving equality of opportunity, and being more aware of the potential barriers to engagement, are approaches we are taking at Newcastle University’s Centre for Energy. For example, we are working hard to encourage involvement from all job families in the Centre for Energy – research as an activity spans so many jobs including project managers, technicians, finance, research students, research staff and academic staff, for example. We want the Centre itself to address issues of fairness and equity in energy research, and so we have a theme on Justice, Governance and Ethics. We are tackling global issues of energy transition, issues which need a range of perspectives across gender, race, (dis)ability, sexual orientation and religion in order to come up with solutions that work for the majority, and not the select few.

I have a strong northern accent, and am proud of my roots and to be back in the north east working at a Russell Group university. But I am still that kid from the council estate. And I am proud of that too.

Who perseveres wins!

About the Author:

Dr Susan Claire Scholes is a post-doctoral researcher within the School of Engineering.  Susan’s current research is in the field of whole systems energy research, working with the Supergen Energy Networks Hub at Newcastle University.

Previous research interests were in bioengineering where Susan was responsible for the investigation of explanted metal-on-metal hip prostheses and explanted knee prostheses.

Matlab and the GB Network System

Let me tell you a story….  It feels like it started a long, long time ago but in reality it has only been 20 months (this may still seem like a long time to some, depending on your age!).  Twenty months of hard work but important work.  This is when I started working on a model of the GB network system.  This model already existed [1, 2] but it needed some work to be done on it to allow it to perform the tasks that I required.

Now, I had minimal experience (or knowledge) on Matlab but I am always eager to learn so I saw this as an opportunity to develop my research skills even further (I’ve been working in academic research for 21 years now, so it’s never too late to learn!).

I familiarised myself with Matlab and the model so I understood the background to my project; and this understanding developed as the time progressed.  The adjustments needed on the model were only small; small in capacity but mammoth in the necessary effort to succeed!

The cost functions of each generation type in the GB network model were already in the model but they were just given as merit order equations; this was so the model was able to calculate the proportion of expected generation from each type of generation provider (wind, gas, coal, nuclear and hydro).  But I needed it to calculate the true costs.

I knew this wouldn’t be easy, or quick!  As a modeller, it is important to analyse results obtained and question their validity; you need to have confidence in the results that your model provides.  It is essential that you compare your results with appropriate published data and relevant work done by others.

Using known data from previous years I was able to identify when the results from my model were not as good as they needed to be; and it allowed me to gain confidence in my work as it developed.  This was an iterative process that required many hours of hard and repetitive work.

To get this done well it required a lot of effort and determination (and a few handkerchiefs to mop up the inevitable tears of frustration!).  For months I was stuck in what seemed to be a never-ending loop:

  • adjust the model, write the script, run the model – no joy
  • adjust the model, adjust the script, run the model – it works!, review the results
  • adjust the model/script, run the model – it works (but sometimes it didn’t!), review the results
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • again, again and again until…
  • adjust the model/script, run the model – it works!, review the results, confirm results, write the paper (with confidence that the model used is the most appropriate and performs the task well) and submit!

So, what have I learned during this time?  Perseverance is key, determination is needed and patience would have been a bonus but I’ve always lacked in that!  Unexpected things, like the University’s cyber security attack, and even a pandemic, can be obstacles but with the correct support they are not insurmountable.  I also needed to learn that all models have their limitations.

You can minimise these limitations to produce the best model for your purpose but your model cannot do all, it will not be suitable for everything.  Spend time on the model, like I say, for it to produce relevant results for your work but understand that there will always be limitations as to what the model can do.

As long as you are aware of these and you are able to explain the limitations imposed on your work (and why these are acceptable) then you should feel proud.  Proud of the valid, valuable work you have achieved and the advancements you have made in your field of research.  It was all worth it in the end!

References

  1. Bell, K.R.W. and A.N.D. Tleis. Test system requirements for modelling future power systems. in IEEE PES General Meeting. 2010.
  2. Asvapoositkul, S. and R. Preece. Analysis of the variables influencing inter-area oscillations in the future Great Britain power system. in 15th IET International Conference on AC and DC Power Transmission (ACDC 2019). 2019.

EDI Blog Series – Part 1: Challenging gender norms in engineering

In the first of a series about equality, diversity and inclusivity from our energy and engineering colleagues, Dr. Nabila Rufa’I shares her experience of growing up in northern Nigeria and how that has led to a career in energy research.

