Tag Archives: biology

World Animal Day: Zoology vs Animal Science – What is the difference?

To celebrate World Animal Day, we’re finding about the people that study animals – Zoologists and Animal Scientists and finding out what the difference between these subjects actually is.

First of all, both are branches of Biology, the study of all living things. Zoology is the study of the animal kingdom, including the distribution, evolution and behaviour of animals. Animal Science is the study of animals under human control, such as pets and farm animals, but what does this mean to our students?

We quizzed Chess, who recently finished her Zoology degree, and Iona, currently studying Animal Science, to find out what the courses were really like for them.

Why did you decide to study your course?

Chess: I always knew if I was going to university it would be to study Zoology. Sciences were always my strongest subjects and I’ve had a love of animals for as long as I can remember. I explored veterinary at first, but the day to day working life of a vet wasn’t for me. After spending six months training to be a field guide in South Africa I became certain that I wanted to work in either conservation planning or research. Therefore, studying zoology was an essential next step.

Iona: I came across the course on an open day, having come to Newcastle to look at Biology and Zoology. I liked all of the courses but Animal Science stood out for me because it focuses on the physiology, biochemistry and behaviour of domestic animals alongside the issues surrounding the industry.

Iona with her pet dog

Do you get to go on any cool field trips?

Chess: When I was studying the options were Kielder forest, Millport in Scotland, or Crete. I chose to study birds in Kielder forest where we surveyed them by their calls. Other groups studied deer, small mammals, and beetles. There is also the option of a residential field course abroad in an additional module. In my year the group went to Thailand, others have been to South Africa. Everyone who went had nothing but good things to say about it.

Iona: We’ve been to the Northumbria Mounted Police stables, local animal shelters and a couple of zoos. They were all very different and provided unique learning experiences. We have also visited both of the two uni farms to look around the pig and dairy units which really helped to reinforce what we learnt in lectures.

A macaque monkey, photo taken by Biology Grad, Matt Pindar, on his Thailand field trip.

Have you ever done any work experience or a placement related to your degree (either before or during uni)?

Chess:  I did a summer vacation scholarship between stage two and three, and I received maintenance funding to undertake an eight-week research project over the summer. This was an invaluable experience for me. It was the first opportunity to experience what a career in research would involve by working with academics to design and deliver a piece of my own research.

Iona: This summer, I spent some time with a multinational feed company, working with ration advisers, sales reps and regional managers. I’ve also worked with farm managers and herdsmen on large dairy units and sheep farms.

Chess with her research poster the the British Conference of Undergraduate Research

What do you hope to do after your degree?

Chess: I still want to continue into a career in research. After graduating, I completed an MSc Global Wildlife Science and Policy also at Newcastle and I am now just starting my PhD.

Iona: I am currently undecided about what I’d like to do after I graduate but I am looking into livestock nutrition or consultancy roles.  Quality control and marketing also interests me so I’m currently exploring these options.

How much time do you spend in labs vs in the field vs in lectures/seminars?

Chess: The most time is spent in lectures. At stage one there are weekly lab sessions and regular field visits though the amount of these at later stages depends on the optional modules and projects you choose to undertake.

Iona:  I spend the majority of my uni time in lectures and seminars but we’ll have a couple of field trips per term. We had about one lab session per week in Stage one and it varies in Stages two and three depending on the modules you choose.

The great thing about Animal Science is that we are a small cohort so our class sizes range from 20 when it’s just our course to 150 when we take modules with larger courses. You become very close with your course mates but also have the opportunity to make friends on different courses.

A student at Newcastle University’s Nafferton Farm

What do you think the biggest difference between Animal Science and Zoology is?

Chess: The biggest difference is definitely that Animal Science shares a lot of modules with Agriculture, so it focuses on domestic animals. This includes their care and management in an agricultural setting. Zoology on the other hand shares its first year with Biology. Therefore, the focus is on understanding the natural biological systems involving animals.

Iona:  Animal Science mainly focuses on domestic species and the issues surrounding both companion and farm animals. Sustainability is a major theme that runs through the modules and topics are usually linked to current and future management techniques. I think that Animal Science contains the best aspects of Agriculture, Biology and Zoology.

Zoology focuses on mainly un-domesticated animals and their conservation along with physiology, behaviour and evolution.

Most importantly, what is your favourite animal?

Chess: In terms of unexplainable connection, a wolf. In terms of research interest, all species of rhino.

Iona:  The dog! The wide range of dog breeds is incredible and the variety of roles they can play in our lives is endless.

Advice from the Experts

We also asked for an input from the lead academics from the courses what their advice would be for anyone deciding between the two.

