Category Archives: Uncategorised

International Women’s Day 2023

#EmbraceEquality

Newcastle University colleagues share their thoughts on #embraceequity International Women’s Day 2023

As we celebrate International Women’s Day, it is important to reflect on the progress made towards gender equality and recognise the work that still needs to be done. The theme for International Women’s Day this year is #embraceequity.

The difference between equality and equity is subtle yet important. Equality means each individual or group of people is given the same resources or opportunities. Equity recognises that each person has different circumstances and allocates the exact resources or opportunities needed to reach an equal outcome. Equity is vital as it recognises that everybody starts from different places in life, and if we embrace equity, it promotes inclusion and diversity in everything we do.

For International Women’s Day, we asked our colleagues three questions.

  • What does equality mean to you?
  • What does equity mean to you?
  • Can you share an example of when something you have undertaken yourself has led to a positive change in terms of gender equity? This could be in your personal or professional life.

We used the responses from the first two questions to create a word cloud, pictured in Figure 1.

“I encouraged a female PhD student to apply for a doctoral prize fellowship which she would not otherwise have considered. She successfully won the fellowship, and it has kickstarted her post-doctoral research career.”

“I had an intern helping me who was a single parent doing her bachelor’s degree and I was happy for her work hours to be flexible around her and made the effort to find her extra funding to continue the work further.”

“I was a mentor to a teenage girl through the Girls Network and hope that I supported my mentee even in small ways to realise her potential as a young woman.”

“A recent funding application was undertaken anonymously and lead to a 50/50 gender split, even age split with more ECRs and more ethnic diversity. All of these attributes help to create a more diverse and positive research culture.”

“In an event me and a few friends were running, we decided to dedicate performance slots to female artists after having male dominated line-ups for a long time. We received a positive response from our female attendees, discovered some great artists and the opportunities have helped several of the artists progress their music careers.”

One of the biggest barriers to equity is the cost of childcare, which disproportionately effects women with children as they are typically the primary care givers. We acknowledge all responses received in our survey and are aware of challenges and barriers that are present. Our colleagues and the processes that are implemented are continuously being improved to ensure that all voices are heard. It is important to challenge behaviour that unfairly discriminates against anyone in the workplace. We hope that our anonymous survey will encourage others to share their stories in the future, as well as embracing the benefits and barriers of embracing equity that exist.

See here for more inspirational stories.

#IWD2023 #EmbraceEquity

CESI Visit Hydrogen Homes

CESI are the first to see the new hydrogen cooking appliances in the UK’s only Hydrogen Homes!

Image preview
CESI Team outside the Hydrogen Homes

To celebrate CESI coming to an end, last month InTEGReL opened up its doors to CESI colleagues and showed us around their fantastic facilities.

InTEGReL has played an important role within the 6 years of CESI. It is one of our largest and most active demonstrator for CESI models and tools, in conjunction with Northern Gas Networks and Northern Power Grid. InTEGReL is the UK’s first multi-vector integrated energy systems research and demonstration facility investigating utility scale infrastructure.

The facilities at InTEGReL will help to tackle the UK’s energy challenges head on, with teams of academics and engineers in CESI working to deliver breakthroughs in the decarbonisation of heat, energy storage and transport, to identify the most affordable and practical solution to moving customers onto low carbon, low-cost energy

On 13th May CESI colleagues were able to visit InTEGReL, hydrogen blending equipment and the Hydrogen Homes at the Low Thornley site in Gateshead. The two semi-detached Hydrogen Homes opened in July 2021 and are the UK’s first houses to include hydrogen domestic cooking appliances, boilers, fires and meters.

Image preview
CESI team outside the hydrogen blending equipment

We were the first group of people to see the new version of the cooking appliances, which are likely to be offered to customers who become the first to use 100% hydrogen in their homes. These appliances were produced through the Hy4heat project.

Orange hydrogen flame on cooking appliances in Hydrogen Home

The Hydrogen Homes visit was well received by attendees, including by CESI researchers and industry:

“Hydrogen homes demonstrated the transition pathway of future homes through the functioning of hydrogen-natural gas blended and pure hydrogen appliances. Visiting InTEGReL was a time travel experience to reimagine how our neighbourhoods would transform and adapt to a new way of energy utilization philosophy.”

Akhil joseph, cesi rESEARCHER

“It is great to see some of the facilities we have in the region especially relating to hydrogen. The visit was a great eye opener to the future. Hydrogen is likely to be the most important energy resource after renewables and, possibly, nuclear power.”

jASON hARTIGAN, SUNAMP LTD

The tour of the InTEGReL site was incredibly informative, and although we were seeing brand new technology my key take away from the Hydrogen Homes was just how normal it all was, with the gas cooker and heating all operating as one would expect. The work done by Northern Gas Networks really demonstrates that hydrogen will be a key part of driving domestic decarbonisation in the UK

JEssica Sharples, GHD

The Hydrogen Homes tour was led by Northern Gas Network’ Alex Brightman. She said ‘it was great to welcome guests from CESI to the Hydrogen Home and showcase the hydrogen appliances, which don’t create carbon when used, meaning they can be compatible with climate goals. The homes normalise the use of hydrogen by demonstrating that can be used in the same way as natural gas with minimal changes and disruption to the way we heat and cook.’