About the Author:

I joined Newcastle University earlier this year, after completing my PhD at the University of Leeds. I am a research associate for the National Centre for Energy Systems Integration and have also joined the Centre for Energy.

My research interests are:

  • Techno-Economic and Environmental Impact Analysis of Low Carbon Technologies
  • Power Quality Enhancement
  • Advanced Control of Renewable Energy Systems

Passion for Power

I was born and raised in Kano State in the north of Nigeria. 


Owing to a lack of supply and up-to-date infrastructure, we would often go three or four days without power. There was even a period when power was divided and scheduled across several towns and villages. 

This meant our allocation of power could be in the middle of the night. We had to choose between sleeping or completing power-dependent tasks when we could. 

Infrastructure in Nigeria is in poor condition, and becoming worse. It’s already more than 50 years old, and population growth is a huge problem. The old infrastructure just can’t keep up with demand.

One of the first things my daughter said to me when we moved to the UK at four years old was: “Mummy, how come the lights never go off?” 

This was the main reason I became fascinated with electricity and power. How can I make a difference and fix challenges like those in northern Nigeria?

Being a Nigerian woman in Engineering

It’s common for a woman in Nigeria to be a full-time housewife. 

Some may also have a small business or part-time job alongside their domestic work. For example, making pastries or tailoring. But it’s uncommon for women to follow an academic career, let alone one in such a male-dominated field.

Personally, I didn’t think of choosing an engineering academic career as out of the ordinary. 

I was very fortunate that education was always an important part of my life. Both of my parents had a passion for education, and completed PhD’s. My grandad was the first to attend University from our village. So their collective achievements had a huge influence on my life and aspirations.

 When I started my undergraduate electrical engineering studies in Nigeria, I was the only female in a class of 70. I would occasionally receive comments such as “why are you doing this?” and “how are you in this profession?” 

I knew it bothered me. But I never knew how to respond. So I stayed quiet. 

But now I like to speak to those who question my choices. I explain that everyone has their own interests, hobbies, and career goals, There’s nothing wrong with that. Thank goodness we are making progress as a society.

Gender should not be an issue in any profession. If you have the passion, drive, and interest, why not do it? Anybody who wants to do it, can. Working as an academic in the UK, I am fortunate to be surrounded by people who are more aware, who understand gender and other EDI issues. Most of my negative encounters have been in Nigeria.

Integrating into the UK

I came to the UK to study Electrical Engineering and Renewable Energy Systems at the University of Leeds in 2012. At first, I found the UK overwhelming and intimidating. I think most people feel this way when moving to university, or away from home for the first time. 

For me, it was more difficult adjusting to educational life rather than making friends or understanding British culture. For example, I had to learn software such as MatLab at a very fast pace, whilst other students already had experience with the software. Fortunately there were lots of international students, and we helped each other. The university also offered lots of support to help with learning, engaging and adjusting to UK life in general. 

I was also fortunate enough to have my husband and brother. They moved to Leeds from Nigeria too, and after three months found our feet.

My advice

I encourage people who are being unfairly challenged to be resilient. In life, you will always find people who oppose you, or have different perspectives. But that doesn’t mean you should not enjoy what you are doing.

It’s important for your personal growth to be aware of other’s challenges, opinions, and cultures. That is education. You are part of a wider community that you need to understand. And this is something I am teaching my children.

Find out more

Techno-Economic-Environmental Analysis of A Smart Multi Energy Grid Utilising Geothermal Energy Storage For Meeting Heat Demand

Researchers based at Newcastle University from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub (SEN), Dr Seyed Hamid Reza Hosseini and Dr Adib Allahham, along with the Coal Authority, Dr Charlotte Adams, will soon publish their journal paper in IET Smart Grid.

About the author: Dr Adib Allahham

Dr Adib Allahham

Dr Adib Allahham is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub (SEN). Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost-efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Contact details:
adib.allahham@ncl.ac.uk
@adiballahham
Profile details

About the paper

The UK Government has committed to a ‘Net Zero’ carbon economy by 2050 [1]. One major source of carbon emission is associated with heat demand from the domestic, commercial and industrial sectors.

