Tag Archives: zoology

#WorldWildlifeDay – Big Cats: predators under threat

World Wildlife day aims to celebrate and raise awareness of the world’s wild plants and animals. The theme for this year is Big Cats: predators under threat and aims to highlight the ecological importance of charismatic creatures such as cheetahs, jaguars, leopards and lions and promote their conservation and survival in the wild.

Humans have always been fascinated by these animals as is made clear by their influence on high fashion, fast cars and sports teams the world over. However they are becoming increasingly rare due to human-led activity such as poaching and deforestation. Conflict often occurs between humans and big cats due to lack of prey such as deer for the animals. This can cause the big cats, such as tigers, to predate on livestock, causing humans to poach in retaliation to protect their livelihoods.

Collectively, big cats are under threat and many species are classified on the International Union for Conservation of Nature (IUCN) Red List as being endangered or critically endangered, meaning the range they inhabit in the wild is getting smaller and their population sizes are rapidly declining.

Many efforts exist for conserving these animals, including breeding programmes in captivity, maintaining protected areas to prevent poaching, and projects such as World Wildlife Day increasing awareness of the threats to populations.

For more information, check out the World Wildlife Day website!

Black History Month: Influential Figures in STEM

October is drawing to a close, which means it’s time for our final installment of profiles for Black History Month. We take a look at astronaut and scientist, Mae Jemison, and renowned zoologist, Ernest Everett Just. We’ve barely scratched the surface of the achievements of black people in the STEM industries, but we hope we have inspired you with some amazing stories. If there’s anyone else you’d like to share with us don’t forget to comment below!

World Animal Day

Today is World Animal Day, a day to celebrate and raise the status of animals. Humans are often thought to be the animals with the highest status and intelligence due to our effortless ability to use tools, develop language and dominate the globe. However there are millions of species that have evolved traits and talents that humans could only ever dream of. Here is our list of some of the most amazing animal adaptations.

1. Bioluminescence


Bioluminescence is the ability to emit light. Fire flies and glow worms are well known for their ability to light up but they are not alone, lots of insects and even a species of snail (Quantula striata) hold the protein Luciferin, allowing them to emit light. The protein reacts with oxygen using a specific type of enzyme – luciferase. The chemical reaction gives off the bright glowing colours.

Deep down in the ocean, there is little light from the sun so many marine animals have evolved bioluminence. Others, such as the Sea Goosberry above don’t emit their own light but can refract light to give this dazzling rainbow effect. Even if it’s not technically bioluminescent – we’re still very jealous!

2. Camouflage

In contrast to flashy bioluminescent animals that stand out, some creatures prefer to blend in…

When you think of a camouflaged animal, most people would think of the classic colour–changing chameleon but octopus and squids are the real masters of disguise. They have thousands of cells known as chromotaphores across their skin, these contain pigments and can expand and shrink to change the colour of the skin. These animals can also change the appearance of their skin’s texture and use their soft body and tentacles to morph into a different shape.

The Mimic Octopus takes this a step further and manipulates its body into the shape of other animals to fool its predators into thinking it’s a different marine species – now that would be a fun superpower to have!

3. Mimicry

All the most famous superheroes have a disguise! Like the mimic octopus, some relatively harmless animals have found a clever way to avoid predators by copying the colours, body shape and even behaviour of harmful species. This is known as Batesian Mimicry, and can be seen in animals such as the caterpillar Hemeroplanes triptolemus above, which cleverly disguises itself as a poisonous snake by blowing air into its head!

Mimicry can also happen when two harmful species that have a common predator evolve separately to have similar warning signals such as bright colours or patterns, that show the predators that they are poisonous or taste unpleasant.  This is known as Mullerian Mimicry and can often be seen in butterflies and snakes. So two entirely different (and possibly poisonous!) species of butterflies may look identical.

