The real sense of energy conservation law is in permanent and omnipresent motion of energy

In my email exchange with Ivor Catt, a following idea came to my mind.

The law of energy conservation as it is being presented to students and understood is rather abstract as it begs for many interpretations, because energy exists in its permanent and omnipresent motion. Even if it is trapped in a fragment of space like a capacitor or an elementary particle it is in motion. 


So, what seems to be less convoluted is the law that energy can only exist in motion and it can only move at speed of light. That’s actually what conservation of energy is. This is true by Occam’s razor principle and does not need to be proven. So, it is necessarily so before or after the switch [between voltage source and a capacitor] is closed … and without this law we would not have had those prefect contrapuntal effects, including those that ’cause’ people to think we have stationary conditions in capacitors and transmission lines.

80th Anniversary of late Professor David Kinniment and my lecture on Research Leadership for Iraqi Researchers

Yesterday, 10th July, was a special day in the calendar – we celebrated the 80th Anniversary of late Professor David Kinniment. David was my closest mentor at Newcastle when I arrived here in 1991.

He was a pioneer of research in metastability , arbitration and
synchronization as well as VLSI design led Microelectronic Systems Design group at Newcastle for 20 years.

We generated many ideas for projects, PhD research, papers, design tools, conference and industrial presentations. Above all, we just enjoyed spending time in discussions about science, culture and genealogy. David and his wife Anne welcomed on many occasions the whole Newcastle MSD team in their wonderful Sike View house in Kirkwhelpington in the middle of Northumberland.

By lovely coincidence it wouldn’t have been a better occasion yesterday that I was kindly invited to give a lecture “Becoming a Researcher: from Follower to Leader” to the wonderful 100+ audience of Iraqi researchers – the invitation came from my PhD alumni Dr Ammar J M Karkar, Professor and Director of IT Research and Development at University of Kufa, Iraq.

The lecture is now available on YouTube https://youtu.be/JnfObxmTslc

All the best!

Static vs Dynamic and Charges vs Fields

There is a constant debate in Electromagnetism between the Charge-based views and Field-based views. I am of course over-simplifying the picture here, at least terminologically. But the main point is that you can talk about EM either from the point of view of; (i) objects that have mass, like electrons, protons, ions etc – I called them collectively charges or charge carriers, or (ii) entities that carry EM energy, like strength of electric and magnetic field, Poyinting vector etc – those are not associated with mass. Both views are often linked to some form of motion, or dynamics. For the world of objects people talk about moving charges, electric current, static charges etc. For the world of fields, people talk about EM waves, TE, TM and TEM, energy current, static field etc.

Often people talk about a mix of both views, and that’s where many paradoxes and contradictions happen. For example, there is an interesting ‘puzzle’ that has been posed to the world by Ivor Catt. It is sometimes called Catt’s question or Catt Anomaly.

http://www.electromagnetism.demon.co.uk/cattq.htm

Basically, the question is about: when a step in voltage is transmitted in a transmission line from a source to the end, according to the classical EM theory charge appears on both wires (+ on the leading wire, and – on the grounded wire): Where does this new charge come from?

Surprisingly, there has not been a convincing answer from anyone that would not violate one or another aspect of the classical EM theory.

Similar to this, there is a challenge posed by Malcolm Davidson, called Heaviside Challenge https://www.oliver-heaviside.com/ that hasn’t also been given a consistent response even though the challenge has been posed with a 5 thousand USD prize!

So it seems that there is a fundamental problem in reconciling the two worlds, in a consistent theory based on physical principles and laws, rather than mathematical abstractions.

However, there is a hope that with the way to understand and explain EM phenomena, especially in high-speed electronic circuits, is through the notion of a Heaviside signal and the principle of energy-current (Poyinting vector) that never ceases from travelling with the speed of light in the medium. In terms of energy current perfect dielectrics are perfect conductors of energy, whereas perfect charge conductors are perfect insulators for EM energy current.