Find out more about CESI and InTEGReL’s collaboration:

https://www.ncl.ac.uk/cesi/research/demo/integrel/

More information about the Hydrogen Homes


Contact Hydrogen Homes for more information or to arrange a tour:

hydrogenhome@northerngas.co.uk

EDI Blog Series – Part 4: Mansoureh Zangiabadi

About the Author:

Dr Mansoureh Zangiabadi is a Research Associate at Newcastle University, working within the Electrical Power Research Group.

Her main research topics interest:

  1. Smarter solutions of future power systems (Electrical Battery Storage, Demand Response, Renewable Energy Resources, Micro Grids)
  2. Whole energy network roadmap of future (energy hub management)
  3. Electrification of Transport, Electrical Vehicles and Electrical Railway

My life in Iran

I grew up in family a of two siblings in Iran; my two brothers are both engineers, so it was no doubt that I was interested in engineering subjects from a young age. Since school and college, maths and physics have been my two favourite subjects. I dreamt about being an astronomer and understanding physics behind.

I received my B.SC in Electrical Engineering from University of Kerman/ Iran. I remember, I aspired to work in the places that repair electric equipment such as TVs, Vacuum cleaners and so on. However, at that time, culturally it was not possible for girls to work in these very male dominated environments. It is worth mentioning that schools in Iran were and are still single sex from primary school to secondary schools and high schools (there are boys schools and girls school separately) even many colleges are single sex too. Universities are mixed sex but there are still some subjects that only men are allowed to study in universities in Iran.

My parents were always very supportive and encouraging in all decisions that I made in my life. Following up with understanding electrical equipment through repairing them, when I was 17 years old, I remember my dad and I tried to repair our vacuumed cleaner together, but we forgot to note how it was assembled in the first place and it never worked again!

Despite the gender imbalance, I pursued my studies in electrical engineering and I received my M.SC in Electrical Power Engineering from Isfahan University of Technology and my PhD from University of Tehran/Iran. Teaching has been always a passion in my life; from time to time, I was teaching maths and physics at high schools and then moving to teaching electrical engineering modules in colleges and Universities. I then began working as a Lecturer in Azad University Kerman for four years teaching several modules in electrical engineering as Electrical Circuit Theory, Power System Transmission and Cables modelling, Electrical System Analysis and Operation and Electrical Machines. I also had a very good collaboration with Utilities and Distribution System Operator (DSO) companies in Iran.

Exploring the World

I always loved to explore the world, my income was never enough but it did not stop me, and I worked very hard and saved my money for my dream. It was the first time during my PhD, that I had the opportunity to present my paper in CIRED conference in Spain and which is an experience that I will never forget. I presented the paper in front of my dad (my accompany in Conference) and I was so proud that my hard work paid off. I was even able to pay for my dad’s trip expenses which is something I was very proud of.

After that conference, I visited France during my PhD as exchange student in INP Grenoble / France for 9 months. I married my husband while he was studying his PhD in Norway, it was the reason that I visited and lived for some years in Norway. I also worked in Norway for few years but mainly I was always traveling Iran to finish my PhD which was not easy as I had my first daughter born in Norway at that time. Norway is built on equal opportunities values for all and very much supporting women in achieving their goals. We moved to UK in 2013 and settled in Newcastle. Newcastle university and northeast people; their friendly culture was the most welcoming received in UK. I love Newcastle more as it is the birthplace of my second daughter. 

Facing challenges in the workplace as a woman

I have always been an advocate voice for STEM and women in engineering community and participated in such activities.  My educational journey in Iran was tough, as at that time there were little opportunities for girls to pursue their studies in higher education, due to conflict war between Iran/Iraq. Recent statistics show that 50% of higher education entries in Iran are girls and engineering is a popular subject to pursued. The job market has not been prepared for this move and it is not easy for women to work in tough environments, for example steel factories and so on.

Despite gender limitations in Iran, Iranian women have been very successful in STEM and engineering subjects. However, a cultural move is required to support girls and women in Iran. In Norway, France and UK, the places that I lived and worked, the gender imbalance in STEM and engineering subjects is apparent and even the same in all over the world. I believe men support is needed to help reduce the imbalance through proactively encouraging women to join STEM subjects.

My challenge in the workplace was the unconscious bias of my male colleagues which have been always doubting women capability and underestimation of women competence. I have seen that my male colleagues are given more opportunities in different ways. For an example, my male colleges have the advantage of friendly citing their male colleagues’ papers and increasing their H index collectively. As there are only few females in academia for now in power engineering subjects, so it is not easy to achieve the same trend for me and my female colleagues in academia. It means criteria needs to be changed in a way to give opportunities to women to get experience in teaching, in research and in securing funds in academia. There are many other challenges for women working in high male dominated environments in all over the world, nevertheless men are learning to be more supportive and are more proactive in presenting opportunities for women.

Hope for the future!

The future is bright; men and women are collectively recognising their strengths and weaknesses and are supporting each other to flourish. Our human brains have an extraordinary ability to coordinate with each other and to share values, and I believe together we will help to reduced inequalities.  

