Tag Archives: science

International Asteroid Day!

What is an asteroid?

You may be wondering what the difference is between an asteroid, meteor, meteorite and every other name given to a shooting star or flying clump of rock in space. Well we have broken it down into an answer that is simple….. Sort of. It all starts with an asteroid.

An asteroid is a large rocky (planet looking) body, in orbit of the sun, that is too small to be classified as a planet. In space there are millions of asteroids and lots of them are a potential threat to Earth. Asteroids range in size from hundreds of miles to several feet in diameter.

A meteoroid is a particle of an meteoroid that has broken off and is now orbiting the sun. If a meteoroid enters the Earth’s atmosphere it is then known as a meteor. A meteor shower is a group of meteoroids all travelling in parallel trajectories from one point in space. Most meteors burn up when they are travelling through our atmosphere and therefore never hit the earth’s surface. The meteors that do hit earth are called meteorites.

Asteroid defence?

Over the past 4.5 billion years since the Earth was formed, about 4.5 billion meteors (the sizes of cars) have made their way through its atmosphere. Yes, that’s around one automobile sized meteor every year. Although, these are meteors and not meteorites, therefore they create a substantial fireball but burn out before hitting the ground.

Scientists these days are able to tell if an asteroid or meteor is en route to earth 30-40 years before it does. This is enough time for us to destroy it before it destroys us. We can do this by exploding the asteroid or meteor, although sometimes we can divert them away from earth instead.

When is the next meteor shower?

Unfortunately you will have to wait a couple months for our next meteor shower, it is called Perseid and will be peaking in our skies on the 12- 13th of August. In order to get the most out of your meteor shower view, we recommend getting out into the middle of nowhere where there is little to no light pollution; bringing a friend or your family and a warm blanket (also a telescope if you’ve got one). Once you’re comfortable, sit tight and wait for the spectacular starry show!

Visit asteroidday.org to find out more.

 

 

 

 

 

 

 

 

 

Earth Day | Plastic Pollution

On the 22nd April 1970, millions of US citizens united to celebrate the first ever “Earth Day“. This brought together people from all walks of life and political backgrounds who each had one thing in common – they cared about the environment. The fight to keep environmental protection on the global agenda and to push for change becomes ever more urgent as we face imminent threats from pollution and climate change. Today, billions of people from around the world are using Earth Day to try and galvanize a global movement towards ending environmental destruction and tackling crises such as climate change and plastic pollution.

Plastic pollution, the focus of 2018’s Earth Day, is an issue that has exploded into prominence over the past couple of years. Relative to human history, plastic has been around for an incredibly short amount of time – around 60 years – and yet, in that time, we have produced over 8.3 billion tonnes of plastic, nearly all of which still exists on earth in one form or another – predominantly as waste, either in landfill or the natural environment.

Only a small percentage of plastic, under 9%, ever gets recycled, meaning that tonnes of virgin plastic continues to be produced all of the time. An estimated 300 million tonnes of plastic now litters the oceans, posing a threat to marine ecosystems and wildlife. At the rate plastic is making it’s way into the sea, it will outweigh fish by 2050.

A study, led by Newcastle University’s Dr Alan Jamieson in 2017 uncovered evidence that not only have plastics now reached the deepest chasms of our oceans but they are being ingested by the animals that live there. Using deep sea landers to bring samples to the surface, the research team examined 90 individual animals and found ingestion of plastic ranged from 50% in the New Hebrides Trench to 100% at the bottom of the Mariana Trench.

This type of work requires a great deal of contamination control, but that the results were undeniable, with instances where synthetic fibres could actually be seen in the stomach contents of the specimen as they were being removed. Dr Jamieson explains that this finding likely means that there is not a single marine ecosystem left that is not impacted by anthropogenic debris.

“The fact that we found such extraordinary levels of these pollutants in one of the most remote and inaccessible habitats on earth really brings home the long term, devastating impact that mankind is having on the planet,” says Dr Jamieson.

“It’s not a great legacy that we’re leaving behind.”