So, while those who prefer the charge based view of the world may continue to talk about static and dynamic charges, those who see the world via energy current live in the world where there is no such a thing as static electric or magnetic field, because TEM signal can only exist in motion with a speed of light in the medium. Medium is characterised by its permittivity and permissibility and gives rise to two principal parameters – speed of light and characteristic impedance. The inherent necessity of the TEM signal to move is stipulated by Galileo/Newton’s principles of geometric proportionality, which effectively define the relations between any change of the field parameter in time with its change in space. Those two changes are linked fundamentally, hence we have the coefficient of proportionality delta_x/delta_t, also known as speed of light, which gives rise to causality between the propagation of energy or information and momenta of force acting on objects with mass.

Another consequence of the ever-moving energy current is its ability to be trapped in a segment of space, pretty much what we can have in a so called capacitor, and thus form an energized fragment of space, that gives rise to an object with mass, e.g. a charged particle such as an electron. So, this corollary of the first principle of energy current paves the way to the view of EM that is based on charged particles.

Which ‘sect of thinkers’ do I belong to?

How is modern science different from what was in the land of Israel 2000 years ago? 

The four main sects of (then religious) thinkers were:

Sadducees – conformists to the Greco-Roman rulers

Pharisees – purists and devotees to the established canon

Essenes – ‘holy’ ones waiting for Messiah

Zealots – radical and militant ones

There were also Scribes, but they were a sort of what Ivor Catt calls Parrots and they weren’t influential – they were often closer either to Pharisees or Sadducees.


An interesting self-test is to think which one (or none, or several) of them each one of us belongs.

COVID-19 – Why China Did What it Did

From the horse’s mouth. Received this morning from a Chinese  source who is a top class engineering expert.

Very revealing!

Some of the actions of the Chinese government, which seemed counter-intuitive at the time, became quite clear from this explanation.