EDI Blog Series – Part 3: Adib Allahham

About the Author:

Dr Adib Allahham is Senior Research Associate at School of Engineering, Newcastle University. His research focusses on renewable energy, smart grids, active buildings, electricity distribution, and multi-vector energy systems.

Adib pictured during his PhD studies

Adib is researcher working for the EPSRC National Centre for Energy Systems Integration (CESI), involved in the research activities of the Active Building Centre (ABC), and leading three projects funded by the Royal Academy of Engineering in the field of smart grids, energy storage, and peer-to-peer energy trading.

My journey to one of the top universities in the UK

In September of 2021 I was promoted to Senior Research Associate at Newcastle University. This was a huge career landmark for me.

I was brought up in Damascus, the Syrian capital, which is classified as the oldest continuously inhabited city in the world. It was here where I obtained my bachelor’s degree in Electrical Engineering from Damascus University and secured top rank in the five-year bachelor program.

After securing my degree, I worked as a teaching assistant in the same department and institution for two years where I led the laboratory demonstration, assisted in the teaching activities, and supervised graduation project. It was during this time I received a scholarship from the French government to pursue further studies. I obtained MSc degree from the Grenoble Institute of Technology and awarded PhD from University of Joseph Fourier in 2004 and 2008 respectively.

After completion of my PhD, I worked as a post-doctoral researcher in Grenoble Institute of Technology until 2010. To fulfil my interests in research, teaching and willing to serve the home institution, I took the decision to come back to Syria, and worked as lecturer at Damascus University until 2016. Unfortunately, the Syrian conflict started in March 2011 and changed whole situation. The war forced me to re-think about research career.

How did the Syrian war affect your Engineering career?

My research and teaching duties were heavily increased as students from two other universities located in military conflict areas moved to Damascus University. In addition, I had to work as part-time lecturer in a private university to support my family as the conflict severely affected our economic situation. Due to these unforeseen situations, the safety of my family and to achieve my research goals, I had decided to leave Syria in 2015. Although the right decision, it was hard for me. I had to leave some of my family, friends, and stable job.

What are some of the unexpected challenges you faced?

I obtained a job offer from Grenoble Institute of Technology to work on an industrial project. Unfortunately, I could not obtain the visa and unable to join the French University. This was very disappointing and left me feeling down and frustrated. The most shocking in this visa rejection was that the rejection reasons were not given with the decision letter which took 67 days after the application submission. 

However, I was given hope again! Whilst I was conducting research with my MSc student about Smart Grids demonstrators, I became aware of the Power Systems Group at Newcastle University. Immediately, I contacted the team leader and consequently I was offered the position of visiting researcher at Newcastle University. With this I started a new adventure with Newcastle University from June 2016.

“I took a risk by reaching out, and it paid off!”

I was fortunate to work with friendly and knowledgeable researchers who included me in their research activities and gave the opportunity to develop my own research directions. In 2017, the team started to enlarge its scope of research activities to include not only Power Systems but also the Whole Energy System. This major change started with the launch of EPSRC National Centre for Energy Systems Integration (CESI) led by Newcastle University and involved 5 other universities in which I was worked as a research associate.

In fact, moving to the UK was a challenge for me and my wife and now I’m happy that I made the right decision. At the same time when I moved to Newcastle University, she was also successful in getting a Chevening Scholarship, funded by the British Foreign and Commonwealth Office. She joined and obtained a MSc degree in international development at University of East Anglia. She is now working for Gateshead Council.  

What piece of advice would you give to someone who might be in a similar situation as yours?

“As long as you plan your life and you are surrounded by supportive people, you will achieve your goals sooner or later.”

Who perseveres wins!

About the Author:

Dr Susan Claire Scholes is a post-doctoral researcher within the School of Engineering.  Susan’s current research is in the field of whole systems energy research, working with the Supergen Energy Networks Hub at Newcastle University.

Previous research interests were in bioengineering where Susan was responsible for the investigation of explanted metal-on-metal hip prostheses and explanted knee prostheses.

Matlab and the GB Network System

Let me tell you a story….  It feels like it started a long, long time ago but in reality it has only been 20 months (this may still seem like a long time to some, depending on your age!).  Twenty months of hard work but important work.  This is when I started working on a model of the GB network system.  This model already existed [1, 2] but it needed some work to be done on it to allow it to perform the tasks that I required.

Now, I had minimal experience (or knowledge) on Matlab but I am always eager to learn so I saw this as an opportunity to develop my research skills even further (I’ve been working in academic research for 21 years now, so it’s never too late to learn!).

I familiarised myself with Matlab and the model so I understood the background to my project; and this understanding developed as the time progressed.  The adjustments needed on the model were only small; small in capacity but mammoth in the necessary effort to succeed!

The cost functions of each generation type in the GB network model were already in the model but they were just given as merit order equations; this was so the model was able to calculate the proportion of expected generation from each type of generation provider (wind, gas, coal, nuclear and hydro).  But I needed it to calculate the true costs.

I knew this wouldn’t be easy, or quick!  As a modeller, it is important to analyse results obtained and question their validity; you need to have confidence in the results that your model provides.  It is essential that you compare your results with appropriate published data and relevant work done by others.

