Category Archives: Energy Storage

Achieving ‘Net Zero’ targets under uncertainty: A framework to support decision making in an increasingly integrated energy system

Researchers and academics from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub, Dr Hamid Hosseini, Dr Adib Allahham, Dr Sara Walker and Prof Phil Taylor recently published their paper ‘Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance’ in the international, multi-disciplinary journal Energy.

About the author: Dr Hamid Hosseini

Dr Hamid Hosseini

Hamid joined Newcastle University in 2017 as a postdoctoral research associate to the EPSRC National Centre for Energy Systems Integration (CESI). Since joining the team, Hamid has been actively involved in research looking at planning, optimisation and operational analysis of integrated multi-vector energy networks. He also collaborated with a multi-disciplinary team on the UKRI Research and Innovation Infrastructure (RII) roadmap project, advising UKRI on the current landscape and future roadmap of Energy RIIs. He has supported and collaborated with several CESI Flex Fund projects to investigate further various aspects of Energy Systems Integration (ESI). Moreover, he is working with the Executive Board of Northern Gas Networks to identify the potential energy systems challenges that could be investigated at the Customer Energy Village of the Integrated Transport Electricity Gas Research Laboratory (InTEGReL), through collaboration with a multi-disciplinary team of energy experts in industry and academia. Hamid is author of several papers published in prestigious journals and conferences on the review and techno-economic-environmental operational analysis of integrated multi-vector energy networks.

Contact email: hamid.hosseini@newcastle.ac.uk
Profile details


Like many Governments, the UK has committed to significantly reduce Greenhouse Gas (GHG) emissions, setting a target of ‘Net Zero’ by 2050 [1]. In many regions, the focus has been on the electrification of heat to ensure these targets are achieved. There is a growing interest in exploring and quantifying the impact of integrating energy systems to decarbonise them. This includes the integration of the gas and electric networks and increased use of renewables and energy storage [2], [3], [4].

However, there is great uncertainty associated with forecasted loads, generation of renewables, energy prices and other operational costs, as well as the emissions associated with future networks and energy conversion technologies. To provide a basis for making well-informed and risk-based design choices towards the GHG emission targets, it is essential to consider the impact of different sources of uncertainty on the Techno-Economic-Environmental (TEE) performance of Integrated Energy Networks (IENs). In addition to these uncertainties, the TEE impact of different Energy Storage Systems (ESSs) and different levels of integration of the networks [5] need to be investigated in detail.

In this paper, we present a framework to assess the Techno-Economic-Environmental (TEE) impact of Integrated Gas and Electricity Networks (IGENs). We look at how different levels of networks’ integration and storage devices affect the performance of IGENs. Using Monte Carlo Simulation, we sampled probabilistic distributions to model the sources of uncertainty including loads, RESs, economic and environmental factors. More detailed information of the inputs and outputs of the TEE framework is shown in Figure 1.

Figure 1 The algorithm of the TEE evaluation framework considering several sources of uncertainty

The framework carries out a TEE operational analysis of IGENs for possible future energy scenarios to calculate the energy imported from upstream networks, operational costs, and emissions. As the framework considers uncertainties in this analysis, it helps robust decision making in designing an energy system to meet 2050 carbon targets.

In the paper, we give a comprehensive analysis of the results when the framework is applied to a real-world case study. 

The key findings of this analysis include:

  • Efforts to improve the efficiency of coupling components by equipment manufacturers are very important goals in pursuit of lower TEE performance parameters in future integrated networks.
  • Given that demand reduction and decarbonisation of electricity and gas networks is a priority, the coupled configurations are likely to become more attractive between now and 2050.

These findings hold true for all the values considered in the uncertainty analysis.

The full paper will appear in the Elsevier Journal, Energy, and is available to view online [6].


References

[1] Committee on Climate Change. Net Zero – The UK’s contribution to stopping global warming, 2019. Google Scholar

[2] P. Rachakonda, V. Ramnath, V.S. Pandey. Uncertainty evaluation by monte carlo method, MAPAN, 34 (3) (2019), pp. 295-298. CrossRef View Record in Scopus Google Scholar

[3] Han Jie, Chen Huaiyan, and Cao Yun. Uncertainty evaluation using monte carlo method with matlab. In IEEE 2011 10th International Conference on Electronic Measurement & Instruments, volume 2, pages 282–286. IEEE, 2011. Google Scholar

[4] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Optimal planning and operation of multi-vector energy networks: A systematic review. Renewable and Sustainable Energy Reviews, 133 (2020), 110216. Google Scholar

[5] Seyed Hamid Reza Hosseini, Adib Allahham, and Phil Taylor. “Techno-economic-environmental analysis of integrated operation of gas and electricity networks.” In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5. IEEE, 2018. https://doi.org/10.1109/ISCAS.2018.8351704

[6] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance, Energy, 2021, 119968, ISSN 0360-5442. https://doi.org/10.1016/j.energy.2021.119968

How green is energy storage? Learnings from a CESI-funded case study

Academics funded by the EPSRC National Centre for Energy Systems Integration (CESI) in the Centre’s first Flexible Funding Call, recently published the results of a study on the impacts of energy storage operation on greenhouse gas emissions, in the journal Applied Energy. Their work is summarised here by the lead author, Dr Andrew Pimm, and the full paper [1] is freely available to all on the journal website. The research team was led by Prof Tim Cockerill of the University of Leeds, and also included Dr Jan Palczewski of Leeds and Dr Edward Barbour of Loughborough University.