  1. How the hell did they decide to close up Wuhan when the official death figure was only 30 something? 
    Remember that the city is a uniquely important communications hub with air, rail and river transport crossing in multiple directions (in a war they’d probably prioritize bombing the place). The time was just before the Spring Festival before the annual spring travel crush started. Closing Wuhan spoils the SF(CNY) for a huge number of people, hurts the feelings of even more and damages the economy significantly. The modelling teams were assembled much earlier than this date and this action was significantly model-driven. The models tested different actions and the actual sequence was chosen as the least bad one. Closing Wuhan on its own looked stupid to some degree, but not as the first of the sequence of actions that followed:
  2. What about the rest of the country then?
    The rest of the country was allowed to continue through the first phase of the spring travel rush, which decanted probably 1/3 of the population from large cities onto the countryside, then the entire country was closed down preventing their return. This prevented the appearance of another Wuhan, with which the government would have no way of dealing.
  3. Volunteering albeit under peer pressure is a key
    As it happened, they were able to assemble large teams of medics from elsewhere in the country (the so-called volunteers – if you were a party member not volunteering was not an option, and non-members esp. low ranking nurses had incentives such as conversion from contract worker to full-time permanent worker) to descend on Wuhan and its province Hubei en masse. This depletion of medical strengths elsewhere proved sustainable because another flareup never happened. The President did not formally thank the people of Wuhan on behalf of the nation for nothing. When the people of China hear western media portray this as an apology for government errors they find this play quite difficult to imagine/understand. The hard/cold decision was to contain the spread locally from the first and therefore those local people had to suffer more hardships without volunteering. The least the nation could do is to appreciate this.
  4. Fangcang – makeshift hospitals are effective
    The establishment of the fangcang (makeshift hospitals using stadiums and exhibition centres) seemed strange, given that you were assembling ‘suspected cases’ all in one single space. The models predicted success which was borne out by reality. This has to do with how you want to deal with suspected cases and confirmed cases with light symptoms. It was determined that these people are better assembled together under professional care and control than remain at home to self-isolate with family. Fangcang-induced infections turned out to be negligible, almost zero. With beds a few metres from each other and everyone breathing the same air how was this possible? The answers are in the obligatory wearing of masks, on-hand medical and professional help and admin and enforced discipline, and almost continuous cleaning of the environment. These put together turned out to be vastly preferable, so far as the numbers are concerned, to home isolation where people do it any amateur manner they like/can.
  5. Testing methods with replication are crucial (real engineers can appreciate the use of time redundancy and diversity)
    The testing method adopted has practically 100% accuracy in the lab, close enough to 100% to be dependable for a tested population where the infection rate is only 1%, but in the field negative results were not trust-worthy (positives are completely fine). This was also put into the models and the resulting standard changes converted a large number of suspects to confirmed in a single day (all such converted cases had negative test results, but did not pass a CT scan test). The scientists read the UK’s confident reporting of how many tested with a large proportion of negatives with fascination, and speculate that the UK may have a more reliable testing procedure. This testing situation also inspired the fangcang approach as well as the very tight lockdown measures taken across the country. You don’t get cleared just because you had a negative. You need 2-3 negatives in a row without symptoms. In other words, treat everyone as a suspect case and everyone with symptoms as a confirmed case and design your control measures based on this assumption. The CCP is able to do this, other countries maybe not.
  6. Modelling approaches, also diverse and competing, are a must.
    The modelling gravitated towards two competing camps, by design of the government organizers. One is called the maths model and the other the medicine model. The first is led by system theorists and the second, epidemiologists. The commonly seen model of first order differential equation with an R0 factor is nowhere to be seen in either groups of models actually consulted by the decision makers – they are much more sophisticated than that. The maths model consistently returned more accurate predictions with worst case on death numbers error below 7% at all stages – this is the only hard number my friend was willing to disclose. All published models, either from within or without China which have appeared have been comparatively checked with the decision models and found to be inferior, usually by a lot.
  7. Future of the models?
    There is very little chance of seeing these decision models published, not any time soon. My friend’s words: “We should not publish when there is an atmosphere in which such a publication might result in extra-science interpretations and uses” and such an atmosphere will linger for a long time, by the looks of it. I read the CCP propaganda as well as the stuff coming out of our government and can see this stuff buried deep for long. However the modellers continue to work on data from the wider world now and the government continues to listen to them. One difference between China and much of the rest of the world is that the scientists cannot just tell the government the science says this and that without providing evidence, as the members of the government can understand scientific evidence at an academic level. And they organize multiple teams to work against each other to form a peer-review like environment from the start.
  8. Protection of medics is a key factor
    The most important issue, highlighted by the models and tested in real life, is the protection of the medics. Initially the disaster was when Wuhan people crowded general-purpose hospitals where the medics were not protected. When the external teams went to Wuhan+Hubei they were well prepared and formed special-purpose facilities which had a far greater success rate with next to zero infection of medics. Although this is intuitive, the actual numerical differences made in the deaths was unintuitively large.
  9. Ventilators is a last resort when it’s 20% survival chance left.
    One of the little-publicized facts is that the starting and ending procedures of ventilator use on a patient (putting them on/off the machine) represents the standing-out worst point for medic infections. This has caused a reluctance in China of using ventilators and the threshold for their use is set quite high, leading to ventilated patients having only a 20% rate of survival – if you are not already dying you are not ventilated. So they are a bit fascinated by the current western thing about seeing ventilators as some sort of almighty saviour, esp. given the current suboptimal PPE state for medics in an environment of retired medics (presumably not young) re-joining service.
  10. Masks, hand washing – NOT to be neglected 
    On how to protect ourselves, my friend emphasizes mask wearing and hand washing – diligent mask wearing and hand washing mimics the fangcang regime to some degree. Contrary to common belief, the wearing of even three-ply surgery masks protects not only the environment from the wearer but also the wearer from the environment, and N95 masks are indeed better. He became a bit rhetorical and urged us to disregard imagined stigmatization to prioritize life, both our own and that of those who may stigmatize us.

A 12 Day battle with COVID-19 of my colleague – in mid 40s and fit.

My close colleague Professor Patrick Degenaar

https://www.ncl.ac.uk/engineering/staff/profile/patrickdegenaar.html

has just sent his report. With his permission I am pasting it here.