Providing for heat demand accounts for around one third of UK carbon emissions [2]. In order to decarbonise the provision of heat, it is essential to increase the penetration of Low Carbon Energy Sources [1] in Smart Multi Energy Grids (SMEGs), i.e. integrated gas, electricity, and district heating and cooling networks [3,4]. This, consequently, has impact on the operation of SMEGs from the Techno-Economic-Environment (TEE) point of view [5,28].

Recent work on the geothermal potential of the UK’s flooded abandoned mining infrastructure has revealed a subsurface resource in place of 2.2 million GWh [11]. The impact of integrating this vast supply and storage potential on the operation and planning of SMEGs needs to be evaluated in terms of TEE aspects.

The paper identifies research gaps, including neglecting the electricity requirements of the components of the geothermal system that is required to boost the hot water quality and presents an evaluation framework for the Techno-Economic-Environmental (TEE) performance of Integrated Multi-Vector Energy Networks (IMVENs) including geothermal energy. Geothermal Energy Storage (GES), offers huge potential for both energy storage and supply and can play a critical role in decarbonising heat load of Smart Multi Energy Grids.

Schematic of SEH, GN & DHN
Fig.1 Schematic of the considered Smart Electricity Network (SEN), Gas Network (GN) and District Heating Network (DHN)

The two most common types of GES, i.e. High Temperature GES (HTGES) and Low Temperature GES (LTGES), were modelled and integrated within the framework which evaluates the impact of different low carbon energy sources including HTGES, LTGES, wind and PV on the amount of energy imported from upstream, operational costs and emissions of IMVENs to meet the heat load of a region.

Data from a real-world case study was used to compare the TEE performance of the considered IMVEN configurations for meeting the heat load. Data included wind and PV generation, as well as the heat and electricity load for a representative winter week of a small rural village in Scotland.

Fig. 2 The schematic of all the possible configurations of IMVEN considered in this paper

The results reveal that the most efficient, cost effective and least carbon intensive configurations for meeting the heat load of the case study are the configurations benefitting from HTGES, from a high penetration of heat pumps and from LTGES, respectively.


References

  1. [1] ‘Net Zero – The UK´s contribution to stopping global warming’, https://www.theccc.org.uk/wp-content/uploads/2019/05/Net-Zero-The-UKs-contribution-to-stopping-global-warming.pdf, accessed 20 December 2019
  2. [2] ‘Clean Growth – Transforming Heating: Overview of Current Evidence, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/766109/decarbonising-heating.pdf, accessed 20 December 2019
  3. [3] Ceseña E.A.M., Mancarella P.: ‘Energy Systems Integration in Smart Districts: Robust Optimisation of Multi-Energy Flows in Integrated Electricity, Heat and Gas Networks’, IEEE Transactions on Smart Grid, 2019, 10, (1), pp. 1122-1131
  4. [4] Lund, H., Andersen, A.N., Østergaard, P.A., et al.: ‘From electricity smart grids to smart energy systems – A market operation based approach and understanding’, Energy, 42, (1), pp. 96-102
  5. [5] Hosseini, S.H.R., Allahham, A., Taylor, P.: ‘Techno-economic-environmental analysis of integrated operation of gas and electricity networks’. Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), Florence, Italy, May 2018, pp. 1–5
  6. [28] Hosseini, S.H.R., Allahham, A., Walker, S.L., et al.: ‘Optimal planning and operation of multi-vector energy networks: A systematic review’, Renewable and Sustainable Energy Reviews, 2020, 133, 110216
  7. [11] Adams, C., Monaghan, A., Gluyas, J.: ‘Mining for heat’, Geoscientist, 2019, 29, (4), pp. 10-15

Achieving ‘Net Zero’ targets under uncertainty: A framework to support decision making in an increasingly integrated energy system

Researchers and academics from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub, Dr Hamid Hosseini, Dr Adib Allahham, Dr Sara Walker and Prof Phil Taylor recently published their paper ‘Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance’ in the international, multi-disciplinary journal Energy.