Litter is not the only plastic problem; plastic is a petroleum product and it is estimated that plastic products account for around 8% of global oil production.

“The drilling of oil and processing into plastic releases harmful gas emissions into the environment including carbon monoxide, hydrogen sulfide, ozone, benzene, and methane (a greenhouse gas that causes a greater warming effect than carbon dioxide) according to the Plastic Pollution Coalition. The EPA estimated that five ounces of carbon dioxide are emitted for every ounce of Polyethylene Terephthalate produced.” (Earth Day Network)

Plastic is undoubtedly having a hugely negative impact on our planet and it’s inhabitants, but it is a problem that can be solved. As research, such as that from Newcastle University, brings the extent of the problem to the forefront, more and more people begin to take notice. As individuals begin to realise that everyday actions have wider consequences for the environment, we can start to implement change.

We can each take responsibility for our choices and choose to make simple changes in our lives that will cut the demand for single use plastic, such as swapping out plastic drinks bottles for reusable ones and remembering to take reusable shopping bags with us to the supermarket. Changes are also starting to come around on a larger scale, as governments become more informed on the plastic problem, they can create more widespread change; for example, the UK government have proposed a ban on plastic straws and cotton buds and are discussing plastic bottle return schemes.

The scale of the issue can make it seem as though any small changes we make will not be enough, but just as scientific research continues to uncover the dangers of plastic pollution, it can also work towards solutions.

Find out more about the impact of Newcastle University’s research here.

National Tea Day | The Science of a Perfect Cuppa

This National Tea Day, Hattie explores the science behind a top notch cuppa…

76% of people in Britain drink at least one cup of tea a day, but when it comes to making the perfect brew opinions are divided, arguments ensue, disagreements are rife. How long do you brew? Do you add milk? If so, when? And let’s not even begin to talk about the different shapes of tea bag. Everyone has their perfect method, but we decided the best way to settle the debate was, of course, to use science!

The Water
Firstly, aim to use soft water, that is, water with low concentrations of ions of calcium and magnesium, to avoid that unwanted scum on the top of your tea. Also, try and use water that hasn’t been previously boiled. This is because pre-boiled water has lost some of the oxygen that tea needs to release all those lovely flavours. For black tea in particular, the highest possible temperature is desirable to ensure a lot of oxygen is involved in the brewing process.

                                                                             The mug
In terms of mugs, historically tea should be drunk from a fine porcelain cup, as it can withstand the high temperatures of the boiling water, when in bone china cups this may cause cracks. According to the Institute of Physics however, the temperature problem can be avoided by (controversially) adding the milk to your mug first to cool the tea and prevent the mug cracking. Also, if you have more of a sweet tooth, opt for a red or pink mug as this can bring out the tea’s natural sweetness.

The milk
According to the Royal Society of Chemistry, when milk is poured into hot tea, the overall taste of the drink can be significantly affected. This is because proteins in the milk begin to degrade when heated above 75°, changing their taste. On the other hand, however, University College London claim that adding milk last allows the compounds within a teabag that make your cuppa delicious to be released more effectively as the temperature isn’t reduced by the milk.

The time
Researchers claim that 3 to 4 minutes brew time is optimum to ensure maximum flavour is released and the levels of tannins and antioxidants are just right. Tannins have been proven to hold some health benefits including reducing blood pressure, however they can leave a nasty aftertaste in your tea.

 

There you go, the science behind a good old cup of tea! How will you be drinking yours this National Tea Day?

Smell and Memories

In this week’s blog post, psychology graduate, Maria, explains the science behind smells that help us recall vivid memories.

We probably don’t analyse why we see the world around us, feel, touch or smell a wide range of scents…but all of these senses require a complex system of brain areas. Our sense of smell in particular has an amazing ability to ‘mentally transport’ us back to previous emotions or memories –  but why does this happen? How does this happen?