About the author: Dr Andrew Pimm

Dr Andrew Pimm is a Research Fellow at the University of Leeds investigating the techno-economics of energy storage, energy flexibility, and industrial decarbonisation. Prior to joining Leeds in 2015, he worked on the development of grid-scale energy storage technologies at the University of Nottingham, where he was involved in offshore trials of underwater compressed air energy storage.

Contact details
Email: a.j.pimm@leeds.ac.uk

Energy storage will be a key part of the future energy system, allowing the deployment of higher levels of non-dispatchable low carbon electricity generation and increased electrification of energy demand for heating/cooling, transport, and industry.

Passing energy through storage inevitably results in losses associated with inefficiencies, however previous investigations have found that operation of electricity storage can result in increased CO2 emissions even if the storage has a turnaround efficiency of 100% [2]: if the output from a relatively high carbon source (such as unabated gas or coal) is increased to charge the storage, and the output from a relatively low carbon source is reduced when the storage is discharged, then the result will be a net increase in CO2 emissions.

However, these effects had not been considered recently for Great Britain, and little attention had been given to the extent to which they vary by location. We sought to fill this gap in the knowledge through our study.

We made use of data from National Grid’s regional Carbon Intensity API and ELEXON’s P114 dataset to determine the source of electricity consumed in each of Great Britain’s 14 electricity distribution zones for each half-hour period in 2019 (annual sums shown in Figure 1).

Figure 1: The share of electricity consumption by region and source in Great Britain in 2019.

With these data, we used linear regression techniques [3] to calculate half-hourly “marginal emissions factors” for each distribution zone. These tell us the change in CO2 emissions that occurs as a result of a change to grid electricity demand, disaggregated by time and location. These regional marginal emissions factors were then used to assess the impact of electricity storage operation on grid CO2 emissions in three different storage operating scenarios:

  1. Load levelling, whereby storage is charged at times of low demand and discharged at times of high demand.
  2. Wind balancing, whereby storage is charged at times of high wind output and discharged at times of low wind output.
  3. Reducing wind curtailment, whereby storage is charged using excess wind generation that would otherwise be curtailed and discharged at times of high demand.

The resulting emissions reductions are shown for selected distribution zones and Great Britain as a whole in Figure 2. Wind balancing is the only storage operating mode that leads to increased CO2 emissions, and emissions are reduced the most when storage is operated to reduce wind curtailment in regions with high levels of fossil generation.

Across all regions and operating modes, the difference between the highest reduction in emissions and the highest increase is significant, at 741 gCO2 per kWh discharged, and is roughly equivalent to the reduction in emissions per unit achieved by fitting a coal power plant with carbon capture and storage.

Figure 2: Potential emissions reduction through storage operation for the three operating scenarios, in six selected distribution zones and Great Britain as a whole in 2019.

While electricity storage will be a key component in future low carbon energy systems, our work has shown the importance of storage location and operating mode to its operational emissions and the possible dangers of evaluating emissions using average emissions factors. We are currently using these new techniques to investigate the lifecycle emissions of storage and smart EV charging across the EU.


References

[1] Pimm AJ, Palczewski J, Barbour ER, Cockerill TT. Using electricity storage to reduce greenhouse gas emissions. Applied Energy. 2021;282:116199.
[2] Denholm P, Kulcinski GL. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Conversion and Management. 2004;45:2153-72.
[3] Hawkes AD. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy. 2010;38:5977-87.

Where is the value in cost, carbon and resilience in taking an energy systems integration approach to the UK’s energy future?

Researchers and Academics from the EPSRC funded Supergen Energy Networks Hub and the National Centre for Energy Systems Integration (CESI), Dr Adib Allahham, Dr Hamid Hosseini, Dr Vahid Vahidinasab, Dr Sara Walker & Professor Phil Taylor, recently published their journal paper in the International Journal of Electrical Power and Energy Systems on Techno-economic-environmental evaluation framework for integrated gas and electricity distribution networks considering impact of different storage configurations.

About the author: Dr Adib Allahham

Adib is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub.  Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Contact Details
email: adib.allahham@ncl.ac.uk @adiballhham

About the Paper

Governments around the world are working hard to reduce their Greenhouse Gas (GHG) emissions. In the UK, the government has set a target of “Net Zero” GHG emissions by 2050 in order to reduce contribution to global warming [1]. This necessitates the integration of more Renewable Energy Sources (RESs) into the energy networks and consequently reduction in the use of fossil fuels while meeting and reducing energy demand.

To achieve this objective flexibly and reliably, it may be necessary to couple the energy networks using several network coupling components such as gas turbine (GT), power-to-gas (P2G) and Combined Heat and Power (CHP) [2]. Also, the energy networks may benefit from different types of Energy Storage Systems (ESSs) in order to be able to compensate for any energy carrier deficit or other constraints in energy supply in any of the networks [3].