About the author: Dr Hamid Hosseini

Dr Hamid Hosseini

Hamid joined Newcastle University in 2017 as a postdoctoral research associate to the EPSRC National Centre for Energy Systems Integration (CESI). Since joining the team, Hamid has been actively involved in research looking at planning, optimisation and operational analysis of integrated multi-vector energy networks. He also collaborated with a multi-disciplinary team on the UKRI Research and Innovation Infrastructure (RII) roadmap project, advising UKRI on the current landscape and future roadmap of Energy RIIs. He has supported and collaborated with several CESI Flex Fund projects to investigate further various aspects of Energy Systems Integration (ESI). Moreover, he is working with the Executive Board of Northern Gas Networks to identify the potential energy systems challenges that could be investigated at the Customer Energy Village of the Integrated Transport Electricity Gas Research Laboratory (InTEGReL), through collaboration with a multi-disciplinary team of energy experts in industry and academia. Hamid is author of several papers published in prestigious journals and conferences on the review and techno-economic-environmental operational analysis of integrated multi-vector energy networks.

Contact email: hamid.hosseini@newcastle.ac.uk
Profile details


Like many Governments, the UK has committed to significantly reduce Greenhouse Gas (GHG) emissions, setting a target of ‘Net Zero’ by 2050 [1]. In many regions, the focus has been on the electrification of heat to ensure these targets are achieved. There is a growing interest in exploring and quantifying the impact of integrating energy systems to decarbonise them. This includes the integration of the gas and electric networks and increased use of renewables and energy storage [2], [3], [4].

However, there is great uncertainty associated with forecasted loads, generation of renewables, energy prices and other operational costs, as well as the emissions associated with future networks and energy conversion technologies. To provide a basis for making well-informed and risk-based design choices towards the GHG emission targets, it is essential to consider the impact of different sources of uncertainty on the Techno-Economic-Environmental (TEE) performance of Integrated Energy Networks (IENs). In addition to these uncertainties, the TEE impact of different Energy Storage Systems (ESSs) and different levels of integration of the networks [5] need to be investigated in detail.

In this paper, we present a framework to assess the Techno-Economic-Environmental (TEE) impact of Integrated Gas and Electricity Networks (IGENs). We look at how different levels of networks’ integration and storage devices affect the performance of IGENs. Using Monte Carlo Simulation, we sampled probabilistic distributions to model the sources of uncertainty including loads, RESs, economic and environmental factors. More detailed information of the inputs and outputs of the TEE framework is shown in Figure 1.

Figure 1 The algorithm of the TEE evaluation framework considering several sources of uncertainty

The framework carries out a TEE operational analysis of IGENs for possible future energy scenarios to calculate the energy imported from upstream networks, operational costs, and emissions. As the framework considers uncertainties in this analysis, it helps robust decision making in designing an energy system to meet 2050 carbon targets.

In the paper, we give a comprehensive analysis of the results when the framework is applied to a real-world case study. 

The key findings of this analysis include:

  • Efforts to improve the efficiency of coupling components by equipment manufacturers are very important goals in pursuit of lower TEE performance parameters in future integrated networks.
  • Given that demand reduction and decarbonisation of electricity and gas networks is a priority, the coupled configurations are likely to become more attractive between now and 2050.

These findings hold true for all the values considered in the uncertainty analysis.

The full paper will appear in the Elsevier Journal, Energy, and is available to view online [6].


References

[1] Committee on Climate Change. Net Zero – The UK’s contribution to stopping global warming, 2019. Google Scholar

[2] P. Rachakonda, V. Ramnath, V.S. Pandey. Uncertainty evaluation by monte carlo method, MAPAN, 34 (3) (2019), pp. 295-298. CrossRef View Record in Scopus Google Scholar

[3] Han Jie, Chen Huaiyan, and Cao Yun. Uncertainty evaluation using monte carlo method with matlab. In IEEE 2011 10th International Conference on Electronic Measurement & Instruments, volume 2, pages 282–286. IEEE, 2011. Google Scholar

[4] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Optimal planning and operation of multi-vector energy networks: A systematic review. Renewable and Sustainable Energy Reviews, 133 (2020), 110216. Google Scholar

[5] Seyed Hamid Reza Hosseini, Adib Allahham, and Phil Taylor. “Techno-economic-environmental analysis of integrated operation of gas and electricity networks.” In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5. IEEE, 2018. https://doi.org/10.1109/ISCAS.2018.8351704

[6] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance, Energy, 2021, 119968, ISSN 0360-5442. https://doi.org/10.1016/j.energy.2021.119968

Achieving net-zero in the UK through an integrated energy system

The Communities Secretary, Rt Hon Robert Jenrick MP, recently rejected permission for an open cast mine near Druridge Bay, stating that the proposal “is still not environmentally acceptable”. This announcement follows a lengthy decision process and extensive media coverage, including a Public Inquiry and an appeal to the High Court. In this blog CESI Director, Dr Sara Walker, comments on the case which was supported by evidence presented by CESI’s previous Director, Prof Phil Taylor on CESI’s whole systems approach to energy systems integration.