Dr. Richard Bevan, a Senior Lecturer for Zoology said:

In its simplest form, I’d say that Animal Science can be thought of as ‘Applied Zoology’ and concentrates on farm and domestic animals while ‘Zoology’ deals with animals (all of them) in the wider context: from amoeba to whale. It is then an easy choice – if you are more interested in fish, sloths, crabs etc. then choose Zoology. If you are interested in how domestication has affected animals then Animal Science would be a better choice

From Animal Science, Dr. Catherine Douglas advised:

Animal Science – it’s not Veterinary or Biology or Zoology – it’s a bit of all of the these and more. I would suggest students look carefully at the topics (modules) covered and the species that each particular university specialises in.  If you love domestic mammals, you don’t want a zoology course that focuses on wild animals, insects and birds.

Richard Bevan with students on the Farne Islands

Career Prospects

Graduates from both our Zoology and Animal Science degrees have gone on to a range of exciting career paths. Animal Science graduates have gone on to work as Animal Nutritionists and Geneticists and many have gone into further study with Masters in Animal Behaviour as well as Journalism and Museum Studies. Some graduates have also gone on to study Veterinary Medicine.

Zoology grads have gone on to work in research as well in education and charities. Their job titles range from Research Assistant to Football Analyst to Events Officer at the Royal Society of Biology.

Find out More…

Explore our course pages to find out more about Animal Science and Zoology. Or if ocean wildlife is more your thing, we also offer a course in Marine Zoology.

World Turtle Day | 10 things you didn’t know about Sea Turtles

A tortoise is a turtle but a turtle is not necessarily a tortoise.

Confused? The term “turtle” can refer to any type of reptile with a shell, but when this is broken down into species we have tortoises, terrapins and… turtles. This means that a turtle is technically a type of turtle, and tortoises and terrapins are two other kinds of turtle! Anyway, now that riddle is out of the way, it’s time to celebrate World Turtle Day! We’re treating you today with ten facts about the majestic sea turtle…

1. Sea turtles belong to a group of reptiles called Testudines, which includes turtles, tortoises, and terrapins. This is one of the oldest reptile groups in the world, dating back to the time of the dinosaurs, over 200 million years ago -beating snakes, crocodiles and alligators!

2. Turtles have an incredibly long lifespan – the oldest recorded was a turtle named Tu”i Malila, of Tonga Island, who passed away at an incredible 188 years old!

3. Sea turtles travel thousands of miles over the course of their lifetimes, migrating between foraging grounds and nesting beaches. One female sea turtle was recorded taking a 12,000 mile round-trip across the Pacific Ocean, from Papua in Indonesia to the northwest coast of the United States – that’s a lot of swimming!

4. A leatherback sea turtle, the largest species of turtle, can weigh up to a whopping 900 kilograms!

5. When it’s time for a loggerhead turtle to lay her eggs, she will return to the same beach on which she hatched – an impressive navigational feat! Scientists say their ability to find their way home is a result of the turtles use of the Earth’s magnetic field.  Each part of the coastline has its own magnetic signature, which the animals remember and later use as an internal compass. Forget sat-nav – we’re all about mag-nav.

6. A turtle’s sex is determined by a rather unusual factor – the temperature of the nests. Warmer nests produce female hatchlings, whilst cooler ones result in male hatchlings. This unfortunately leaves turtle eggs vulnerable to climate change; global warming means we are seeing fewer male hatchlings.

7. Baby sea turtles do not have an easy time… Once they’ve emerged from their shell, they have to make it across the beach to the sea, avoiding birds, snakes, crabs and other creatures who’d love to gobble them up. Those that do make it to the water face further threats from other predators, such as sharks and big fish. It’s estimated that survival rates can be as low as 1 in 1000.

8. Green sea turtles are quite the free-divers – they can stay under water for as long as five hours at a time! Their heart rate slows to conserve oxygen: nine minutes can elapse between each heartbeat.

9. Turtles have excellent senses. You might not expect them to be able to feel much through their tough shell – but it’s actually covered in nerve endings, meaning a turtle can easily detect the touch of a predator and retract into it’s shell.

10. Nearly all species of sea turtle are classified as endangered. This is predominantly due to human activity; one of the biggest threats to sea turtles is the fishing industry – turtles get caught up in nets as “by-catch” and ultimately die as result.

Fascinated by sea life? Why not take a look at the Marine Sciences courses Newcastle University offer? Check them out here.

International Day for Biological Diversity

With threats to wildlife constantly increasing, conservation policies are being put in place in order to protect biodiversity. However, with limited resources available, these policies have to attempt to prioritise certain species according to their “value”. New research, led by Newcastle University, the Swedish University of Agricultural Sciences and the British Trust for Ornithology, has shown that prioritising based only on one key species “value” could put some of our best loved wildlife at risk.