In order to comprehensively study multi-vector integrated energy systems and analyse ESS potentials, a Techno-Economic-Environmental (TEE) evaluation framework needs to be designed to investigate the mutual impacts of each of the networks on the operational, economic and environmental performance of others. This is the main aim of this study.

The paper divides ESS into two different categories of Single Vector Storage (SVS) and Vector Coupling Storage (VCS).

Figure 1: A conceptual representation of SVS and VCS storage devices in an Integrated Gas and Electricity Distribution Network (IGEDN)

A literature review looked at models which have been used to perform planning of the whole energy system of several countries taking into account all layers of the energy system, as well as different types of energy storage in multi-vector energy networks. As well as using a case study from a rural area in Scotland which is connected to the electricity distribution network only, also benefitting from a small wind farm and roof-top PV’s.

Fig. 2. The schematic of the studied rural area in Scotland including the separate gas and electricity networks (without considering P2G and VCS) and IGEDN (with considering P2G and VCS) [4]

A framework was developed as a result of the literature review carried out and this was tested on the real-world rural area in Scotland.  The evaluation framework provides the ability to perform TEE operational analysis of future scenarios of Integrated Gas and Electricity Distribution Networks (IGEDN).  Several specifications and achievements from this study are identified in the paper which is available to read online and will be published in the November issue of the Journal.


[1] Committee on Climate Change. Net Zero – The UKś contribution to stopping global warming, 2019. Google Scholar
[2] S. Clegg, P. MancarellaIntegrated electrical and gas network flexibility assessment in low-carbon multi-energy systems IEEE Trans Sustainable Energy, 7 (2) (2016), pp. 718-731 CrossRefView Record in ScopusGoogle Scholar
[3] S.H.R. Hosseini, A. Allahham, P. TaylorTechno-economic-environmental analysis of integrated operation of gas and electricity networks 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1-5 CrossRefView Record in ScopusGoogle Scholar
[4] EPSRC National Centre for Energy Systems Integration (CESI). https://www.ncl.ac.uk/cesi/, 2017.

What will the UK’s future energy research and innovation infrastructure look like?

Dr Zoya Pourmirza and Dr Hamid Hosseini talk about their recent work as part of a team of energy experts from Newcastle University helping UK Research & Innovation with an analysis of the UK’s existing research landscape and future infrastructure requirements.


About the authors

Dr Zoya Pourmirza is a Research Associate in Newcastle University’s School of Engineering. She is involved in a number of research and teaching projects. Her principle research interests are in smart energy systems and information and communication technology (ICT) with particular emphasis on making the ICT infrastructure energy aware and cyber secure.

Contact details: zoya.pourmirza@ncl.ac.uk
Profile details

Dr Hamid Hosseini is a Research Associate in Newcastle University’s School of engineering. His principle research interest is in the simulation and analysis of energy system. In his work for the EPSRC National Centre for Energy Systems Integration (CESI), Hamid has been investigating the planning, optimisation and operation analysis of integrated energy networks.

Contact details: hamid.hosseini@ncl.ac.uk
Profile details


UK Research & Innovation (UKRI) has recently published two reports giving an analysis of the UK’s existing research landscape and identifying its future infrastructure requirements. These reports make recommendations across six broad research sectors key to ensuring the UK remains a global leader. These six research sectors are Biological Sciences, Health and Food; Physical Sciences and Engineering; Social Sciences, Arts and Humanities; Environmental Sciences; Computational and e-infrastructure and Energy.

As members of a multi-disciplinary team of EPSRC National Centre for Energy Systems Integration (CESI) academics and researchers from Newcastle University, we were commissioned by UKRI to consult with the energy community. The team, led by CESI’s Director, Professor Phil Taylor, worked with UKRI to draft reports detailing our findings and recommendations. In carrying out this work, we made a substantial contribution to the preparation of the energy sections of the UKRI Research Landscape and Research Infrastructure reports.

Consultation exercise

The consultation exercise had three main aims: to inform future research and innovation infrastructure priorities, to provide the groundwork to ensure the UK remains a global leader in research and innovation and to set out the essential infrastructure needed to reach this long-term vision.

The team consulted extensively with leading UK energy industry and academics with expertise across a wide range of sectors, including nuclear, renewables, hydrogen, conventional technologies and whole energy systems. The consultation process was also extensive, including two questionnaires, four facilitated workshops at different locations across the UK and over one hundred 1-1 interviews with experts.

Initial analysis and findings

Based on the feedback received in the first stage of the consultation process, we drafted an interim report to UKRI giving an initial analysis of the UK Energy research infrastructure and a description of the existing energy research landscape. This interim report was included as a chapter in the UKRI Infrastructure Roadmap report alongside chapters for each of other five key research sectors.