Druridge Bay, Northumberland

About the author: Dr Sara Walker

Dr Sara Walker is Director of the EPSRC National Centre for Energy Systems Integration, Director of the Newcastle University Centre for Energy and Reader of Energy in the University’s School of Engineering. Her research is on energy efficiency and renewable energy at building scale.

Contact details
email: sara.walker@ncl.ac.uk

In 2014, a proposal was put forward to remove 3 million tonnes of coal from an opencast mine at Highthorn, close to Druridge Bay, on the Northumberland coast. The proposed developer, HJ Banks & Co Ltd, argued coal fired power stations are essential for the security of the UK’s energy supply and in July 2016, planning permission for the mine was approved by Northumberland County Council.

In a landmark move, central Government called a Public Inquiry on the grounds of climate change – the first time any planning permission decision has been called to inquiry on this basis.

In March 2018, the Communities Secretary Sajid Javid stated he had concluded the project should not go ahead on the grounds that it would exacerbate climate change. This rejection was the first time any planning permission decision has been refused on this basis, setting a precedent for all future applications.  This was seen as a significant step in taking tackling climate change seriously, showing the UK to be leading in this regard.

Following the announcement of the planning rejection, Banks lodged an appeal in the High Court.  The High Court found in favour of Banks in October 2018, returning the case to the Communities Secretary to reconsider the arguments presented.

At the Planning Inquiry, the expert witness for Banks argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. They also claimed other cleaner sources of energy cannot be relied upon as a consistent source of energy. Wind power, for example, provides an intermittent source of energy as the wind does not always blow. Similarly, the sun does not always shine, so photovoltaic systems will not generate sufficient energy. For these reasons, opening the new mine would have been an important step in ensuring that the UK maintains a good supply of coal for its power stations. However, there is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements. Instead, it is essential to take a whole systems approach when considering the UK’s energy mix.

The Department for Business, Energy and Industrial Strategy (BEIS) collates data on the UK’s energy generation mix.  The latest figures were released in July 2020 [1] and compare data for 2019 against previous years.  The shares of electricity generation by fuel in 2018 and 2019 are illustrated in Figure 1. These show that gas generated electricity increased slightly to 40.6%.  Electricity from renewables (wind, hydro, solar, wave, tidal and bioenergy) achieved a record high of 37.1% (121TWh), which is the first time renewables have provided over a third of the total generation mix. During the same period, the share of electricity generated from coal reduced to 2.1% (6.9TWh).  This represents a record low, down 59% compared to 2018.  The figures show that coal is declining in importance and that we have many options to replace it.

Figure 1 The share of electricity generation by fuel in 2018 and 2019 [1]

An integrated energy system

In his expert witness testimony to the Public Inquiry, CESI’s former Director and current Associate Director, Professor Phil Taylor, emphasised the need to take a whole systems view, highlighting CESI’s research into an integrated energy system. The UK can phase out coal-fired power stations by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas and combining this with power produced from renewables such as wind, biomass and PV. We can store energy when we have more than is needed, or when there is too much for network cables to carry, and then release it when is required. Britain also imports electricity via physical links known as interconnectors. The UK energy regulator, Ofgem, forecasts that planned interconnector projects will lead to a capacity of 7.3GW by 2021 (compared to total GB system generation capacity of 77.9GW in 2019). In addition, the electricity demand could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non‐essential items when there is a peak in electricity demand.

CESI evidence therefore showed that, by balancing supply and demand on the electricity grid, we can phase out coal and reduce the need to build new power stations. An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

“We are delighted that evidence provided by the National Centre for Energy Systems Integration has supported this landmark decision to reject further extraction of coal on grounds of Climate Change. Our work has clearly demonstrated that a Whole Systems approach with Systems Integration can enable us to decarbonise our energy systems whilst maintaining reliability and security of supply”

Director of CESI, Dr Sara Walker

Net Zero

In September 2020, the Communities Secretary, Rt Hon Robert Jenrick MP, rejected the open cast mine, stating that  the “substantial extent of the landscape harm means that the proposal is still not environmentally acceptable, nor can it be made so by planning conditions or obligations”. 