4. Invisibility

Glass Squid

If camoflauge doesn’t work, how about being invisible? Maybe not completely invisible, but many species have come close by evolving to become transparent. The glasswing butterfly has evolved to have transparent panes in its wings, making it more difficult for predators to spot.

The glass squid and some species of jellyfish have evolved transparent bodies making them extremely difficult for predators to spot them in the depths of the ocean.

5. Regrowing limbs

Image result for axolotl

If all these adaptations for hiding fail and you’re caught by a predator – what next? Well some species such as the Mexican salamander, the axolotl, have evolved the ability to regrow parts of the body so it’s not a big deal if something does take a bite out of them.

When an axolotl loses a limb, the cells at the cut off point lose their identity; they are no long skins cells or muscle cells and they become generic cells that are able to develop into whatever the axolotl needs them to be to regrow whatever was lost. Whilst humans have come a long way in developing amazing prosthetic and even bionic limbs, we’re unlikely to evolve the ability to completely regrow body parts anytime soon.

If you want to see some amazing axolotls yourself, take a trip to Newcastle University’s Natural History Museum, the Great North Museum: Hancock.

6. Outside Digestion

Speaking of regrowing limbs – starfish can also happily regrow spines but that’s not their only talent – they can also digest their food in a very interesting way. Instead of taking food in through the mouth, instead they take their stomach out of their body and put it on the food. Their stomach then digests the food into a mushy soup which the starfish can then draw into it’s body along with it’s stomach.

Perhaps this wouldn’t be top priority for a superpower but it is impressive! You can see the starfish in action in our aquarium at the Dove Marine Lab in Cullercoats.

7. Flight

Image result for bar tailed godwit

Moving from the seas to the skies, I’m sure many of us would love to have the ability to fly. Of course many creatures have mastered this, mainly birds and insects but some reptiles, fish and mammals, such as the flying squirrel, have evolved flaps of skin that allow them to glide through the air.

One of the most impressive flyers of the animal world is the bar-tailed godwit. This little bird weighs around 500g but is capable of flying immense distances. The longest recorded migration of this species was from Alaska to New Zealand – a distance of 11,680km! The journey took nine days and the bar-tailed godwit didn’t stop once. Very impressive considering most of us couldn’t even stay awake for nine days!

8. Echolocation

Onto another famous flyer – the bat. Flight isn’t this mammal’s only superpower as it can also navigate in the dark without sight. It does this by using echolocation. Bats send out a high frequency sound and listen for the echos coming back. By comparing the outgoing sound with the returning sound, bats tell how far away obstacles are, how big they are and even if they are moving. They are able to build up a picture of the world around them using sound, just as we are able to using sight.

This impressive power may not be so out of reach for humans. Several blind people have taught themselves how to navigate using echolocation. They produce sounds either by tapping a cane against the floor, creating clicks with their tongue or snapping their fingers and then listen for the echos, just as echolocating animals do.

9. UV Vision

Image result for uv light reindeer

Whilst some animals, like bats, have relatively poor vision, other see much more than we could imagine. The light that we can see, known as the visible spectrum, covers the wavelengths 380nm – 760nm. Ultraviolet light sits just outside this so our eyes are unable to detect it. Some animals including butterflies, some birds and even reindeer have evolved the ability to see UV.

Reindeer are thought to have evolved this ability as it helps them identify lichens for food, and urine indicating predators in the snow. To us, these would blend in but in ultraviolet light there is much more of a contrast.

10. Mind Control

Our final adaptation may perhaps be the most sought after superpower – mind control. This isn’t just the stuff of science fiction movies and comic books, some animals have actually achieved it. The green-banded broodsac is a parasitic flatworm that infects snails in order to reach birds, their ideal host species. The parasite infects the snails and causes their tentacles to bulge, making them look like a caterpillar. It influences the snail and makes them move from the shade and up to the tops of leaves and branches where they are easily visible to birds. As the tentacles now look like a delicious meal for the birds, they’re prime targets. Once eaten, the parasite is able to continue it’s life inside the bird.