An important finding of our initial consultation exercise was that opportunities to grow future energy research and innovation infrastructure could be classified in seven key themes. These informed further rounds of consultation, and are listed in the UKRI initial analysis report as follows:

  • Whole energy systems, including energy demand and power distribution networks
  • Fuel cells and hydrogen
  • Energy storage
  • Renewable energy sources
  • Alternative fuels
  • Nuclear energy – fission and fusion
  • Carbon capture and storage
Energy sector themes overview [Graphic: UKRI]

Final reports

Following this second consultation exercise, we incorporated our findings into two detailed reports for UKRI on the existing energy research and innovation landscape and on the sector’s future infrastructure requirements. These formed the basis of the Energy sections in the two recently published UKRI reports:

These reports referenced key energy research undertaken across the UK, including research involving multi-disciplinary teams from Newcastle University such as CESI and the Active Building Centre (ABC).

Key findings and recommendations

As a result of the consultation exercise, we helped to develop a snapshot view of existing infrastructure of regional, national and international importance. We identified thirty-three dedicated energy infrastructures and help to write case studies of existing key energy research infrastructure which were published in the Landscape Analysis report.

In the report identifying opportunities to grow our capacity, our findings contributed to recommendations for how the energy themes can be progressed and identifying case studies for each. The published case studies include one of CESI’s research demonstrators, The Integrated Transport Electricity Gas Research Laboratory (InTEGReL), as infrastructure offering a whole-systems approach to the UK’s energy use. Newcastle University is working in partnership with Northern Gas Networks and Northern Powergrid to develop the site. Its aim will be to allow academia, industry and government to explore and test new technologies in the electricity, gas and transport sectors in one place, delivering a more secure, affordable, low-carbon energy system.

The Integrated Transport Electricity Gas Research Laboratory (InTEGReL) [Graphic:Northern Gas Networks]

Of particular relevance to CESI are the recommendations for the whole energy systems theme. These include a new interdisciplinary centre for excellence in energy analysis integration and a decarbonisation of heat demonstrator, both of which will make an important contribution to investigations into how we might achieve a net-zero energy future.

UKRI Research and Innovation Infrastructure: Energy
Project team

Professor Phil Taylor
Dr Damian Giaouris
Dr Sara Walker
Dr Zoya Pourmirza
Dr Hamid Hosseini
Laura Brown
Alison Norton

The Future of Energy – Dr David Greenwood

Dr David Greenwood discusses talks delivered at a recent Cafe Scientifique event by three CESI researchers on their vision for the future of energy .


About the author:

Dr David Greenwood is a researcher with the National Centre for Energy Systems Integration (CESI) and is based at Newcastle University.

His research focuses on taking advantage of flexibility within energy systems and understanding sources of uncertainty and variability such as customer demand and intermittent generation.

Contact details: david.greenwood@ncl.ac.uk        Profile details


Inspired by the Great Exhibition of the North, Newcastle University hosted a series of Café Scientifique events at the Urban Sciences Building, part of the rapidly expanding Newcastle Helix site.

The National Centre for Energy Systems Integration organised one of these events, with the title “The Future of Energy”, where three CESI researchers presented the vision of the UK’s energy future, and how we can get there.

Cafe Scientifique:  The Future of Energy  at Newcastle University’s Urban Sciences Building

Dr David Jenkins – who had travelled from Heriot-Watt University for the event – gave his thoughts from the perspective of energy demand, how it could change it, and how we could meet it. Dr Jenkins talked about the data challenges in modelling energy demand. This includes the temporal and spatial scale of the available data, and the effects of aggregating large numbers of energy users, which generally works in a modeller’s favour by giving a smoother, more predictable pattern of demand. The impact of a number of low-carbon technologies, such as electric vehicles and heat pumps, which are vital if heat and transport are to be decarbonised by moving them onto the electricity system, was examined, with the summation of these changes resulting in the potential for a substantially different demand pattern to that experienced today.

Figure 1: The potential difference between present and possible future energy demand

Next, Dr David Greenwood spoke about the need for flexibility within the energy system, and the challenges in procuring it through the markets and mechanisms that are currently used by the energy industry and in particular the electricity system operators. Dr Greenwood’s main argument was that we need flexibility – which already exists on the system in many forms – to address uncertainty on a variety of timescales ranging from when a customer plugs in their electric car, to how quickly and substantially low carbon technologies are adopted, to when new power stations are completed, all with the possibility of a failure anywhere in the system at any time. He concluded by presenting a flexibility case study based around energy storage, and showing how uncertainty and flexibility can be included within operational decision making processes.

The final presentation of the evening was given by Dr Andrew Jenkins, and had a focus on the whole energy system. Dr Jenkins talked about how the whole energy system can deliver cross-sector flexibility while still fulfilling the needs of its customers. He demonstrated this with a case study on electric vehicles using Vehicle to Grid charging technology, which could meet a set of system requirements whilst ensuring that their drivers would have enough energy to complete their journeys at the end of the day. He concluded with a detailed description of the university’s new InTEGReL site – a joint venture with Northern Powergrid and Northern Gas Networks which will showcase the potential for heat, transport, gas, and electricity to operate synergistically, providing cross-vector energy flexibility, and allowing validation of models and theory arising from academic research.