Psychological and neurobiological research has shown that when we sense an incoming smell, it is processed through many brain areas that are directly connected to emotion and memory brain centres. The olfactory bulb, which starts in the nose and runs alongside the bottom of the brain, has strong connections with our amygdala (an emotion centre of the brain) and hippocampus (helps in memory). Interestingly, our visual, sound and touch information don’t pass through these areas, explaining why olfaction (smell) can so successfully trigger emotions and memories. Although we tend to rely heavily on vision, our sense of smell can be a very powerful tool in day-to-day life!

This association between smells and remembering can also have valuable implications for revision and learning information.  Psychology researchers have found that smells can be associated with facts or information, to allow for better recall in the future. In principle, we may be able to train our brain to remember information using scent, maybe by using different scents for different concepts. Give it a go and put those candles to good use!

#WorldWildlifeDay – Big Cats: predators under threat

World Wildlife day aims to celebrate and raise awareness of the world’s wild plants and animals. The theme for this year is Big Cats: predators under threat and aims to highlight the ecological importance of charismatic creatures such as cheetahs, jaguars, leopards and lions and promote their conservation and survival in the wild.

Humans have always been fascinated by these animals as is made clear by their influence on high fashion, fast cars and sports teams the world over. However they are becoming increasingly rare due to human-led activity such as poaching and deforestation. Conflict often occurs between humans and big cats due to lack of prey such as deer for the animals. This can cause the big cats, such as tigers, to predate on livestock, causing humans to poach in retaliation to protect their livelihoods.

Collectively, big cats are under threat and many species are classified on the International Union for Conservation of Nature (IUCN) Red List as being endangered or critically endangered, meaning the range they inhabit in the wild is getting smaller and their population sizes are rapidly declining.

Many efforts exist for conserving these animals, including breeding programmes in captivity, maintaining protected areas to prevent poaching, and projects such as World Wildlife Day increasing awareness of the threats to populations.

For more information, check out the World Wildlife Day website!

The Science of Santa

We all know Father Christmas is one of the most wonderful and magical parts of Christmas, so we thought we’d use our scientific knowledge to work out how the fastest man in the universe delivers all those presents in one night!

There are approximately 2 billion children in the world. Of those, about 700,000,000 celebrate Christmas (and make the nice list!). With an average of three children per house, that’s a whopping 233,000,000 stops that Saint Nick has to make! Now bear with us…

If those stops are distributed evenly around the world, with a total surface area of 317,000,000 miles, each stop is 0.91 miles apart, making a total of 212,030,000 miles that Santa has to travel.

Because of the time differences across the globe, Santa has approximately 32 hours to complete his trip, maximising the night time (and sleeping children) available. Using speed = distance ÷ time, we can then work out that he has to travel at 6,650,807.72 mph! That’s about 1,800 miles per second.

So, remember to leave out a mince pie or two to help him along on this, his busiest of nights!

#TryThisTuesday Crystal Christmas Decorations!

Crystal Christmas Decorations

It’s the most wonderful time of the year… and for this #TryThisTuesday Christmas Special, we’re making beautiful decorations for your Christmas tree using science!

Step 1

Mould your pipe cleaners into the desired shape, we chose to make a Christmas tree out of green pipe-cleaners, and a snowflake out of white pipe-cleaners

Step 2

Carefully fill a large container with boiling water then add the salt bit by bit, stirring continuously, until the water is saturated.

This means that the salt stops dissolving and instead sits at the bottom of the water, as the water can no longer hold any more salt crystals.

Step 3

Tie one long piece of string around your decorations in a row

Step 4

Dip the decorations in the water, and suspend over the container (as shown in the picture)

 

Step 5

This next part will take some patience!

Over the next 24 to 48 hours, watch as the crystals develop around the fibres of the pipe-cleaners, and see your beautifully festive decorations develop!

Step 6

Tie a piece of string around the top of your decoration and hang on your tree!