The research, which focuses on UK farmland birds, categorises according to three core values – conservation priority value, economic value (consumers of weed-seeds) and cultural value, measured through poetry.

Mark Whittingham, Professor of Applied Ecology at Newcastle University, explains:

“Considering one value in isolation gives you a very skewed picture of what’s important and what isn’t.

“Birds such as the chaffinch might consume large numbers of weed seeds which helps farmers, but they aren’t rare and compared to other species they barely feature in poetry.

“Conversely, the crow isn’t rare and isn’t particularly useful for eating weed seeds but we found it features frequently in poems down the ages which suggests it is intrinsically linked with society and culture. The question is how you put a ‘value’ on this.”

Professor Whittingham says that although this study only looks at a small selection of the potential ways individual species can be valued for different purposes, based on the evidence the more values that are considered the more species are likely to be important.

“Prioritisation makes sense when you have scarce resources but there is an inherent danger that by going down that route we take our eye off those species that are just as valuable to us but in less tangible ways.

“What we have demonstrated is that the more ‘values’ you take into account the more you realise that every species is important and has a part to play and so we need to be considering this in our policies and strategies for natural resource management and future planning.”

Protecting biodiversity is a pressing issue with habitats and species being lost at a devastating rate. Ensuring that the most valuable species are prioritised is vital to the success of certain conservation policies,  however, as Newcastle University research proves, placing “value” on a species can be a tricky process and a whole range of things need to be considered in order to best grasp the impact an animal has both culturally and environmentally.

Find out more about Newcastle University’s ecology and conservation research here.

World Bee Day | Bee Facts

It’s World Bee day and we’ve compiled some interesting facts about our flying friends. We’ll try to keep the bee puns to a minimum because bee puns always sting. We really don’t get what all the buzz is about!

Fun facts about Bees:

Honey bees beat their wings around 190 times a second; that’s 11,400 times a minute! The speed of their flapping wings is why we hear the “buzzing” noise when they fly past.

The average worker bee will only make around 1/12 of a teaspoon of honey in its lifetime.

It would take 1,100 bees to make 1kg of Honey, and they would have to visit 4 million flowers!

Newcastle University research has shown that the initial sweetness a bee tastes when they feed on nectar can last up to 10 seconds – this is much longer than in other insects! Find out why bees have such a sweet tooth here.

In every hive there is a queen bee, the queen bee can live up to five years. The summer is the busiest month for her as she can lay up to 2,500 eggs a day.

Did you know bees are also excellent dancers? When a worker returns to the hive, it will give it’s hair a quick brush with a ‘honeycomb’… and will perform a “waggle dance”. The bee will move itself in a figure of eight motion and will waggle its body to indicate where the best food source is.

Fossil evidence is sparse for these tiny creatures, but scientists believe bees have been around for more than 100 million years!

Not so fun facts:

Unfortunately the number of bees is declining very fast, in the past 15 years, whole colonies have been disappearing. Billions of bees across the world are dying, this is called ‘colony collapse disorder’ – in some regions 90% of bees have disappeared.

The reasons why bees are declining in numbers are very hard to determine although one known cause is the pesticides farmers are spraying on their crops. These chemicals are entering the hives from the worker bees who are out collecting pollen; if the chemicals are too toxic they will kill the bees.

Another factor leading to bees disappearing is the Vaorra mite. This mite attacks the worker bees and infects it with the varroosis disease. This disease will then kill the bee.

How you can help?

Make sure you are not using pesticides on your plants and you are carefully checking your plants to see if they have been pre-treated with any harsh chemicals.

If you are going to plant flowers in your garden or local area, always use bee friendly plants that bees can use to make more honey. Some examples are Crocuses, hyacinths and English marigolds. Surprisingly no bee-gonias!

You may not have known this but bees are thirsty; so along with all the beautiful flowers you are going to plant, place a small basin of water beside them and allow your busy visitors to have a drink.

Remember bee puns are good for your health, they give you lots of vitamin Bee!

 

 

Meet the Expert | Dr Richard Bevan, From Penguins to Puffins

Today, we talk to Newcastle University’s Dr Richard Bevan about where his research has taken him throughout his career. In order to better understand the overall ecology of animals, Richard Bevan’s research focuses on the way that animals interact with their environment both physiologically and behaviourally. Richard’s specific areas of study include: the physiology, ecology and behaviour of aquatic animals; foraging behaviour of seabirds; animal conservation.