Figure 2: An overview of the InTEGReL site

The evening ended with a discussion with the audience – a range of attendees; consumers, prosumers, consultants, academics – which broadened the debate to include the political landscape, and more input from the perspective of the energy consumer. The audience had a breadth of technical knowledge, and their questions reflected this. Electric vehicles – which link the electricity and transport sectors – were the most popular topic for discussion, but the potential of power to gas, sources of inertia in zero-carbon energy systems, and the impact of energy efficient homes were also discussed. The event ended by a resounding agreement from the audience that they would like to attend another event on the topic of energy.

If you would like to suggest a topic for a future event, please get in touch at cesi@ncl.ac.uk.

Building physics within an integrated energy system

Mohammad Royapoor and Michael Barclay discuss two presentations made at this year’s UK Energy Storage Conference (UKES2018).  Both presentations highlight the importance of building physics in an integrated energy system

About the authors

Dr Mohammad Royapoor is Research Associate in the School of Engineering at Newcastle University.  A chartered engineer, he has been involved in academia and industry working on the design and optimisation of heating, ventilation and air conditioning services (HVAC) and building fabric since 2003.  His work concerns various aspects of building physics, modelling and energy reduction, building retrofit options and occupant
perception of comfort.

Contact: mohammad.royapoor@newcastle.ac.uk                                 Profile details

Dr Michael Barclay is Architectural Officer in the College of Engineering at Swansea University.  He has academic expertise in building physics and computer simulation and is a member of the research team on a project progressing the concept of Buildings as Power Stations (SPECIFIC), which is looking into addressing the challenge of low carbon electricity and heat by enabling buildings to generate, store and release their own energy, in one system, using only the energy from the sun.


Disciplines such as structural and soil mechanics, advanced materials and construction techniques, renewables and digitalisation have been able to heavily influence modern building design and attract large research resources over the past two decades. More recently, building physics – generally somewhat a dormant science in early 2000s – has been pushed into the forefront of innovation. This is because the interaction between internal mass within well-insulated (and adaptive) envelopes can enable internal zone thermal equilibrium, reduce building peak demands and overheating risks, offer demand side response (DSR) capability and enable owner and operators to use their building as an asset that can offer arbitrage and flexibility to energy suppliers.

The link between two UKES 2018 presentations highlighted the role of building physics as a core component of integrated energy systems research.  The first was the work led by Dr Michael Barclay. He provided an overview of his work into experimentation, modelling and validation of the heat flow in solids.

Temperature change from heat injected into ball-bearings

Fig 1: Temperature change resulting from heat injected into ball-bearings using Transient line source probe [1]

The significance of fundamental research such as this is that it offers building analysts the ability to parameterise mathematical models of complex buildings with validated real-world values. Considerable uncertainty exists in the characteristics of heat transfer in building elements and as a result modelling building energy consumption can carry significant errors [2]. Therefore a more detailed understanding and appropriate characterisation of heat flow in building materials allows much greater prediction accuracy and therefore more appropriate techno-economic appraisals for buildings and indeed the broader integrated energy systems.

The second was a report on Building as a Power Plant project led by Dr Sara Walker, Director of Expertise at Newcastle University’s School of Engineering and Associate Director of the EPSRC National Centre for Energy Systems Integration (CESI). Using Urban Sciences Building (home to the University’s flagship School of Computing and to CESI) as a case-study, the research team is examining the extent to which the building is able to provide DSR to the local electricity network by operating its HVAC, lighting and several other non-critical loads in a more dynamic manner without compromising occupant comfort. Early stage findings points to the possibility of 32 – 35% of the total electrical load of the building being available at any time for DSR at short or no notice (Fig 2).  The integrated nature of UK energy is a reflection of the interconnectivity of our physical world. Investigating the flow of heat in a small tube of ball-bearings enables greater model precision at building level which in turn can inform future control philosophes of a secure, flexible and low carbon electricity network.

Sankey diagram of the energy flows of the USB

Fig 2: A Sankey diagram of energy flow with sub-categories of electrical demand (LHS) in the USB building (RHS) [3]


References

[1] Barclay, M; Feng, Y. T; Perisoglou, E: Experimental and Numerical Investigations of Discrete Heat Storage Materials, UKES 2018 Conference presentation, Newcastle University.
[2]  M. Mirsadeghi, D. Cóstola, B. Blocken, J.L.M. Hensen, Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty, Applied Thermal Engineering, Volume 56, Issues 1–2, 2013, Pages 134-151, ISSN 1359-4311
[3] Royapoor, M; Davison, P; Patsios, H; Walker, S: Building as a Power Plant, UKES 2018 Conference presentation, Newcastle University.

 

A researcher’s view of the UK Energy Storage Conference 2018

CESI PhD researcher, Natalia-Maria Zografou-Barredo, recently attended the fourth UK Energy Storage Conference in Newcastle. In this week’s blog, she takes us through the presentations that took place and summarizes her thoughts on the conference.


About the author 

Natalia-Maria Zografou-Barredo is a PhD researcher at Newcastle University and works with the EPSRC National Centre for Energy Systems Integration (CESI).  Her research focuses on multi-energy systems and microgrid operation.