The Science

Salt crystals are formed due to ionic bonding, meaning they form a specific pattern which is always a square shape. When salt is dissolved into water, the water molecules separate the salt molecules. This means that even when it looks like the salt has disappeared in the water, it is actually there all along.  This happens especially well in hot water, as the heat means the water can hold many more salt molecules than cold water. As the water cools and evaporates, the salt crystals bond again as the water can no longer hold all the salt. The crystals stick to the pipe-cleaners because as the water evaporates, it takes some of the salt with it which clings to our suspended decorations, leaving beautiful crystal ornaments!

My journey from ‘Life in the Freezer’ to the ‘Blue Planet 2’

Will sailing past South Georgia on the RRS James Cook
Will sailing past South Georgia on the RRS James Cook
In this blog post, Dr Will Reid shares his story of how he became a marine biologist and the inspiration that led him to his exciting career choice

Blue Planet II is well underway now and for many a marine biologist, like myself, it is an opportunity to say, “I work on those” and get a bit giddy with excitement. We have seen some wonderful footage of walruses, the graceful Ethereal snailfish and colourful coral polyps. The bobbit worm seemed to get the hospital that my partner works at very excited and I’m sure last week’s episode about plastic pollution will get many people thinking about the impact our daily lives have on the ocean.

For me personally, sitting watching the second episode of Blue Planet II and seeing those hydrothermal vents was a personal highlight. It will also go down as a big landmark in my research career. I spent about four months at sea in the Antarctic across three research expeditions, during my PhD at Newcastle University. I was part of team working on the hydrothermal vents where those crabs covered in bacteria live. The inspiration that lead me to sitting on a ship, watching a video feed from a remotely operated vehicle over two kilometers below, began with another David Attenborough documentary. This was not Blue Planet I but an even earlier BBC documentary series called Life in the Freezer, which planted the seed in my mind about becoming a marine biologist.

Becoming a Marine Biologist
St Andrew's Bay, South Georgia showing hundreds of penguins
St Andrew’s Bay, South Georgia showing hundreds of penguins

Life in the Freezer aired in 1993. I was thirteen at the time. The opening scene where David Attenborough was standing in a vast snow and ice landscape was mesmerising. The series covered the ebb and flow of the ice around Antarctica and the animals that depend on the productive waters of the Southern Ocean. The part that really caught me was all the amazing life on the island of South Georgia. The coastal areas were packed full of elephant seals, fur seals, penguins, petrels and albatross. Little did I know that in just over ten years I would be living and working on the island.

I realised during that series that I wanted to be a scientist but not just any scientist, one that went to the Antarctic. I took Maths, English, History, Biology and Chemistry Highers and got onto a marine biology degree course. In my final year, I got my first opportunity to do some work related to South Georgia. I spent hours watching video footage of the deep-sea Patagonian toothfish and crabs attracted to baited deep-sea landers as part of my final year project. This was very fortunate because just as I was about to graduate a job working for British Antarctic Survey was advertised for a two-year fisheries scientist working on South Georgia on these animals. I applied. I got an interview. I didn’t get the job.

First disappointment, then an opportunity

The great thing about getting an interview is that you can often ask for feedback. So, I just asked the question “What skills and experience do I need to get the job?”. The answer sent me on a two-year mission in order to get what I needed second time round. This included: going back to university and doing a masters in Oceanography; learning to drive boats; sea survival training; and going to sea as a fisheries observer on a Portuguese deep-water trawler off Canada. My decision paid off because the job was advertised again. Once more I applied. Once more I got an interview.

Second time lucky
Working as a fisheries scientist - setting weekly fishing nets in Cumberland Bay
Working as a fisheries scientist – setting weekly fishing nets in Cumberland Bay

I got the job at British Antarctic Survey second time round. I was finally going to South Georgia! The next few weeks were a whirlwind of activity: medicals; advanced boat driving training; first aid courses; and learning to drive a JCB. Then I was finally deployed. I flew to down through South America to the Falkland Islands with part of the team that I would living and working with for the next two years. We sailed from the Falklands on the UK research vessel, the James Clark Ross, to South Georgia. I arrived in South Georgia on the 22nd November 2004.