“I’ve now basically recovered from what I believe (it’s impossible to get a test) to have been a COVID19 infection.

Just so you know what you have to look forward to in the future, I kept a brief symptoms diary:

Day 1:   Very slight ache in joints

Day 2:   Asymptomatic

Day 3:   Tired, lethargic, dizzy, and out of breath

Day 4:   Reduced symptoms compared to day 3. Started to assume it was getting better.

Day 5:   Morning felt almost fine. Then afternoon: Very tired, very out of breath, heart palpitations, Mild temperature = 37.5C

Day 6:   Reduced symptoms compared to day 5, but still very tired and dizzy. New symptom: a chest pain – like a claw embedded in the chest.

Day 7:   Similar to day 6, but also developed an occasional dry cough

Day 8:   Much worse – extremely tired, very out of breath. Climbing the stairs felt like climbing Everest. Feeling like very bad high-altitude sickness. A feeling of nausea (just like bad high-altitude sickness)

Day 9:   Similar to day 8

Day 10: Starting to get better similar to day 5

Day 11: Starting to feel much better. Can ascend stairs without getting out of breath. But still tired and dizzy.

Day 12: almost OK, but still need periodic Siestas

Stay safe!”

The answer to why women are more robust to COVID-19 than men may lie in the dynamics of women’s gene pool

Today, people are asking why women are less affected by COVID-19 and have significantly lower death rate than men (in Italy, for example: more than 60% of infected are males and more than 70% of death cases are of male).

While there are hypotheses that this is caused by various societal and life style factors and norms, such as ‘because more men are smokers’ etc., I would like to examine potential genetic causes of that.

Men carry both X and Y chromosomes. Women carry only X chromosomes.

As I wrote a couple of years ago on my blog about the differences of dynamics between X and Y chromosomes (see links to my two articles below), I made a hypothesis that women’s chromosome pool is significantly more dynamic and mutable than men’s. The Y part of men’s genes don’t mutate. They carry Y-DNA through generations unchanged. Thus women naturally bring greater adaptability and robustness to environmental conditions than men. Contrary to that men bring certain long-term elements and inertiality, which is also important for stable societies.

Importantly, perhaps, I also showed an analogy between the combined process of gene evolution in humans and other species, thanks to the presence of both males and females) and PID (Proportional-Integral-Differential) control that is proven to be the most successful type of control in engineering systems.

So, the nature’s own PID control (where the role of P and D is greater than that of I for the purposes of quick response to effects such as viruses) makes sure that only a relatively smaller number of males compared to the number of females are needed to maintain the human kind.

So, as usual, Mother Nature and genetics are the winners in this almost game-theoretic scenario of our battle against coronavirus.

Is there any effect of weather on the spread of Covid-19?

Weather reports:

https://www.timeanddate.com/weather/china/wuhan/historic?month=12&year=2019

Average pressure in Wuhan in December 2019 was 1026 mbar, with some days going as high as 1040 mbar. Wind was very low too – 1-5mph. Dry.

https://www.timeanddate.com/weather/italy/milan/historic?month=1&year=2020

Average pressure in Milan in January 2020 was 1027 mbar, with some days as high as 1045 mbar. Wind was very low – 1-3 mph, mostly dry

For comparison

https://www.timeanddate.com/weather/uk/newcastle-upon-tyne/historic?month=2&year=2020

Average pressure in Newcastle upon Tyne in February 2020 was 999 mbar, Wind was typically very strong – more than 20mph, lot of rain.

Molecular and cellular transmission:

What is the relative permittivity of air for odours and viruses? How does it depend on the weather?

Have you every walked behind a person having a lot of perfume? On a windy and rainy day, with low pressure you’d hardly feel any smell. But on a dry, sunny day, with high pressure, the scent of perfume stays so long that you can feel it even if the lady is 100-200 meters ahead of you, or even long past.