Contact details: n.zografou-barredo2@newcastle.ac.uk


I recently attended the fourth UK Energy Storage Conference (UKES) held on the 20-22 March 2018. This year it took place in Newcastle in the Urban Sciences Building, and attendance was over 200. A consortium of speakers from academia, industry and policy within the UK and around the world joined the conference.

Presentations provided a holistic view of ongoing research on energy storage and portrayed energy storage as a significant asset in future energy systems. Main subjects covered included:

  • Policy and economics of energy storage systems
  • Operation and control
  • Demonstration and commercial deployment
  • Design, planning and integration of storage in energy systems
  • Energy storage for Future Mobility
  • Energy storage in the built environment
  • Thermal, mechanical, and thermochemical energy storage
  • Electrochemical energy storage
  • Gas storage

I attended different sessions. Nonetheless, presentations during the ‘Demonstration and commercial deployment’ session drew my attention due to some interesting questions and fruitful discussions between the speakers and the audience.

Presentations during this session covered both technical and social matters around energy storage. However, questions posed to the panel were almost exclusively around social acceptance of the future changes related to energy storage. And for good reason.

Electrical energy systems do not represent a ‘passive’ one-directional (i.e. from electrical energy production to consumption) system anymore. It is a fact that energy storage deployment (electric vehicles, demand-side management, energy storage in smart grids & microgrids, etc.) not only affects public life, but also depends on a mutual public cooperation.

Discussions during this session brought to realization that the implementation of future research on energy storage after ‘solving’ any technical challenges should potentially be on how to face (and maybe prevent) social ones. It was concluded that public cooperation poses an additional challenge in the integration of energy storage to future energy systems (apart from any existing techno-economic issues raised on other conference sessions).

Overall, the conference portrayed energy storage as a vital asset in future energy systems. The majority of speakers indicated the value of ongoing research of energy storage systems in order to face the challenges from a technical point of view. Nonetheless, public cooperation seems to be yet another important challenge in the deployment of energy storage systems & technologies that should be addressed in the near future.

UKES Conference Opening Plenary
Keynote speaker –  Prof Phil Taylor, Newcastle University


References

“UK Energy Storage Conference,” [Online]. Available: http://ukenergystorage.co/.

The Role of the System Architect – Prof P Taylor and Dr S Walker

Professor Phil Taylor, Director and Dr Sara Walker, Associate Director of the National Centre for Energy Systems Integration have revisited the notion of the System Architect (IET 2014; Taylor 2014). How does this role need to change to reflect the ongoing evolution of the UK’s energy system? They have prepared a discussion article to articulate what this role might be and what organisation (or group of organisations) might be challenged with delivering its activities.

A copy of their paper is available from this link The Role of the System Architect – CESI Publications CESI-TF-0006


About the Authors

Professor Phil Taylor is the Director and Principal Investigator at CESI. He is an internationally leading researcher and industrial expert in energy systems, electrical distribution networks, smart grids and energy storage integration and control. He is the Siemens Professor of Energy Systems, Deputy Pro Vice Chancellor of SAgE Faculty and Head of the School of Engineering at Newcastle University.

Contact details: phil.taylor@ncl.ac.uk

Dr Sara Walker is an Associate Director and Co-Investigator at CESI. Her research focus is regarding renewable energy technology and transitions to low carbon systems, with a particular focus on policy and building scale solutions. She is Director of Expertise for Infrastructure at the School of Engineering at Newcastle University.

Contact details: sara.walker@ncl.ac.uk


About the National Centre for Energy Systems Integration

The £20M EPSRC National Centre for Energy Systems Integration (CESI) brings together an interdisciplinary team of experts to gain a deeper understanding of the value of taking a whole systems energy approach to the energy trilemma. Led by Newcastle University, CESI is a consortium of five research intensive universities and a wide range of public and industrial sector partners.

Working with Industry

CESI currently has over 34 industrial and government organisations collaborating with our team of academics and researchers. They provide:

  • a steer on the relevance of our work
  • access to their experts for consultation
  • access to resources such as engineers, labs, data and other valuable assets
  • front-line insight to the needs of the industry and their customers

Executive Summary

Energy infrastructure is considered a critical infrastructure for the UK, vital to economic prosperity. Current and future changes to the way we use energy will increasingly impact on local and national energy infrastructure. These energy issues require long term solutions based around a systems thinking approach which is immune to short term commercial and political pressures. This is important given that investment decisions can take decades to be realised and can be locked in for the next 50 years or more.

The challenges of creating a UK energy system which meets the needs of a modern economy have led to the notion of a System Architect. The original concept was assumed to be a centralised planner role but this maybe too prescriptive. In this paper, the System Architect concept is revisited.

The authors have proposed a System Architect which takes a long term, non-political, non-commercially based view of energy industry and system strategy. The System Architect can be flexible to enable bottom up initiatives as well as top down UK system overview.

The proposed System Architect is to have a role within policy making as well as policy implementation. This raises issues of governance and transparency. There is a need to ensure that a System Architect has some accountability and legitimacy.

The top down manifestation of the System Architect idea could include the System Operator function working alongside organisations such as the Energy Systems Catapult, the National Infrastructure Commission, and NGOs such as National Energy Action. A key question is whether a national level System Architect of this nature could coexist with a number of regional bottom up System Architects. The Centre for Energy Systems Integration is interested in investigating this.