   

Describing how his career began, Dr Bevan says: “Born and bred in the valleys of South Wales, I ventured to the north of the country to take Zoology at Bangor University. After completing my BSc, I spent a couple of years in Denmark working on an animation film, “Valhalla”, before returning to the UK to start my PhD on the physiology of swimming and diving in aquatic vertebrates (Tufted Ducks, Barnacle Geese and Green Turtles) at Birmingham University.”

Luckily, Richard finished his PhD at the right time to take up a post-doctoral position studying the energetics  of the higher Antarctic predators. This involved him spending three summer seasons on Bird Island, South Georgia on a joint project between Birmingham University and the British Antarctic Survey. This small island, just 4.9km long and 800m wide, is home to hundreds of thousands of birds – making it one of the world’s richest wildlife sites. Among it’s diverse population of wildlife, it is home to some 50,000 breeding pairs of penguins and 65,000 pairs of fur seals. Richard spent his time on the island studying Gentoo Penguins, Black-browed Albatrosses and Antarctic Fur Seals.

Richard continued to study penguins and other seabirds, but moved on from Bird Island: “This was followed by a project studying King Penguins on Possession Island, Crozet Archipelago; a joint project between Birmingham University and CNRS. I then spent a couple of years as a Principal Scientific Officer with the Wildfowl & Wetlands Trust in Slimbridge where I was in charge of the their fish-eating birds research (mainly inland Cormorants and Goosanders).”

“In 1998, I moved to Newcastle to take up my position as lecturer in what was the School of Biology, Newcastle University. It was early in the new millennium that I first became involved with the Farne Islands and I have been conducting research on the birds (Puffins, Shags, Arctic Terns, Kittiwakes etc.) and grey seals since then.”

Much closer to home than the likes of Bird Island or Possession Island, the Farne Islands are just a few miles from the coast of Northumberland. Touted by David Attenborough as one of his favourite places in the UK to see “magificent nature”, the Farne Islands are rich in wildlife. The Farne Islands are one of the best places to see and study puffins, now a red listed bird, meaning that there has been a severe decline in the population of puffins over the last 25 years. Some of Richard’s research on the Farne Islands has involved attaching hi-tech tags, which include GPS, geo-locators and time/depth recorders, to puffins. These tags provided a detailed record of the bird’s locations and habits to help understand why the puffin population is in decline.

A lecturer for many modules within Newcastle’s School of Natural and Environmental Sciences, Dr Richard Bevan includes a trip to the Farne Islands in his “Introduction to Marine Vertebrates” module, which provides students with a first hand encounter of a range of seabirds and seals, allowing them to make observations of marine vertebrates in their natural environment. If you’re interested in finding out more about the biology and zoology courses that Newcastle University offer, you can do so here.

#WorldWildlifeDay – Big Cats: predators under threat

World Wildlife day aims to celebrate and raise awareness of the world’s wild plants and animals. The theme for this year is Big Cats: predators under threat and aims to highlight the ecological importance of charismatic creatures such as cheetahs, jaguars, leopards and lions and promote their conservation and survival in the wild.

Humans have always been fascinated by these animals as is made clear by their influence on high fashion, fast cars and sports teams the world over. However they are becoming increasingly rare due to human-led activity such as poaching and deforestation. Conflict often occurs between humans and big cats due to lack of prey such as deer for the animals. This can cause the big cats, such as tigers, to predate on livestock, causing humans to poach in retaliation to protect their livelihoods.

Collectively, big cats are under threat and many species are classified on the International Union for Conservation of Nature (IUCN) Red List as being endangered or critically endangered, meaning the range they inhabit in the wild is getting smaller and their population sizes are rapidly declining.

Many efforts exist for conserving these animals, including breeding programmes in captivity, maintaining protected areas to prevent poaching, and projects such as World Wildlife Day increasing awareness of the threats to populations.

For more information, check out the World Wildlife Day website!

Unravelling Deep Sea DNA

DNA is the building block of all living things. Our own DNA dictates what we look like, how we behave and even how we think. The Human Genome Project sequenced all of our DNA to unravel the code that creates us to give a better understanding of how it all works. From this we’ve learned more about how we’ve evolved and which animals are our closest relatives.

The Wellcome Trust are planning on sequencing the DNA of 25 more animals next year and you get to have a say in which animals will be studied. Scientists from across the country have been championing species which they believe should be sequenced next. Our very own team of researchers from Newcastle University are campaigning for the Abyssal Grenadier, a deep sea fish which has evolved to live in one of the most extreme environments on Earth.

The competition is being held online on I’m a Scientist, Get Me Out Of Here where our researchers, Johanna Weston and Thom Linley have already participated in 19 online chats with school children. Anyone can vote and ask the scientists questions about their chosen species.