Using known data from previous years I was able to identify when the results from my model were not as good as they needed to be; and it allowed me to gain confidence in my work as it developed.  This was an iterative process that required many hours of hard and repetitive work.

To get this done well it required a lot of effort and determination (and a few handkerchiefs to mop up the inevitable tears of frustration!).  For months I was stuck in what seemed to be a never-ending loop:

  • adjust the model, write the script, run the model – no joy
  • adjust the model, adjust the script, run the model – it works!, review the results
  • adjust the model/script, run the model – it works (but sometimes it didn’t!), review the results
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • adjust the model/script, run the model – it works!, review the results, confirm results, add results to paper, find some new information
  • again, again and again until…
  • adjust the model/script, run the model – it works!, review the results, confirm results, write the paper (with confidence that the model used is the most appropriate and performs the task well) and submit!

So, what have I learned during this time?  Perseverance is key, determination is needed and patience would have been a bonus but I’ve always lacked in that!  Unexpected things, like the University’s cyber security attack, and even a pandemic, can be obstacles but with the correct support they are not insurmountable.  I also needed to learn that all models have their limitations.

You can minimise these limitations to produce the best model for your purpose but your model cannot do all, it will not be suitable for everything.  Spend time on the model, like I say, for it to produce relevant results for your work but understand that there will always be limitations as to what the model can do.

As long as you are aware of these and you are able to explain the limitations imposed on your work (and why these are acceptable) then you should feel proud.  Proud of the valid, valuable work you have achieved and the advancements you have made in your field of research.  It was all worth it in the end!

References

  1. Bell, K.R.W. and A.N.D. Tleis. Test system requirements for modelling future power systems. in IEEE PES General Meeting. 2010.
  2. Asvapoositkul, S. and R. Preece. Analysis of the variables influencing inter-area oscillations in the future Great Britain power system. in 15th IET International Conference on AC and DC Power Transmission (ACDC 2019). 2019.

Can nuclear power play a large part in getting to net-zero? – Professor Gordon MacKerron

In late 2020, there was a flurry of announcements about climate change and energy – first a ten-point plan for a ‘Green Industrial Revolution’[i] followed a few weeks later by a much–delayed energy White Paper[ii].  Nuclear power figures prominently in both narratives, with three possible ways forward. In this CESI Blog post, Professor MacKerron, CESI Associate Director and Professor of Science and Technology Policy at the Science Policy and Research Unit (SPRU) at the University of Sussex discusses these routes.

About the Author

This image has an empty alt attribute; its file name is image-3.png
Professor Gordon MacKerron

Gordon is Professor of Science and Technology Policy at the Science Policy and Research Unit (SPRU). He specialises in the economics and policy issues of electricity, especially nuclear power, and more broadly in energy security questions. He currently chairs the Research Committee of UKERC and was deputy director of the Strategy Unit, Cabinet office team that wrote the ‘Energy Review’ in 2003.

He is currently overall PI in the Horizon 2020 project TRANSrisk, a collaboration of 11 partner institutes engaged in assessing the risks attaching to different policy pathways consistent with achievement of European 2050 climate change commitments.

Gordon works on a number of CESI Work Packages and is lead for Work Package 1: Commercial, Regulatory & Policy Aspects

Three possible ways forward.

First, there is a long-term hope that a UK-only commercial fusion design will be ready by 2040.  This is frankly wishful thinking and, even if it could be achieved, involves a new type of compact design that would have no impact on 2050 zero-carbon objectives.  This is because it would be a small prototype 100MW machine with a current price tag of £2bn[iii] – three times more expensive per unit of output than the already very expensive twin reactors being built at Hinkley C.  £400m has been ‘already committed’ to this endeavour by Government,[iv] a sum that could have been spent instead on projects that could genuinely contribute to net zero. 

The second possibility is a push (‘aim’) to have one more large nuclear plant brought to final investment decision by 2024, following the almost-decade-late Hinkley C.  As Government makes clear, achieving this will depend on a radically new funding structure.[v]  This could be a regulated asset base model, in which consumers would take on most construction risk, allowing investors a more or less guaranteed rate of return, and/or  Government putting up some taxpayer cash.  Since the White Paper, it has become clear that developments at two of the only three plausible big-reactor sites – Wylfa (abandoned by Hitachi) and Bradwell (paused for a year by EDF/China General Nuclear) – are now effectively no longer in contention.  Only a further Hinkley replica at Sizewell seems at all possible, and large institutional investors have recently made clear they will not put up any of their own money for this.  Significantly, and credibly, Government makes no mention of any further ventures along the large-nuclear path.

What’s wrong with option 1 or 2?

The problems in these two nuclear avenues inevitably throw a lot of weight on to the third strand, the development of so-called modular reactors, both ‘small’ (SMRs) and ‘advanced’ (AMRs).  The relatively near-term part of this involves Government spending up to £215m to help develop a domestic SMR design by the early 2030s.[vi]  The attraction of SMRs is that they could offer the possibility of relatively rapid factory manufacture of components, followed by fairly simple on-site construction. Their main drawback is that they will be based on cut-down versions of existing light water reactor designs, in the process losing the economies of large-scale current nuclear plants. In practice the only credible SMR involves a consortium already built up over several years by Rolls Royce, using its technical know-how as designer and manufacturer of small reactors for UK nuclear-powered submarines. To be at all competitive many SMRs would need to be built, thus achieving economies scale in production to offset the loss of economies of large reactor size. In this pursuit, Rolls Royce want to build up to 16 of these SMRs at a cost currently estimated by them[vii] (and therefore probably optimistic) of just short of £29bn.  This is a highly inflexible proposition, risking very large sums of public money.