This decision will help the UK to achieve its target to phase out coal by 1 October 2024, announced by Prime Minister Boris Johnson in February 2020. It will also the support the ambitious aims of cutting carbon emissions targets set by councils in the North East of England.  These include Northumberland County Council, which has set the target of being carbon neutral by 2030.  The implications of this decision for our future energy supply are significant and will affect us all.

——————————–

  1. Digest of United Kingdom Energy Statistics 2020, Department for Business Energy & Industrial Strategy https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/924591/DUKES_2020_MASTER.pdf [accessed 9/10/2020]

Where is the value in cost, carbon and resilience in taking an energy systems integration approach to the UK’s energy future?

Researchers and Academics from the EPSRC funded Supergen Energy Networks Hub and the National Centre for Energy Systems Integration (CESI), Dr Adib Allahham, Dr Hamid Hosseini, Dr Vahid Vahidinasab, Dr Sara Walker & Professor Phil Taylor, recently published their journal paper in the International Journal of Electrical Power and Energy Systems on Techno-economic-environmental evaluation framework for integrated gas and electricity distribution networks considering impact of different storage configurations.

About the author: Dr Adib Allahham

Adib is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub.  Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Contact Details
email: adib.allahham@ncl.ac.uk @adiballhham

About the Paper

Governments around the world are working hard to reduce their Greenhouse Gas (GHG) emissions. In the UK, the government has set a target of “Net Zero” GHG emissions by 2050 in order to reduce contribution to global warming [1]. This necessitates the integration of more Renewable Energy Sources (RESs) into the energy networks and consequently reduction in the use of fossil fuels while meeting and reducing energy demand.

To achieve this objective flexibly and reliably, it may be necessary to couple the energy networks using several network coupling components such as gas turbine (GT), power-to-gas (P2G) and Combined Heat and Power (CHP) [2]. Also, the energy networks may benefit from different types of Energy Storage Systems (ESSs) in order to be able to compensate for any energy carrier deficit or other constraints in energy supply in any of the networks [3].

In order to comprehensively study multi-vector integrated energy systems and analyse ESS potentials, a Techno-Economic-Environmental (TEE) evaluation framework needs to be designed to investigate the mutual impacts of each of the networks on the operational, economic and environmental performance of others. This is the main aim of this study.

The paper divides ESS into two different categories of Single Vector Storage (SVS) and Vector Coupling Storage (VCS).

Figure 1: A conceptual representation of SVS and VCS storage devices in an Integrated Gas and Electricity Distribution Network (IGEDN)

A literature review looked at models which have been used to perform planning of the whole energy system of several countries taking into account all layers of the energy system, as well as different types of energy storage in multi-vector energy networks. As well as using a case study from a rural area in Scotland which is connected to the electricity distribution network only, also benefitting from a small wind farm and roof-top PV’s.

Fig. 2. The schematic of the studied rural area in Scotland including the separate gas and electricity networks (without considering P2G and VCS) and IGEDN (with considering P2G and VCS) [4]

A framework was developed as a result of the literature review carried out and this was tested on the real-world rural area in Scotland.  The evaluation framework provides the ability to perform TEE operational analysis of future scenarios of Integrated Gas and Electricity Distribution Networks (IGEDN).  Several specifications and achievements from this study are identified in the paper which is available to read online and will be published in the November issue of the Journal.


[1] Committee on Climate Change. Net Zero – The UKś contribution to stopping global warming, 2019. Google Scholar
[2] S. Clegg, P. MancarellaIntegrated electrical and gas network flexibility assessment in low-carbon multi-energy systems IEEE Trans Sustainable Energy, 7 (2) (2016), pp. 718-731 CrossRefView Record in ScopusGoogle Scholar
[3] S.H.R. Hosseini, A. Allahham, P. TaylorTechno-economic-environmental analysis of integrated operation of gas and electricity networks 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1-5 CrossRefView Record in ScopusGoogle Scholar
[4] EPSRC National Centre for Energy Systems Integration (CESI). https://www.ncl.ac.uk/cesi/, 2017.