What is smell? What is its nature? In science it is explained via special types of molecules, called odorants.

http://resources.schoolscience.co.uk/ICI/16plus/smells/smellsch2pg1.html

With Covid-19, we have been told that we should keep the distance of 2m in social distancing. Is it enough? In what weather?

The Covid-19 cells are very small. Apparently the size of 100 nanometers. So we are talking about something like 1000 molecules. On a high pressure, dry and non-windy day, they can stay in the air probably for quite a while.

The other factor of good and dry weather is that people are much more out and about, and naturally socialise more. So, the weather and social proximity are correlated too.

Extra point. On a low pressure day our body naturally extract more fluid, mucus etc. This is actually good to help not letting virus into your body. On the contrary on a high pressure sunny day we are naturally keeping everything inside and actively breath oxygen rich air. Especially if we exercise outdoors. Perhaps, virus likes that we help it with extra oxygen and give its way into our lungs when we exercise. So is active exercising is good during those days and in a social company of potentially viral people. I am not sure.

We are often mistaken that by doing something normally good we can win. Unfortunately, there is no universal win. What’s good for your body under normal conditions may be bad under these viral conditions. Good old saying, you can’t win, man, can you!?

My hypothesis is that a good weather is really a ‘good’ promoter for viral transmission.

Electron is a two-faced Janus of Electrical and Magnetic aspects of energy current trapped in it …

Can you give me a proof that what you have inside an electron is any different from the so-called ‘empty space’. Any finite section of space has the right to say – look, I have my one epsilon and mu hence I have my own speed with which ExH travels in me. What’s wrong with this approach? The fact that electron is tiny doesn’t deprive it from the privilege of having its own ExH trapped in it. Then this electron can have both electric and magnetic Januses to turn to us in the form of its charge and spin!

My response to Akinbo’s email:

Regards

Alex

From: Akinbo Ojo <taojo@hotmail.com>
Sent: 14 January 2020 15:36
Subject: Re: Displacement Current in Deep Space for Starlight

Hi Alex,

When taking a medicine is worse than the disease one wants to cure I think it is wise to stick with the disease. I also ask you to take note of what Harry just posted concerning how you want to combine the equations.

The only place I see usefulness for the ExH concept is in transmission lines (co-axial cables) where E can travel in the core wire and H can travel alongside in the space between. But there are no such transmission lines or co-axial cables in space so this type of energy current cannot work in empty space.

Regards,

Akinbo

The cacophony of particularities in Maxwell’s equations … at the end of the day, it’s only Catt’s Heaviside signal that puts things right!

Over the last couple of week I have been witnessing an interesting email discussion about Maxwell’s equations between 2-3 people trying to come to terms with the difficulty of accommodating the notion of displacement current in free space and ‘sorting out’ the Ampere’s law. The latter combines, for whatever reason, both the elements of propagating field (not requiring charged particles as this field can propagate without involving massed matter) and current density (implying the existence of massed particles).

I have drawn my own conclusions out of this discussion, which ended up with conclusions that the above mentioned difficulty cannot be easily resolved with the bounds the temple of the classical electromagnetics with its holy book of Maxwell’s laws.

Here are my comments on this:

To Ivor Catt:

Following your theory where the Heaviside signal travels (and can only do so) with the speed of light in the medium, such a speed is entirely determined by epsilon and mu. Thus, where we have an interface between very low epsilon dielectric and very high epsilon metal, from the point of view of energy current, we have the effect similar to friction (against the metal surface – like a rotating wheel goes forward on the ground thanks to experiencing friction against the ground). And thanks to this “friction” it prefers to trolley along the metal wire, or between the metal plates of the capacitor.

To David Tombe:

Catt’s theory works at a different level of abstraction. This is the level of fundamental energy current. This level underpins “charged particles”. The latter are the result of the ExH energy current trapped in corresponding sections of space. What’s important is that that trapped energy never stops inside those particles as it can only exist in the form of ExH slabs moving with speed of light in the epsilon-mu medium. So then, when you apply energy current travelling outside those particles, there is an interesting interaction with the energy current inside those particles.