Rolls Royce have also suggested that such reactors might generate at around £60/MWh initially, falling to £40/MWh for later plants.[viii]  By contrast, in terms of real projects, as opposed to very early and potentially optimistic expectations, offshore wind is already committing to deliver in the near-term at auction prices of around £40/MWh.[ix]  According to the White Paper, the global market for modular and advanced reactors might (as ‘estimated by some’ – actually the National Nuclear Laboratory) be worth £250bn to £400bn by 2035.  This is at best heroic, given that the current global market is zero. In any case, the idea that the UK might win a large share of such a market (if it did exist) is made hopelessly implausible by the fact that the UK is well behind several other countries’ SMR development. These include Russia, the USA, Japan and China, with the Rolls Royce planned design only one among over 70 SMR designs currently being pursued around the world.[x]

The second leg of the modular reactor story involves ‘Advanced’ reactors.  The ambition here is to have a demonstrator ready by the early 2030s ‘at the latest’.  For this, the Government may be willing to spend a further £170 m.  Here we are in highly speculative territory.  As the White Paper very briefly explains, AMRs would be reactors that use ’novel cooling systems or fuels and may offer new functionalities (such as industrial process heat).’[xi] Such designs would most likely involve high temperature gas cooling; many such designs have been developed in the past 50 years, none of them proving commercially viable.  It is not clear why work in these challenging technological areas can be expected to do much better in the future.  Even if such technologies eventually prove more commercially tractable, having a demonstrator built by the early 2030s is extremely hopeful. 

Optimism?

The optimism displayed in these plans includes the up-front claim that ‘the UK continues to be a leader in the development of nuclear technologies’[xii] – a proposition, when applied to commercial reactors, that has no basis in fact whatever.  However, Government does qualify its enthusiasm by making clear that its plans, including expenditure, remain conditional. For a large reactor, bringing a project to fruition depends on ‘clear value for money for both consumers and taxpayers’[xiii] and the £385 m apparently to be spent on SMRs and AMRs reactors is ‘subject to future HMT [Treasury] Spending Reviews’.[xiv]  But even if all nuclear plans worked out as the White Paper hopes – in terms of developing new low-carbon capacity on the predicted time-scale – it is far from clear that this would be achieved at anywhere near competitive cost.  Even if nuclear power does well, large reactors will play, at best, a very small part in the move to net zero carbon by 2050. While modular reactors could do more, there is huge uncertainty, probable extended timelines and no guarantee of any kind of success.


[i] HM Government (2020) The Ten Point Plan for a Green Industrial Revolution November

[ii]  HM Government (2020) The Energy White Paper. Powering our Net Zero Future December CP337

[iii]  ‘UK takes step towards world’s first nuclear fusion power station’ New Scientist, 2 December 2020.  Numbers are quoted from the UKAEA, the fusion R&D proponent

[iv]  The Energy White Paper, p. 51.

[v]  Ibid., p. 49

[vi] ibid. p. 50

[vii] World Nuclear News ‘Rolls Royce on track for 2030 delivery of UK SMR’ 11 February 2021

[viii]  ibid.

[ix]  https://www.greentechmedia.com/articles/read/prices-tumble-as-u-k-awards-5-5gw-of-offshore-wind

[x] IAEA Advances in SMR technology development 2020 September 2020, in which 72 designs are listed

[xi] The Energy White Paper, p. 51

[xii] ibid. P.50

[xiii] ibid. p.49.

[xiv] ibid. p.50

Achieving ‘Net Zero’ targets under uncertainty: A framework to support decision making in an increasingly integrated energy system

Researchers and academics from the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub, Dr Hamid Hosseini, Dr Adib Allahham, Dr Sara Walker and Prof Phil Taylor recently published their paper ‘Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance’ in the international, multi-disciplinary journal Energy.

About the author: Dr Hamid Hosseini

Dr Hamid Hosseini

Hamid joined Newcastle University in 2017 as a postdoctoral research associate to the EPSRC National Centre for Energy Systems Integration (CESI). Since joining the team, Hamid has been actively involved in research looking at planning, optimisation and operational analysis of integrated multi-vector energy networks. He also collaborated with a multi-disciplinary team on the UKRI Research and Innovation Infrastructure (RII) roadmap project, advising UKRI on the current landscape and future roadmap of Energy RIIs. He has supported and collaborated with several CESI Flex Fund projects to investigate further various aspects of Energy Systems Integration (ESI). Moreover, he is working with the Executive Board of Northern Gas Networks to identify the potential energy systems challenges that could be investigated at the Customer Energy Village of the Integrated Transport Electricity Gas Research Laboratory (InTEGReL), through collaboration with a multi-disciplinary team of energy experts in industry and academia. Hamid is author of several papers published in prestigious journals and conferences on the review and techno-economic-environmental operational analysis of integrated multi-vector energy networks.