What is clear, arising out of consideration of the UK’s long term energy future, is that whole systems thinking is complex but it enables:

  • more options, considering, for example, shared storage and shared assets
  • longer term thinking
  • a holistic approach to energy trilemma

Decision making will be more complex, however, needing an interdisciplinary approach and greater co-ordination. It also means that leaving things to the market is difficult.

However, the benefits of a System Architect approach which embraces whole systems thinking have a value to the sector as we move forward. These benefits include:

  • improved whole system efficiency
  • increased asset utilisation
  • increased utilisation of renewable energy
  • improved system reliability
  • improved system flexibility
  • and importantly, decision making appropriate to geography and/or energy vector

Without the role, we risk a fragmented, costly and ultimately ineffective energy system which fails to deliver a low-carbon modern energy system to UK industry and society.

The authors look forward to your views on their vision of the System Architect role, so please do not hesitate to contact us with your thoughts.

Contact details: cesi@ncl.ac.uk

As a reminder – a copy of their paper is available from this link  The Role of the System Architect – CESI Publications CESI-TF-0006


References

Taylor, P. 2014. ‘We need an independent architect to redesign the UK energy industry’, The Guardian.

IET. 2014. “Britain’s Power System The case for a System Architect.” In. London: IET.

Can the UK kick its coal habit? – Professor Phil Taylor

Do we need to continue to open new coal mines to meet our energy needs? Can a whole systems perspective help the UK to meet its obligations to reduce carbon emissions and also ensure a secure energy supply?

Professor Phil Taylor discusses his input to the Department of Communities and Local Government (DCLG) planning debate about the need for a new open cast mine proposed near Druridge Bay in Northumberland.

About the Author

Professor Phil Taylor

BEng EngD CEng SMIEEE FIET FHEA
Director, EPSRC National Centre for Energy Systems Integration
Siemens Professor of Energy Systems
Deputy Pro Vice Chancellor of SAgE Faculty
Head of the School of Engineering
Newcastle University          

http://www.cesienergy.org.uk                                

 


Do we need to continue to open new coal mines to meet our energy needs? Can a whole systems perspective help the UK to meet its obligations to reduce carbon emissions and also ensure a secure energy supply?

In November 2015 the UK Government laid out plans for all coal-fired power stations to be phased out by 2025 at the latest.  As coal is the most polluting of the UK’s energy sources, including gas, and in light of the Paris Agreement under which the UK and other countries have agreed to undertake rapid reductions carbon emissions, coal is simply uneconomic as a fuel. In order to eliminate carbon emissions, energy companies urgently need to replace coal with cleaner energy sources.

Given this need to replace coal as a fuel, it is worrying that a new large opencast mine has been proposed near Druridge Bay in Northumberland.  The justification for opening the mine is that the coal extracted would be used to fuel power stations – maintaining the UK’s further reliance on coal as a fuel source.

Planning permission for the mine was approved by Northumberland County Council in July 2016.   However, Central Government called the approval for the mine to public inquiry on grounds of climate change.   This is the first time any planning permission decision has been called to public enquiry, on these grounds.

HJ Banks & Co Ltd argument for coal too narrow

During the public inquiry which began May 2017, HJ Banks & Co Ltd, the proposed developer of the site, argued that coal fired power stations are essential for the security of the UK’s energy supply.  Their expert witness argued that if coal fired power stations are phased out, a significant number of new gas fired power stations would be required, providing 7GW of gas generation. Other cleaner sources of energy cannot be relied upon as a consistent source of energy.  Wind power, for example, provides an intermittent source of energy as the wind does not always blow, and so wind turbines cannot be relied upon to satisfy the UK’s energy needs.  Similarly the sun does not always shine, so photovoltaic systems will not generate sufficient energy.  For these reasons, opening the new mine would be an important step in ensuring that the UK maintains good supply of coal for its power stations.

UK needs whole energy system approach

This siloed approach does not take into account the reality of the energy mix. There is no single source of fuel that provides the energy to satisfy the whole of the UK’s energy requirements.  The Department for Business, Energy and Industrial Strategy (BEIS) collate data on the UK’s electricity generation mix which are updated each quarter. These most recent figures were released in June 2017.  These show that compared with a year ago, gas generated energy increased by 3% to 40%, nuclear energy increased by 0.1% (19%) and renewables (wind and solar, hydro and bioenergy) increased 1% to 27%.  During the same period, the proportion of energy generated from coal fell by 5% to 11%.  These figures show coal is declining in importance and that we have many options to replace it.  However, it is just as important to consider flexibility in the energy system as a means of phasing out coal.  This flexibility can help us deal with peaks in demand and variability in the output of renewable energy sources.  This flexibility can be provided by a mixture of energy storage, demand side response (DSR) and interconnectors [i].

It is essential to take a whole systems approach when considering the UK’s energy mix. In order for the UK to meet the climate change commitments of the Paris Agreement, it needs to continue to phase out its coal fired power stations.  This would be possible by increasing the utilisation of existing gas facilities plus a small increase in capacity in power from gas; and combining this with power produced from renewables such as wind, biomass and PV.

