Tag Archives: fish

Unravelling Deep Sea DNA

DNA is the building block of all living things. Our own DNA dictates what we look like, how we behave and even how we think. The Human Genome Project sequenced all of our DNA to unravel the code that creates us to give a better understanding of how it all works. From this we’ve learned more about how we’ve evolved and which animals are our closest relatives.

The Wellcome Trust are planning on sequencing the DNA of 25 more animals next year and you get to have a say in which animals will be studied. Scientists from across the country have been championing species which they believe should be sequenced next. Our very own team of researchers from Newcastle University are campaigning for the Abyssal Grenadier, a deep sea fish which has evolved to live in one of the most extreme environments on Earth.

The competition is being held online on I’m a Scientist, Get Me Out Of Here where our researchers, Johanna Weston and Thom Linley have already participated in 19 online chats with school children. Anyone can vote and ask the scientists questions about their chosen species.

Here are Joanna’s top 3 questions that they’ve been asked:

1. How did the fish come to be named grenadier?

This question totally stumped us and I have been on an adventure finding the answer! I have been asking ichthyologists (fish scientists) all over the world and the answer I got was from the head of fishes in Te Papa Museum in New Zealand (told you I looked far and wide!).  The first grenadier described was the roundnose grenadier in 1765! That’s where we first get the name.  The grenadiers were a type of soldier that specialised in grenades in France in the 1700’s. They wore pointed hats based on the Mitre (a Bishop’s hat). The pointy hat looks like the high triangular first dorsal fin of the grenadier fish!

2. Why do they use their eyes less?

The deep sea is a very difficult environment to live in for a variety of reasons – not a lot of food, lots of predators, and the crushing weight of all the water above these animals. But one of the main problems with living in the deep sea is that below 200m of water there is very little natural sunlight getting that deep. The abyssal grenadier lives all the way down to 4000/5000m where there is no natural light so it is hard for them to see anything. (Although some other deep-sea animals produce their own light using bioluminescence!) Because it’s very dark the abyssal grenadier relies more heavily on its sense of smell to detect food.

3. What is your most unique feature and why has it happened (what genes cause it)?

We have lots of cool unique features!

We can survive under high water pressure. At the moment we know that we store a lot of an enzyme called TMAO which helps to keep our cells happy and stop them from being crushed by the pressure. We also live in the complete darkness, except bioluminescence which is light produced by some bacteria that live in some deep-sea species, but we can still see these flashes of light. We can go very long periods of time without eating so we have become very good at storing energy in our bodies. And we can also swim really slowly to help keep our energy stores high too.

At the moment we don’t know all the genes that help us live in such an extreme environment! That’s why we would love to have our genome sequenced so we can start to understand how animals can live in such a difficult environment. Because we are closely related to cod it would be really cool to compare our genome to the genome of a cod to see what lets us live deeper! This could be really valuable in understanding fish, like cod, as well as the abyssal grenadier.

If you would like to ask a scientist or place your vote for the next genome to be sequenced you can do so imascientist.org.uk. Voting closed on the 8th December.

Interview with a Scientist: Kirsty, Marine Ecologist

We recently interviewed Kirsty, a 2nd year PhD student at Newcastle University. Kirsty has been studying European lobsters and their movements between habitats. She uses statistical models to understand how environmental conditions influence the timing and pattern of lobster movements.

What impact does your research have?phd

It can help us understand the impact of movement patterns on the number of lobsters that we can catch so that we don’t catch too many and they are sustainably managed. Sustainable management ensures that there are enough lobsters for the future, benefiting not only the environment, but also the fishing industry.

What did you do before your PhD?

I studied Zoology at Glasgow University then did a Masters in Forest Ecology at Edinburgh University. Since then I have worked in various Ecology related roles including being a Park Ranger, working in Wildlife Management and assisting research on seabirds and marine renewables.

Why did you chose to do a PhD rather than get a job?

I had worked as a research assistant before and really enjoyed it, I knew I wanted to do more research. By doing a PhD I got to choose the area and lead the research. It’s a great opportunity to devote your time to just one small area of interest and learn some advanced skills. I hope it will help me improve my career and that I will be able to get better research jobs in the future.

How did you decide on your PhD?

I chose the topic because I’m interested in spatial studies. Understanding why animals choose a particular area is really important in making decisions about species conservation and I thought this project would give me the chance to develop lots of transferable skills.

kirtsyWhat advice would you have for someone wanting to study Biology or Zoology at university?

Go to open days and talk to as many people as possible, make sure it’s the right course for you! Speak to people working in the field if you have the chance and get some experience, the RSPB are a good organisation to volunteer for.

What is the best part about being a PhD student and going to university in general?

Meeting different people who are interested in the same things as you and developing your own identity.

What do you plan to do after completing your PhD? 

Id like to stay in academia and keep doing research on spatial ecology.

Has university help you get where you want to be?

Yes, I have learned lots of different skill sets and developed more resilience and motivation.

 

interview-kirsty