Contact email: hamid.hosseini@newcastle.ac.uk
Profile details


Like many Governments, the UK has committed to significantly reduce Greenhouse Gas (GHG) emissions, setting a target of ‘Net Zero’ by 2050 [1]. In many regions, the focus has been on the electrification of heat to ensure these targets are achieved. There is a growing interest in exploring and quantifying the impact of integrating energy systems to decarbonise them. This includes the integration of the gas and electric networks and increased use of renewables and energy storage [2], [3], [4].

However, there is great uncertainty associated with forecasted loads, generation of renewables, energy prices and other operational costs, as well as the emissions associated with future networks and energy conversion technologies. To provide a basis for making well-informed and risk-based design choices towards the GHG emission targets, it is essential to consider the impact of different sources of uncertainty on the Techno-Economic-Environmental (TEE) performance of Integrated Energy Networks (IENs). In addition to these uncertainties, the TEE impact of different Energy Storage Systems (ESSs) and different levels of integration of the networks [5] need to be investigated in detail.

In this paper, we present a framework to assess the Techno-Economic-Environmental (TEE) impact of Integrated Gas and Electricity Networks (IGENs). We look at how different levels of networks’ integration and storage devices affect the performance of IGENs. Using Monte Carlo Simulation, we sampled probabilistic distributions to model the sources of uncertainty including loads, RESs, economic and environmental factors. More detailed information of the inputs and outputs of the TEE framework is shown in Figure 1.

Figure 1 The algorithm of the TEE evaluation framework considering several sources of uncertainty

The framework carries out a TEE operational analysis of IGENs for possible future energy scenarios to calculate the energy imported from upstream networks, operational costs, and emissions. As the framework considers uncertainties in this analysis, it helps robust decision making in designing an energy system to meet 2050 carbon targets.

In the paper, we give a comprehensive analysis of the results when the framework is applied to a real-world case study. 

The key findings of this analysis include:

  • Efforts to improve the efficiency of coupling components by equipment manufacturers are very important goals in pursuit of lower TEE performance parameters in future integrated networks.
  • Given that demand reduction and decarbonisation of electricity and gas networks is a priority, the coupled configurations are likely to become more attractive between now and 2050.

These findings hold true for all the values considered in the uncertainty analysis.

The full paper will appear in the Elsevier Journal, Energy, and is available to view online [6].


References

[1] Committee on Climate Change. Net Zero – The UK’s contribution to stopping global warming, 2019. Google Scholar

[2] P. Rachakonda, V. Ramnath, V.S. Pandey. Uncertainty evaluation by monte carlo method, MAPAN, 34 (3) (2019), pp. 295-298. CrossRef View Record in Scopus Google Scholar

[3] Han Jie, Chen Huaiyan, and Cao Yun. Uncertainty evaluation using monte carlo method with matlab. In IEEE 2011 10th International Conference on Electronic Measurement & Instruments, volume 2, pages 282–286. IEEE, 2011. Google Scholar

[4] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Optimal planning and operation of multi-vector energy networks: A systematic review. Renewable and Sustainable Energy Reviews, 133 (2020), 110216. Google Scholar

[5] Seyed Hamid Reza Hosseini, Adib Allahham, and Phil Taylor. “Techno-economic-environmental analysis of integrated operation of gas and electricity networks.” In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5. IEEE, 2018. https://doi.org/10.1109/ISCAS.2018.8351704

[6] Seyed Hamid Reza Hosseini, Adib Allahham, Sara Louise Walker, Phil Taylor. Uncertainty Analysis of The Impact of Increasing Levels of Gas and Electricity Network Integration and Storage on Techno-Economic-Environmental Performance, Energy, 2021, 119968, ISSN 0360-5442. https://doi.org/10.1016/j.energy.2021.119968

How green is energy storage? Learnings from a CESI-funded case study

Academics funded by the EPSRC National Centre for Energy Systems Integration (CESI) in the Centre’s first Flexible Funding Call, recently published the results of a study on the impacts of energy storage operation on greenhouse gas emissions, in the journal Applied Energy. Their work is summarised here by the lead author, Dr Andrew Pimm, and the full paper [1] is freely available to all on the journal website. The research team was led by Prof Tim Cockerill of the University of Leeds, and also included Dr Jan Palczewski of Leeds and Dr Edward Barbour of Loughborough University.

About the author: Dr Andrew Pimm

Dr Andrew Pimm is a Research Fellow at the University of Leeds investigating the techno-economics of energy storage, energy flexibility, and industrial decarbonisation. Prior to joining Leeds in 2015, he worked on the development of grid-scale energy storage technologies at the University of Nottingham, where he was involved in offshore trials of underwater compressed air energy storage.

Contact details
Email: a.j.pimm@leeds.ac.uk

Energy storage will be a key part of the future energy system, allowing the deployment of higher levels of non-dispatchable low carbon electricity generation and increased electrification of energy demand for heating/cooling, transport, and industry.