Here are Joanna’s top 3 questions that they’ve been asked:

1. How did the fish come to be named grenadier?

This question totally stumped us and I have been on an adventure finding the answer! I have been asking ichthyologists (fish scientists) all over the world and the answer I got was from the head of fishes in Te Papa Museum in New Zealand (told you I looked far and wide!).  The first grenadier described was the roundnose grenadier in 1765! That’s where we first get the name.  The grenadiers were a type of soldier that specialised in grenades in France in the 1700’s. They wore pointed hats based on the Mitre (a Bishop’s hat). The pointy hat looks like the high triangular first dorsal fin of the grenadier fish!

2. Why do they use their eyes less?

The deep sea is a very difficult environment to live in for a variety of reasons – not a lot of food, lots of predators, and the crushing weight of all the water above these animals. But one of the main problems with living in the deep sea is that below 200m of water there is very little natural sunlight getting that deep. The abyssal grenadier lives all the way down to 4000/5000m where there is no natural light so it is hard for them to see anything. (Although some other deep-sea animals produce their own light using bioluminescence!) Because it’s very dark the abyssal grenadier relies more heavily on its sense of smell to detect food.

3. What is your most unique feature and why has it happened (what genes cause it)?

We have lots of cool unique features!

We can survive under high water pressure. At the moment we know that we store a lot of an enzyme called TMAO which helps to keep our cells happy and stop them from being crushed by the pressure. We also live in the complete darkness, except bioluminescence which is light produced by some bacteria that live in some deep-sea species, but we can still see these flashes of light. We can go very long periods of time without eating so we have become very good at storing energy in our bodies. And we can also swim really slowly to help keep our energy stores high too.

At the moment we don’t know all the genes that help us live in such an extreme environment! That’s why we would love to have our genome sequenced so we can start to understand how animals can live in such a difficult environment. Because we are closely related to cod it would be really cool to compare our genome to the genome of a cod to see what lets us live deeper! This could be really valuable in understanding fish, like cod, as well as the abyssal grenadier.

If you would like to ask a scientist or place your vote for the next genome to be sequenced you can do so imascientist.org.uk. Voting closed on the 8th December.

Capturing Our Coast

Programmes like Blue Planet 2 have been fantastic for igniting our curiosity in marine life and broadening our knowledge of the oceans. If inspired, we can venture out from our living rooms and onto our beaches and truly get involved in the conservation of Britain’s rich marine diversity.

Capturing Our Coast

Newcastle University is the lead partner in Capturing Our Coast, a marine citizen science project which works with members of the public to contribute to the greater understanding of our UK seas and the rich diversity that they host.

Capturing Our Coast is the largest marine citizen science project of its kind, facilitating as it does, members of the public to contribute, not only to collecting information on where marine species occur, but also to addressing scientific questions through experimental approaches on our shores.

A national network of marine research labs, NGOs and research institutions, provide training and support which allows thousands of volunteers to map abundances of a number of key species around our coasts. This will provide a database against which changes in the future can be measured, allowing conclusions to be drawn on the effects of human activities on biodiversity.

Dr Jane Delany, Project Lead said: “Huge value is derived from having lots of people out and about, collecting more results than scientists working alone could ever hope to gather. We need these large scale data sets collected over wide geographic areas, to pick up patterns and trends that have a lot of natural ecological ‘noise’ or variation;  the findings will be particularly useful as the effects of climate change alter the way in which our coastal habitats and species communities are structured.”

Answering Questions

The project aims to address a variety of questions surrounding the species who make their homes on our coasts. The future of some animals and habitats is uncertain as sea temperatures change and coastal storms increase in frequency as a result of climate change.

The range of issues that the Capturing Our Coast volunteers and scientists investigate vary from things such as where marine non-native, “invasive”, species have established on our coasts to how kelp, which provides a fantastic habitat for a whole range of tiny animals, varies around UK shores and the reasons for these variations.

Over 4000 citizens have registered their interest in this 3 year Heritage Lottery Funded project so far and as it enters it’s final year Capturing Our Coast are after more volunteers who want to make a difference.

Dr Jane Delany says that the Capturing Our Coast team have been  “overwhelmed by the dedication and enthusiasm of our volunteers”, going on to explain that  “conservation of our rich marine diversity is the responsibility of us all, not just the policy makers and scientists. We can all contribute to understanding what is happening, and how we can each make a difference.”

To get involved, enrol via the website. There is no charge for any training or support provided to enable you to become a ‘CoCoast’ volunteer.

For further information on Newcastle University’s Marine Science courses, visit ncl.ac.uk/nes/undergraduate/marinescience/.