The island of South Georgia was truly stunning. I spent two years on the island doing science that helped manage the commercial fisheries around the island. The research was varied. I worked on fish larvae, managed an aquarium which housed crabs, aged Patagonian toothfish using their ear bones called otoliths, undertook diet studies on icefish and went on fish stock assessments around the island.

The scenery and animal life were also truly amazing. I would go camping and hiking in order to visit Gentoo, king and rock hopper penguin colonies; climb snow-capped mountains; walk where explorers like Shackleton had been; and visit old abandoned whaling stations. The research base where I stayed was also in front of an elephant seal breeding beach for a couple of months of the year. I even met my current partner on the island. She was the doctor in my second year. But life on South Georgia had to come to an end.

Getting into hot water in Antarctica

Once I left South Georgia, I had a couple more months working for British Antarctic Survey back in Cambridge. I was wondering how on earth I would ever get back to the Antarctic. I stumbled across my next opportunity in the photocopy room. On the wall was an advert for a PhD at Newcastle University working on Antarctic hydrothermal vents. I applied. I got the PhD position. I moved to Newcastle.

The PhD was part of 5 year NERC programme trying to find and understand hydrothermal vents in the Antarctic. Hydrothermal vents are sites on the seafloor that release very hot fluids, rich in minerals into the water at the bottom of the ocean and are surrounded by high densities of life.

In 2010, I went back to the Antarctic as part of the first scientific expedition to sample these truly amazing habitats. We sailed on the UK science vessel, the James Cook with scientists from different universities around the UK.  When we arrived at our first location, we used a remotely operated vehicle (ROV) to dive down over 2 kms to hunt for the vents. After a number of hours searching the seafloor we eventually found our first hydrothermal vent field. There was a huge amount of relief on the boat as the scientists got to work.

We visited a series of sites over the next 6 weeks along the East Scotia Ridge. We discovered whole new communities and species and mapped where the different animals lived around the vents. My work focused on what the animals were eating and constructing food webs at each of the sites we visited.

Hydrothermal vent crabs
Hydrothermal vent crabs (Kiwa tyleri)

This brings me back to those hydrothermal vent crabs in The Deep episode of Blue Plant II. The crabs live in areas where hot water pores over them which provides the conditions for the bacteria to grow. We collected the samples from the vents using a suction sampler on the ROV Isis. I then looked at the biochemical composition of the crabs and the bacteria. They were very similar. This indicated that the bacteria living on those crabs were its food source.

These large-scale scientific expeditions are collaborative efforts. Scientist never undertake their work in isolation on these types of projects. They are a team effort, bringing together scientific disciplines. I worked with scientists that had backgrounds in chemistry, geology, microbiology, biology, computer science and supported by mechanical and electrical engineers, technicians and a large ships crew. There is no way I could have undertaken this work without the support of so many scientific and technical disciplines. They helped me add meaning to my work and place the results in the context of the system.

The scientific party involved in sampling hydrothermal vents in the Antarctic
The scientific party involved in sampling hydrothermal vents in the Antarctic
Will there be another Antarctic adventure?

Watching Blue Planet II the other weekend gave me a huge amount of personal pride. To sit there with my kids and my partner and show them on TV the Antarctic crab that I helped discover felt like a massive landmark in my scientific career. I was even there at the moment when the crab stuck its claw into the hot water. Life in the Freezer was the series that inspired me to work in the Antarctic, which set me on the road (or boat) to South Georgia for 2 years and then to studying for my PhD at Newcastle University.

For many people, Blue Planet II will inspire them too, some of whom will go into marine science as well. Whether you are into maths, biology, chemistry, physics, engineering, geology or microbiology, there is a career for you that involves our Blue Planet.

For me, I am about to start another Antarctic adventure. Next year, I am going to explore the seabed that has not been exposed to open waters for approximately 120,000 years. I’ll be spending about 3 weeks working in the area where a large chunk of the Larsen C ice-shelf broke off. The research team has been assembled from a number of different universities and institutions and will once more be a collaborative effort. It just goes to show that sometime adventures never truly end.