Passing energy through storage inevitably results in losses associated with inefficiencies, however previous investigations have found that operation of electricity storage can result in increased CO2 emissions even if the storage has a turnaround efficiency of 100% [2]: if the output from a relatively high carbon source (such as unabated gas or coal) is increased to charge the storage, and the output from a relatively low carbon source is reduced when the storage is discharged, then the result will be a net increase in CO2 emissions.

However, these effects had not been considered recently for Great Britain, and little attention had been given to the extent to which they vary by location. We sought to fill this gap in the knowledge through our study.

We made use of data from National Grid’s regional Carbon Intensity API and ELEXON’s P114 dataset to determine the source of electricity consumed in each of Great Britain’s 14 electricity distribution zones for each half-hour period in 2019 (annual sums shown in Figure 1).

Figure 1: The share of electricity consumption by region and source in Great Britain in 2019.

With these data, we used linear regression techniques [3] to calculate half-hourly “marginal emissions factors” for each distribution zone. These tell us the change in CO2 emissions that occurs as a result of a change to grid electricity demand, disaggregated by time and location. These regional marginal emissions factors were then used to assess the impact of electricity storage operation on grid CO2 emissions in three different storage operating scenarios:

  1. Load levelling, whereby storage is charged at times of low demand and discharged at times of high demand.
  2. Wind balancing, whereby storage is charged at times of high wind output and discharged at times of low wind output.
  3. Reducing wind curtailment, whereby storage is charged using excess wind generation that would otherwise be curtailed and discharged at times of high demand.

The resulting emissions reductions are shown for selected distribution zones and Great Britain as a whole in Figure 2. Wind balancing is the only storage operating mode that leads to increased CO2 emissions, and emissions are reduced the most when storage is operated to reduce wind curtailment in regions with high levels of fossil generation.

Across all regions and operating modes, the difference between the highest reduction in emissions and the highest increase is significant, at 741 gCO2 per kWh discharged, and is roughly equivalent to the reduction in emissions per unit achieved by fitting a coal power plant with carbon capture and storage.

Figure 2: Potential emissions reduction through storage operation for the three operating scenarios, in six selected distribution zones and Great Britain as a whole in 2019.

While electricity storage will be a key component in future low carbon energy systems, our work has shown the importance of storage location and operating mode to its operational emissions and the possible dangers of evaluating emissions using average emissions factors. We are currently using these new techniques to investigate the lifecycle emissions of storage and smart EV charging across the EU.


References

[1] Pimm AJ, Palczewski J, Barbour ER, Cockerill TT. Using electricity storage to reduce greenhouse gas emissions. Applied Energy. 2021;282:116199.
[2] Denholm P, Kulcinski GL. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Conversion and Management. 2004;45:2153-72.
[3] Hawkes AD. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy. 2010;38:5977-87.

Where is the value in cost, carbon and resilience in taking an energy systems integration approach to the UK’s energy future?

Researchers and Academics from the EPSRC funded Supergen Energy Networks Hub and the National Centre for Energy Systems Integration (CESI), Dr Adib Allahham, Dr Hamid Hosseini, Dr Vahid Vahidinasab, Dr Sara Walker & Professor Phil Taylor, recently published their journal paper in the International Journal of Electrical Power and Energy Systems on Techno-economic-environmental evaluation framework for integrated gas and electricity distribution networks considering impact of different storage configurations.

About the author: Dr Adib Allahham

Adib is a Research Associate within the Power Systems Research Team, School of Engineering, Newcastle University and currently works on several projects including the EPSRC National Centre for Energy Systems Integration (CESI) and the Supergen Energy Networks Hub.  Adib received his PhD from the University of Joseph Fourier in the field of control engineering. His research involves projects around the electricity distribution and off-grid power sector and multi-vector energy systems. These projects are addressing the need to cost efficiently decarbonise the energy sector over the next thirty years by facilitating innovative network integration of new generation, and the integration of different energy vectors (electricity, gas, and heat). Computer simulation, laboratory investigation and demonstration projects are used together to produce new knowledge that delivers this requirement. He has published more than 25 technical papers in leading journals and conferences.

Contact Details
email: adib.allahham@ncl.ac.uk @adiballhham

About the Paper

Governments around the world are working hard to reduce their Greenhouse Gas (GHG) emissions. In the UK, the government has set a target of “Net Zero” GHG emissions by 2050 in order to reduce contribution to global warming [1]. This necessitates the integration of more Renewable Energy Sources (RESs) into the energy networks and consequently reduction in the use of fossil fuels while meeting and reducing energy demand.

To achieve this objective flexibly and reliably, it may be necessary to couple the energy networks using several network coupling components such as gas turbine (GT), power-to-gas (P2G) and Combined Heat and Power (CHP) [2]. Also, the energy networks may benefit from different types of Energy Storage Systems (ESSs) in order to be able to compensate for any energy carrier deficit or other constraints in energy supply in any of the networks [3].

In order to comprehensively study multi-vector integrated energy systems and analyse ESS potentials, a Techno-Economic-Environmental (TEE) evaluation framework needs to be designed to investigate the mutual impacts of each of the networks on the operational, economic and environmental performance of others. This is the main aim of this study.

The paper divides ESS into two different categories of Single Vector Storage (SVS) and Vector Coupling Storage (VCS).