My journey from ‘Life in the Freezer’ to the ‘Blue Planet 2’

Will sailing past South Georgia on the RRS James Cook
Will sailing past South Georgia on the RRS James Cook
In this blog post, Dr Will Reid shares his story of how he became a marine biologist and the inspiration that led him to his exciting career choice

Blue Planet II is well underway now and for many a marine biologist, like myself, it is an opportunity to say, “I work on those” and get a bit giddy with excitement. We have seen some wonderful footage of walruses, the graceful Ethereal snailfish and colourful coral polyps. The bobbit worm seemed to get the hospital that my partner works at very excited and I’m sure last week’s episode about plastic pollution will get many people thinking about the impact our daily lives have on the ocean.

For me personally, sitting watching the second episode of Blue Planet II and seeing those hydrothermal vents was a personal highlight. It will also go down as a big landmark in my research career. I spent about four months at sea in the Antarctic across three research expeditions, during my PhD at Newcastle University. I was part of team working on the hydrothermal vents where those crabs covered in bacteria live. The inspiration that lead me to sitting on a ship, watching a video feed from a remotely operated vehicle over two kilometers below, began with another David Attenborough documentary. This was not Blue Planet I but an even earlier BBC documentary series called Life in the Freezer, which planted the seed in my mind about becoming a marine biologist.

Becoming a Marine Biologist
St Andrew's Bay, South Georgia showing hundreds of penguins
St Andrew’s Bay, South Georgia showing hundreds of penguins

Life in the Freezer aired in 1993. I was thirteen at the time. The opening scene where David Attenborough was standing in a vast snow and ice landscape was mesmerising. The series covered the ebb and flow of the ice around Antarctica and the animals that depend on the productive waters of the Southern Ocean. The part that really caught me was all the amazing life on the island of South Georgia. The coastal areas were packed full of elephant seals, fur seals, penguins, petrels and albatross. Little did I know that in just over ten years I would be living and working on the island.

I realised during that series that I wanted to be a scientist but not just any scientist, one that went to the Antarctic. I took Maths, English, History, Biology and Chemistry Highers and got onto a marine biology degree course. In my final year, I got my first opportunity to do some work related to South Georgia. I spent hours watching video footage of the deep-sea Patagonian toothfish and crabs attracted to baited deep-sea landers as part of my final year project. This was very fortunate because just as I was about to graduate a job working for British Antarctic Survey was advertised for a two-year fisheries scientist working on South Georgia on these animals. I applied. I got an interview. I didn’t get the job.

First disappointment, then an opportunity

The great thing about getting an interview is that you can often ask for feedback. So, I just asked the question “What skills and experience do I need to get the job?”. The answer sent me on a two-year mission in order to get what I needed second time round. This included: going back to university and doing a masters in Oceanography; learning to drive boats; sea survival training; and going to sea as a fisheries observer on a Portuguese deep-water trawler off Canada. My decision paid off because the job was advertised again. Once more I applied. Once more I got an interview.

Second time lucky
Working as a fisheries scientist - setting weekly fishing nets in Cumberland Bay
Working as a fisheries scientist – setting weekly fishing nets in Cumberland Bay

I got the job at British Antarctic Survey second time round. I was finally going to South Georgia! The next few weeks were a whirlwind of activity: medicals; advanced boat driving training; first aid courses; and learning to drive a JCB. Then I was finally deployed. I flew to down through South America to the Falkland Islands with part of the team that I would living and working with for the next two years. We sailed from the Falklands on the UK research vessel, the James Clark Ross, to South Georgia. I arrived in South Georgia on the 22nd November 2004.

The island of South Georgia was truly stunning. I spent two years on the island doing science that helped manage the commercial fisheries around the island. The research was varied. I worked on fish larvae, managed an aquarium which housed crabs, aged Patagonian toothfish using their ear bones called otoliths, undertook diet studies on icefish and went on fish stock assessments around the island.

The scenery and animal life were also truly amazing. I would go camping and hiking in order to visit Gentoo, king and rock hopper penguin colonies; climb snow-capped mountains; walk where explorers like Shackleton had been; and visit old abandoned whaling stations. The research base where I stayed was also in front of an elephant seal breeding beach for a couple of months of the year. I even met my current partner on the island. She was the doctor in my second year. But life on South Georgia had to come to an end.

Getting into hot water in Antarctica

Once I left South Georgia, I had a couple more months working for British Antarctic Survey back in Cambridge. I was wondering how on earth I would ever get back to the Antarctic. I stumbled across my next opportunity in the photocopy room. On the wall was an advert for a PhD at Newcastle University working on Antarctic hydrothermal vents. I applied. I got the PhD position. I moved to Newcastle.