We can use a variety of technologies at a variety of scales to store energy when we have more than is needed, or when there is too much for network cables to carry. This energy can then be used at a time when it’s needed.

Britain also imports energy, via physical links known as interconnectors.  At present, the British energy market has 4GW of interconnector capacity.  The UK energy regulator, Ofgem, forecasts that planned projects will mean that this capacity will increase to 7.3GW by 2021.  In addition, the electricity required could be managed through Demand Side Response (DSR), where consumers are given incentives to reduce their energy demand by reducing usage or turning off non-essential items when there is a peak in electricity demand [ii].

The increase in interconnector capacity, energy storage and DSR will help to balance supply and demand on the electricity grid, reducing the need to build new power stations.  An additional benefit of decarbonising our energy system more rapidly is that this offers the opportunity to also decarbonise our transport and heat sectors.

Professor Phil Taylor presented this argument at the Public Inquiry into the proposed open cast mine at Highthorn, Northumberland.  His argument represents one of the many decisions we could make to keep the lights on and is an example of the ways we can apply whole systems thinking to energy.   Professor Taylor appeared as an expert witness to the Inquiry for Friends of the Earth on a pro bono basis.  The outcome of the public inquiry is expected in autumn 2017.


References

[i] Department for Business, Energy & Industrial Strategy (2017). Section 5, Electricity. Energy Trends: June 2017 [Online]. Available at: https://www.gov.uk/government/statistics/energy-trends-june-2017 [Accessed 17/7/2017].

[ii]   Ofgem (2017). Electricity Interconnectors. [Online]. Available at: https://www.ofgem.gov.uk/electricity/transmission-networks/electricity-interconnectors [Accessed 21/7/2017].

The launch of the Faraday Challenge – Prof Phil Taylor

About the Author

Professor Phil Taylor

BEng EngD CEng SMIEEE FIET FHEA
Director, EPSRC National Centre for Energy Systems Integration
Siemens Professor of Energy Systems
Deputy Pro Vice Chancellor of SAgE Faculty
Head of the School of Engineering
Newcastle University           

http://www.cesienergy.org.uk

 

 


Faraday Challenge

The launch of the Faraday Challenge is a welcome and hugely exciting piece of governmental leadership which has the potential to transform the automotive sector and have a significant impact on the UK’s energy system and air quality.

Battery costs have been falling and performance levels have been improving significantly in the last few years. However, fundamental research and development challenges remain which the UK is uniquely positioned to address. These challenges require multi-disciplinary expertise ranging from fundamental material science to systems integration, ICT and intelligent control systems development.

The North East of England, the home of Nissan Manufacturing UK, has a huge amount to offer and benefit from this automotive and energy system revolution. The potential breakthroughs in this area open up the possibility for people to see their car as much more than just a means of getting from A to B; it will allow families to become active participants in a future energy system which is low carbon, secure, equitable and affordable for all.

One such solution, a vehicle-to-grid system (V2G), can allow two-way flow of power and energy from an electric vehicle to the electricity grid or to a home. This opens up an array of innovative opportunities. The battery within the electric vehicle can provide energy to the home in times of high demand. It can also provide an energy storage solution. For example, when a household’s roof-top solar photovoltaic system (solar panels) is generating more electricity than the home needs, the excess can be diverted to the car parked in the driveway. And the V2G electric vehicle can provide a valuable service to the local electricity distribution network providing power or storage to the network to support local power demand challenges. Newcastle University, carry out world class multi-disciplinary research in this space[i] and host one of the only UK V2G units outside of Nissan research facility[ii].

Newcastle University is also the leading partner in the multidisciplinary consortium team of the EPSRC National Centre for Energy Systems Integration. They are currently also setting up the new EPSRC Supergen Energy Networks Hub. This academic research is highly collaborative and is being co-created with industry including key stakeholders such as Nissan, Northern Powergrid and Siemens. This industrial input ensures that the research is relevant, useful and therefore providing solutions to real problems in the energy system within the UK. This innovation development through to implementation with our industrial partners translates directly to jobs, productivity improvements and new markets regionally, nationally and internationally.

On a final note, an integrated energy approach is required to take full advantage of wealth of readily available renewable energy resources such as wind, solar and wave energy[iii] to fuel the UK. It has been said that energy storage is the final piece of the low carbon energy puzzle. The Faraday Challenge provides the basis for the UK academic and industrial sector to work together to solve the puzzle and thus provide meaningful societal benefits for many years to come.


References

[i] Neaimeh M, Wardle R, Jenkins A, Hill GA, Lyons P, Yi J, Huebner Y, Blythe PT, Taylor P. A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impactsApplied Energy 2015, 157, 688-698.

[ii] http://www.ncl.ac.uk/press/news/2017/01/v2g/

[iii] Roskilly AP, Taylor PC, Yan J. Energy storage systems for a low carbon future – in need of an integrated approachApplied Energy 2015, 137, 463-466.

[iv] https://www.gov.uk/government/news/business-secretary-to-establish-uk-as-world-leader-in-battery-technology-as-part-of-modern-industrial-strategy