Figure 1: A conceptual representation of SVS and VCS storage devices in an Integrated Gas and Electricity Distribution Network (IGEDN)

A literature review looked at models which have been used to perform planning of the whole energy system of several countries taking into account all layers of the energy system, as well as different types of energy storage in multi-vector energy networks. As well as using a case study from a rural area in Scotland which is connected to the electricity distribution network only, also benefitting from a small wind farm and roof-top PV’s.

Fig. 2. The schematic of the studied rural area in Scotland including the separate gas and electricity networks (without considering P2G and VCS) and IGEDN (with considering P2G and VCS) [4]

A framework was developed as a result of the literature review carried out and this was tested on the real-world rural area in Scotland.  The evaluation framework provides the ability to perform TEE operational analysis of future scenarios of Integrated Gas and Electricity Distribution Networks (IGEDN).  Several specifications and achievements from this study are identified in the paper which is available to read online and will be published in the November issue of the Journal.


[1] Committee on Climate Change. Net Zero – The UKś contribution to stopping global warming, 2019. Google Scholar
[2] S. Clegg, P. MancarellaIntegrated electrical and gas network flexibility assessment in low-carbon multi-energy systems IEEE Trans Sustainable Energy, 7 (2) (2016), pp. 718-731 CrossRefView Record in ScopusGoogle Scholar
[3] S.H.R. Hosseini, A. Allahham, P. TaylorTechno-economic-environmental analysis of integrated operation of gas and electricity networks 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (2018), pp. 1-5 CrossRefView Record in ScopusGoogle Scholar
[4] EPSRC National Centre for Energy Systems Integration (CESI). https://www.ncl.ac.uk/cesi/, 2017.

The Future of Energy – Dr David Greenwood

Dr David Greenwood discusses talks delivered at a recent Cafe Scientifique event by three CESI researchers on their vision for the future of energy .


About the author:

Dr David Greenwood is a researcher with the National Centre for Energy Systems Integration (CESI) and is based at Newcastle University.

His research focuses on taking advantage of flexibility within energy systems and understanding sources of uncertainty and variability such as customer demand and intermittent generation.

Contact details: david.greenwood@ncl.ac.uk        Profile details


Inspired by the Great Exhibition of the North, Newcastle University hosted a series of Café Scientifique events at the Urban Sciences Building, part of the rapidly expanding Newcastle Helix site.

The National Centre for Energy Systems Integration organised one of these events, with the title “The Future of Energy”, where three CESI researchers presented the vision of the UK’s energy future, and how we can get there.

Cafe Scientifique:  The Future of Energy  at Newcastle University’s Urban Sciences Building

Dr David Jenkins – who had travelled from Heriot-Watt University for the event – gave his thoughts from the perspective of energy demand, how it could change it, and how we could meet it. Dr Jenkins talked about the data challenges in modelling energy demand. This includes the temporal and spatial scale of the available data, and the effects of aggregating large numbers of energy users, which generally works in a modeller’s favour by giving a smoother, more predictable pattern of demand. The impact of a number of low-carbon technologies, such as electric vehicles and heat pumps, which are vital if heat and transport are to be decarbonised by moving them onto the electricity system, was examined, with the summation of these changes resulting in the potential for a substantially different demand pattern to that experienced today.

Figure 1: The potential difference between present and possible future energy demand

Next, Dr David Greenwood spoke about the need for flexibility within the energy system, and the challenges in procuring it through the markets and mechanisms that are currently used by the energy industry and in particular the electricity system operators. Dr Greenwood’s main argument was that we need flexibility – which already exists on the system in many forms – to address uncertainty on a variety of timescales ranging from when a customer plugs in their electric car, to how quickly and substantially low carbon technologies are adopted, to when new power stations are completed, all with the possibility of a failure anywhere in the system at any time. He concluded by presenting a flexibility case study based around energy storage, and showing how uncertainty and flexibility can be included within operational decision making processes.

The final presentation of the evening was given by Dr Andrew Jenkins, and had a focus on the whole energy system. Dr Jenkins talked about how the whole energy system can deliver cross-sector flexibility while still fulfilling the needs of its customers. He demonstrated this with a case study on electric vehicles using Vehicle to Grid charging technology, which could meet a set of system requirements whilst ensuring that their drivers would have enough energy to complete their journeys at the end of the day. He concluded with a detailed description of the university’s new InTEGReL site – a joint venture with Northern Powergrid and Northern Gas Networks which will showcase the potential for heat, transport, gas, and electricity to operate synergistically, providing cross-vector energy flexibility, and allowing validation of models and theory arising from academic research.

Figure 2: An overview of the InTEGReL site

The evening ended with a discussion with the audience – a range of attendees; consumers, prosumers, consultants, academics – which broadened the debate to include the political landscape, and more input from the perspective of the energy consumer. The audience had a breadth of technical knowledge, and their questions reflected this. Electric vehicles – which link the electricity and transport sectors – were the most popular topic for discussion, but the potential of power to gas, sources of inertia in zero-carbon energy systems, and the impact of energy efficient homes were also discussed. The event ended by a resounding agreement from the audience that they would like to attend another event on the topic of energy.

If you would like to suggest a topic for a future event, please get in touch at cesi@ncl.ac.uk.