The PhD was part of 5 year NERC programme trying to find and understand hydrothermal vents in the Antarctic. Hydrothermal vents are sites on the seafloor that release very hot fluids, rich in minerals into the water at the bottom of the ocean and are surrounded by high densities of life.

In 2010, I went back to the Antarctic as part of the first scientific expedition to sample these truly amazing habitats. We sailed on the UK science vessel, the James Cook with scientists from different universities around the UK.  When we arrived at our first location, we used a remotely operated vehicle (ROV) to dive down over 2 kms to hunt for the vents. After a number of hours searching the seafloor we eventually found our first hydrothermal vent field. There was a huge amount of relief on the boat as the scientists got to work.

We visited a series of sites over the next 6 weeks along the East Scotia Ridge. We discovered whole new communities and species and mapped where the different animals lived around the vents. My work focused on what the animals were eating and constructing food webs at each of the sites we visited.

Hydrothermal vent crabs
Hydrothermal vent crabs (Kiwa tyleri)

This brings me back to those hydrothermal vent crabs in The Deep episode of Blue Plant II. The crabs live in areas where hot water pores over them which provides the conditions for the bacteria to grow. We collected the samples from the vents using a suction sampler on the ROV Isis. I then looked at the biochemical composition of the crabs and the bacteria. They were very similar. This indicated that the bacteria living on those crabs were its food source.

These large-scale scientific expeditions are collaborative efforts. Scientist never undertake their work in isolation on these types of projects. They are a team effort, bringing together scientific disciplines. I worked with scientists that had backgrounds in chemistry, geology, microbiology, biology, computer science and supported by mechanical and electrical engineers, technicians and a large ships crew. There is no way I could have undertaken this work without the support of so many scientific and technical disciplines. They helped me add meaning to my work and place the results in the context of the system.

The scientific party involved in sampling hydrothermal vents in the Antarctic
The scientific party involved in sampling hydrothermal vents in the Antarctic
Will there be another Antarctic adventure?

Watching Blue Planet II the other weekend gave me a huge amount of personal pride. To sit there with my kids and my partner and show them on TV the Antarctic crab that I helped discover felt like a massive landmark in my scientific career. I was even there at the moment when the crab stuck its claw into the hot water. Life in the Freezer was the series that inspired me to work in the Antarctic, which set me on the road (or boat) to South Georgia for 2 years and then to studying for my PhD at Newcastle University.

For many people, Blue Planet II will inspire them too, some of whom will go into marine science as well. Whether you are into maths, biology, chemistry, physics, engineering, geology or microbiology, there is a career for you that involves our Blue Planet.

For me, I am about to start another Antarctic adventure. Next year, I am going to explore the seabed that has not been exposed to open waters for approximately 120,000 years. I’ll be spending about 3 weeks working in the area where a large chunk of the Larsen C ice-shelf broke off. The research team has been assembled from a number of different universities and institutions and will once more be a collaborative effort. It just goes to show that sometime adventures never truly end.

Find out more….

British Antarctic Survey

Marine research at Newcastle University

The Larsen C ice shelf mission

World Animal Day

Today is World Animal Day, a day to celebrate and raise the status of animals. Humans are often thought to be the animals with the highest status and intelligence due to our effortless ability to use tools, develop language and dominate the globe. However there are millions of species that have evolved traits and talents that humans could only ever dream of. Here is our list of some of the most amazing animal adaptations.

1. Bioluminescence


Bioluminescence is the ability to emit light. Fire flies and glow worms are well known for their ability to light up but they are not alone, lots of insects and even a species of snail (Quantula striata) hold the protein Luciferin, allowing them to emit light. The protein reacts with oxygen using a specific type of enzyme – luciferase. The chemical reaction gives off the bright glowing colours.

Deep down in the ocean, there is little light from the sun so many marine animals have evolved bioluminence. Others, such as the Sea Goosberry above don’t emit their own light but can refract light to give this dazzling rainbow effect. Even if it’s not technically bioluminescent – we’re still very jealous!

2. Camouflage

In contrast to flashy bioluminescent animals that stand out, some creatures prefer to blend in…

When you think of a camouflaged animal, most people would think of the classic colour–changing chameleon but octopus and squids are the real masters of disguise. They have thousands of cells known as chromotaphores across their skin, these contain pigments and can expand and shrink to change the colour of the skin. These animals can also change the appearance of their skin’s texture and use their soft body and tentacles to morph into a different shape.

The Mimic Octopus takes this a step further and manipulates its body into the shape of other animals to fool its predators into thinking it’s a different marine species – now that would be a fun superpower to have!