Which of these animal superpowers would you like to have?

Happy Birthday Sir David Attenborough!

Today is Sir David Attenborough’s 91st birthday. To celebrate, we’ve written a poem looking back at his extraordinary life and hoping that someday we can follow in his footsteps.

Born in London in 1926,
He’s since won the hearts of all the Brits.
David didn’t always know all about the wild,
But his interest was sparked as a young child.
In fact, he was very much in the dark,
Until that thrilling day at Bradgate Park
When he discovered his first fossil,
Which led to a future so colossal.

In the 1950s came David’s first TV show,0e8396605fcd34cdf9f9c8d11c909679
All over the world, the team would go.
The programme was called zoo quest,
And today may have caused a protest
As it saw David catching animals for London zoo
Anteaters, chimps and rare birds too.

David soon stopped taking  these creatures
And helped conserve their wonderful features.
He showed us the magical Great Barrier Reef
And little ants that cut up and carry a leaf
To feed it to something big and fungal.
He also took us into the depths of the jungle
To see the great apes and what a thriller,
When he cuddled that huge gorilla!

David searched for a dragon on the isle of Komodo
And uncovered the secrets of the extinct dodo.
He took us to the arctic for polar bears in the snow
And in the dark showed us worms that glow.
And who can forget that time in the cave,
When a bat flew into the face or Sir Dave.

pervianfrogLook at all the species named after you,
A dragonfly, Peruvian frog and echidna too,
There’s also the goblin spider and Namibian lizard,
David Attenborough- a true ecological wizard.
Then there’s Boaty McBoat Face – what a boat,
Now named for you, lets hope it forever floats.

From showing us delightful animals on screen,
To being knighted by the Queen.
You’ve travelled the breadth of the Earth,
Now let’s celebrate the day of your birth.
So let’s have a slice of birthday battenberg,
Here’s to you Sir David Attenborough!

Interview with a Scientist: Kirsty, Marine Ecologist

We recently interviewed Kirsty, a 2nd year PhD student at Newcastle University. Kirsty has been studying European lobsters and their movements between habitats. She uses statistical models to understand how environmental conditions influence the timing and pattern of lobster movements.

What impact does your research have?phd

It can help us understand the impact of movement patterns on the number of lobsters that we can catch so that we don’t catch too many and they are sustainably managed. Sustainable management ensures that there are enough lobsters for the future, benefiting not only the environment, but also the fishing industry.

What did you do before your PhD?

I studied Zoology at Glasgow University then did a Masters in Forest Ecology at Edinburgh University. Since then I have worked in various Ecology related roles including being a Park Ranger, working in Wildlife Management and assisting research on seabirds and marine renewables.

Why did you chose to do a PhD rather than get a job?

I had worked as a research assistant before and really enjoyed it, I knew I wanted to do more research. By doing a PhD I got to choose the area and lead the research. It’s a great opportunity to devote your time to just one small area of interest and learn some advanced skills. I hope it will help me improve my career and that I will be able to get better research jobs in the future.

How did you decide on your PhD?

I chose the topic because I’m interested in spatial studies. Understanding why animals choose a particular area is really important in making decisions about species conservation and I thought this project would give me the chance to develop lots of transferable skills.

kirtsyWhat advice would you have for someone wanting to study Biology or Zoology at university?

Go to open days and talk to as many people as possible, make sure it’s the right course for you! Speak to people working in the field if you have the chance and get some experience, the RSPB are a good organisation to volunteer for.

What is the best part about being a PhD student and going to university in general?

Meeting different people who are interested in the same things as you and developing your own identity.

What do you plan to do after completing your PhD? 

Id like to stay in academia and keep doing research on spatial ecology.

Has university help you get where you want to be?

Yes, I have learned lots of different skill sets and developed more resilience and motivation.

 

interview-kirsty