Find out more….

British Antarctic Survey

Marine research at Newcastle University

The Larsen C ice shelf mission

Bonfire Night | The Science of Fire

Remember, remember the 5th of November, gunpowder, treason and plot! We see no reason why the science of fire should ever be forgot!

For this bonfire night, we are looking into the gravity defying properties of water using fire!

Step 1

Pour the water into your container and add the food colouring to colour the water to whatever colour you like, we chose blue.

Step 2

Place the candle in the middle of the water but make sure the wick and wax of your candle stays dry.

Step 3

Get an adult to help you light the candle and make sure the wick is burning for about 20 seconds before moving onto step 4.

Step 4

Place your glass/plastic cup over the candle, this will push all the water away from the candle

Step 5

Wait for a few moments and watch the candle go out and the water rise on the inside of the cup!

The science!

First of all, why does the candle go out?

Fire needs three things to burn; oxygen, fuel and heat. These three things make up the fire triangle which you can see below.

If one of them is taken away, the fire is put out. By putting the cup over the candle, the oxygen is taken away from the fire so it goes out!

But… it doesn’t go out straight away. This is because there is still some oxygen trapped inside the cup but once the fire has used up all the oxygen there is none left so the candle goes out.

So, why does the water in the cup rise after the flame goes out? When the candle is lit, the particles in the air take in some of the heat from the flame and get hotter. When the particles get hotter, they have more energy so move faster and this increases the pressure inside the cup.

After the flame has gone out, the particles cool down and move more slowly and this decreases the pressure in the cup. The pressure outside the cup is then higher than inside the cup so the water is pushed inside the cup until the pressure outside the cup is the same as the pressure inside the cup.

#TryThisTuesday Halloween Special!

Slime Two Ways

Happy Halloween! Here’s two of our favourite ways to make spooky slime with things you’ll find lying around the house, or in your local supermarket.

Magnetic Slime

Step 1

Ask an adult to help you remove the ink tube from the highlighter using a pair of scissors and squeeze the ink into the bowl. You might want to wear some plastic gloves to avoid getting the ink all over your hands!

Step 2

Add the liquid glucose and mix (we added Halloween confetti at this point for an extra spooky edge!)

Step 3

Gradually add cornflour and mix to get a slimy consistency, then add iron filings and mix, adding more as necessary.

Step 4

Move the magnet on the outside of the cup, and watch as the slime creeps up the side!

Step 5 (optional)

If you have access to a black light, shine this at the cup to make your slime glow in the dark!

      

The science!

The cornflour and liquid glucose mix together to create a non-Newtonian fluid, a fluid that changes in viscosity (how runny it is) with a change in pressure applied to it.

When the iron filings are added and dispersed throughout the slime this makes the mixture magnetic!

The black light emits ultraviolet light which is invisible to the naked eye, but when shone on the highlighter it emits a brilliant glow!

Reversible blood slime

Step 1

Carefully cut open the lining of the nappy and shake out the crystals from inside onto a sheet of paper. You may get some cotton coming out too so just be careful to take this out before step 2!

Step 2

Put the crystals from the nappy into the bowl or container, you’ll only need about a tablespoon full, and add about 250ml water and a splash of red food colouring

Step 3

Stir the mixture and watch closely as the water is absorbed by the crystals and begins to look like a thick slime! Again, we added Halloween confetti to ours to make it even more mysterious!

Step 4

To reverse this process, and turn the slime back into water and food colouring, all you have to do is add salt and mix and watch as the process takes place.

 

The science!

The crystals that are in the lining of nappies are known as a hydrogel. The hydrogel here is a polymer (a long chain of repeated molecules) called sodium polyacrylate and is superabsorbent, meaning it expands when it comes into contact with water and can hold a huge amount of liquid!

When the salt is added, the polymer collapses due to the a change in the ionic concentration of the solution and so the water-holding ability of the hydrogel is broken.