3. Mimicry

All the most famous superheroes have a disguise! Like the mimic octopus, some relatively harmless animals have found a clever way to avoid predators by copying the colours, body shape and even behaviour of harmful species. This is known as Batesian Mimicry, and can be seen in animals such as the caterpillar Hemeroplanes triptolemus above, which cleverly disguises itself as a poisonous snake by blowing air into its head!

Mimicry can also happen when two harmful species that have a common predator evolve separately to have similar warning signals such as bright colours or patterns, that show the predators that they are poisonous or taste unpleasant.  This is known as Mullerian Mimicry and can often be seen in butterflies and snakes. So two entirely different (and possibly poisonous!) species of butterflies may look identical.

4. Invisibility

Glass Squid

If camoflauge doesn’t work, how about being invisible? Maybe not completely invisible, but many species have come close by evolving to become transparent. The glasswing butterfly has evolved to have transparent panes in its wings, making it more difficult for predators to spot.

The glass squid and some species of jellyfish have evolved transparent bodies making them extremely difficult for predators to spot them in the depths of the ocean.

5. Regrowing limbs

Image result for axolotl

If all these adaptations for hiding fail and you’re caught by a predator – what next? Well some species such as the Mexican salamander, the axolotl, have evolved the ability to regrow parts of the body so it’s not a big deal if something does take a bite out of them.

When an axolotl loses a limb, the cells at the cut off point lose their identity; they are no long skins cells or muscle cells and they become generic cells that are able to develop into whatever the axolotl needs them to be to regrow whatever was lost. Whilst humans have come a long way in developing amazing prosthetic and even bionic limbs, we’re unlikely to evolve the ability to completely regrow body parts anytime soon.

If you want to see some amazing axolotls yourself, take a trip to Newcastle University’s Natural History Museum, the Great North Museum: Hancock.

6. Outside Digestion

Speaking of regrowing limbs – starfish can also happily regrow spines but that’s not their only talent – they can also digest their food in a very interesting way. Instead of taking food in through the mouth, instead they take their stomach out of their body and put it on the food. Their stomach then digests the food into a mushy soup which the starfish can then draw into it’s body along with it’s stomach.

Perhaps this wouldn’t be top priority for a superpower but it is impressive! You can see the starfish in action in our aquarium at the Dove Marine Lab in Cullercoats.

7. Flight

Image result for bar tailed godwit

Moving from the seas to the skies, I’m sure many of us would love to have the ability to fly. Of course many creatures have mastered this, mainly birds and insects but some reptiles, fish and mammals, such as the flying squirrel, have evolved flaps of skin that allow them to glide through the air.

One of the most impressive flyers of the animal world is the bar-tailed godwit. This little bird weighs around 500g but is capable of flying immense distances. The longest recorded migration of this species was from Alaska to New Zealand – a distance of 11,680km! The journey took nine days and the bar-tailed godwit didn’t stop once. Very impressive considering most of us couldn’t even stay awake for nine days!

8. Echolocation

Onto another famous flyer – the bat. Flight isn’t this mammal’s only superpower as it can also navigate in the dark without sight. It does this by using echolocation. Bats send out a high frequency sound and listen for the echos coming back. By comparing the outgoing sound with the returning sound, bats tell how far away obstacles are, how big they are and even if they are moving. They are able to build up a picture of the world around them using sound, just as we are able to using sight.

This impressive power may not be so out of reach for humans. Several blind people have taught themselves how to navigate using echolocation. They produce sounds either by tapping a cane against the floor, creating clicks with their tongue or snapping their fingers and then listen for the echos, just as echolocating animals do.

9. UV Vision

Image result for uv light reindeer

Whilst some animals, like bats, have relatively poor vision, other see much more than we could imagine. The light that we can see, known as the visible spectrum, covers the wavelengths 380nm – 760nm. Ultraviolet light sits just outside this so our eyes are unable to detect it. Some animals including butterflies, some birds and even reindeer have evolved the ability to see UV.

Reindeer are thought to have evolved this ability as it helps them identify lichens for food, and urine indicating predators in the snow. To us, these would blend in but in ultraviolet light there is much more of a contrast.

10. Mind Control

Our final adaptation may perhaps be the most sought after superpower – mind control. This isn’t just the stuff of science fiction movies and comic books, some animals have actually achieved it. The green-banded broodsac is a parasitic flatworm that infects snails in order to reach birds, their ideal host species. The parasite infects the snails and causes their tentacles to bulge, making them look like a caterpillar. It influences the snail and makes them move from the shade and up to the tops of leaves and branches where they are easily visible to birds. As the tentacles now look like a delicious meal for the birds, they’re prime targets. Once eaten, the parasite is able to continue it’s life inside the bird.

Which of these animal superpowers would you like to have?