The entire world is filled with energy current fractally sectioned into fragments determined by space sections. 

All I can say is that in my opinion you misunderstand the domain of action of Catt’s theory. It does not consider static electric field. That’s it. There’s no such a thing as static EM energy. It can only move at speed c=dx/dt, in all directions. 

And this energy fills up space according to its epsilon/mu properties.

There’s no need for Maxwells equations to be involved in Catt’s theory. All these equations are partial, like Greek gods.

To Ivor Catt:

I, perhaps surreptitiously,  was awaiting for your email, either in public or in private.

Coincidentally, about an hour ago, I typed a message intended to be sent to the whole list from that discussion (adding Malcolm, who I think is on the same wavelength with us), saying:

“Ivor, please, say something, because these people are facing an impossible task of ‘squaring the circle’ of a set of Maxwell’s laws into something coherent – but the reason why it is impossible is that no one actually knows exactly what Maxwell meant by that list of laws dressed into fairly sophisticated mathematics. So, Ivor, the same fate may be with you, unless you say something, in some 20 years from now {well, it looks like I miscalculated by 5 years from your estimate of 2045!} no one will know exactly what Catt meant by his energy current”.

Then some invisible force pushed me to discard that email! And now, I had an evening walk to my office to freshen up my mind, and here I see your email.

Sadly, people, don’t listen and can’t liberate themselves from the heavy chains of those (partial) laws – which are like, indeed, those separate gods of Greeks or Romans being responsible for one aspect of life or another or one phenomenon in nature or another. They can’t understand that the Occam’s Razor of nature wouldn’t tolerate having so many (purportedly, fundamental) relationships, with lots of tautology in them. All those relationships, taken individually, are contrapuntal and superposing.

People can’t understand that there is no need for stationary fields, no need for separate treatment of charged particles etc. Everything comes naturally as a result of energy current trapped in sections of space, where it continues to move.

I think the next big leap where Catt’s vision will show its power will happen in high-speed computing and a massively parallel scale – truly high-speed! Until then we will probably fight against the Windmills of stale minds and deaf ears …

This confused discussion between David Tombe and Akinbo (not sure if Malcolm has seen that) is an illustration of the fact that behind the mathematically elegant façade of Maxwell’s laws there is a massive mess of physical concepts, a cacophony of man-made and contrived ‘pagan-like’ beliefs and disbeliefs (e.g., did Maxwell mean that or not?), which may work in special cases. The fact that these beliefs can work in special cases of success in growing crops or hunting/herding animals in some regions of the world, or in a more modern terms, wiring up a Victorian mansion and sending data to Mars rovers. But how they are going to succeed in the future when needs Terabit/s  data rates or picosecond latency in accessing storage, nobody knows. I am less inclined in dividing people into true scientists, careerists or other categories. Historical materialism (which we had to study back in the USSR) gave pretty good explanation of all kinds of folk under the sun. Nobody is saint here. It’s just a personal comfort matter …

To Akinbo Ojo (in reply to his email attached below):

Just combine ∇2E = µε(∂2E/∂t2) or ∇2H = µε(∂2H/∂t2)  into one eqn, replacing E and H with ExH, and you’ll have the Heaviside signal (aka energy current) propagating in space with speed of light in the epsilon/mu medium, and that’s all what is needed by Catt’s theory, and that what fills up fragments of space, in order to form transmission lines of particular Z0, capacitors, inductors, elementary particles, etc.

Everything in the world is filled up with this energy current, and any such an entrapment of energy current turns sections of space into elements of matter (or mass)!

From: Akinbo Ojo <taojo@hotmail.com>
Sent: 14 January 2020 14:20
Subject: Re: Displacement Current in Deep Space for Starlight

Hi David,

I didn’t say there was an error. I said given the Ampere and Faraday equations when you follow the curls and substitutions you will confront something that would be unpalatable to you and which you must swallow before you can get ∇2E = µε(∂2E/∂t2) or ∇2H = µε(∂2H/∂t2).

Regards,

Akinbo