Any excuse to drink red wine

By Elisabeth Lowe

I’m writing this blog from an interesting perspective – though a member of the lab I’m not involved in the project, except through the (exhaustive!) discussions at coffee time with Harry Gilbert and the rest of the authors on the paper. This work, published today in Nature, describes the way in which one particular species of human gut bacteria is able to degrade a complex plant polysaccharide. Why is this new, you might well ask? Well, after being talked to death on the project, so much so I’d be glad never to hear a word about it again, I’ve actually come to appreciate what a great piece of work it is. The Bolam and Gilbert labs have published quite a bit on plant polysaccharide degradation over the years, but this one is a little different, because the polysaccharide involved – Rhamnogalacturonan-II (RGII) – is thought to be the most complex glycan found in nature. It contains ~13 different sugars linked by 21 different linkages, and all but one can be broken by a single bacterial species, Bacteroides thetaiotaomicron (Bt).

Complex structure of RG-II from red wine

Complex structure of RG-II from red wine

Wade Abbott, a post-doc in Harry’s lab when he was at the Complex Carbohydrate Research Centre, in Athens, Georgia, which is incidentally where the structure of RG-II was determined in the first place by Alan Darvil and Malcolm O’Neill in the 1980s, initiated this project. We knew which loci were upregulated during growth on RG-II from earlier work by myself, Dave Bolam and Eric Martens, so Wade set about cloning and expressing the 30 genes in these loci, and looking for activity with a PhD student, Jeff Xhang. It was a tough job, and little progress was made. When Harry came back to the UK he decided he absolutely had to crack it, and put two post-docs onto the project, Art Rogowski and Didier Ndeh. Though as the project has progressed, more and more people from the lab were sucked in, including the post-docs Alan Cartmell and Aurore Labourel, and Harry’s last PhD student, Ana Sofia Luis. All worked incredibly hard, assisted by Arnaud Baslé from SBL, and between them discovered the activities of 26 enzymes, including seven entirely new glycoside hydrolase families, three new activities, and seven crystal structures, with all the active site mutations, and ligand soaks that go along with a new crystal structure.

Working out the enzyme activities on a polysaccharide as complex as RG-II poses some problems, in that you can’t really buy it, so you have to make it. RGII is concentrated in red wine, so Harry put 150 litres of Asda’s not so finest wine on Dave Bolam’s credit card (don’t ask) and with Art and Didier, took it to Prozomix in Haltwhistle, to use their industrial concentrators.

Concentrating wine

Starting to concentrate 150 L of wine

As you can see, this did not end well.

It's all gone horribly wrong

It’s all gone horribly wrong

 

Art then turned to apple concentrate and managed to purify some through an intensive multiple two-week process. Making or buying oligosaccharides is also extremely difficult, so Didier devised a way of killing two birds with one stone – identifying which unknown open reading frames (ORFs) were enzymes, and making oligos at the same time. By deleting the gene of interest, RG-II degradation (which is mainly exo-acting) was halted at the point at which that enzyme acted. Taking the supernatant from these strains grown on RG-II and purifying the sugars released by the bacterium yielded partial breakdown products which could be identified by mass spectrometry with tremendous help from Joe Gray, and then used as a substrate for the enzyme in question.

Getting the data in a format suitable for the tight space restrictions imposed by Nature was almost as challenging as doing the work. Given that Harry is not very artistic, and certainly has no idea how to use Adobe Illustrator, he was fortunate to have three talented artists Ana, Art and Aurore, who ended up doing all the figures. They are now referred to as the art department. This project was definitely a labour of love (for Harry, if no-one else!) and by carefully characterising the breakdown of this polysaccharide, one linkage at a time, has actually revealed new features of the structure of this critical plant polysaccharide. Finding and characterising the vast repertoire of enzymes produced by gut microbes is not only interesting in its own right, but can provide tools to understand complex glycan structure. It’s a fantastic achievement, and I pity the poor lab member who has to try and bake the RG-II cake for the celebrations this week!

 

Link to paper

 

A novel copper storage protein discovered by ICaMB scientists

In a recent issue of Nature the discovery of a new family of proteins that store copper ions inside bacterial cells was reported. This work was carried out by Prof. Chris Dennison’s lab (ICaMB) in collaboration with Dr. Kevin Waldron (ICaMB), Dr. Arnaud Baslé (ICaMB), Dr. Neil Paterson (Diamond Light Source) and Prof. Colin Murrell (UEA). Here, Kevin tells us about this discovery and what its implications could be for the biotechnological exploitation of methane.

Methane, the main component of natural gas, is produced by both geological and anthropogenic processes on Earth, and can be released into the atmosphere. The biosphere’s primary mechanism for limiting the amount of methane (a powerful ‘greenhouse gas’) that escapes into the atmosphere is through its consumption by methane-oxidising bacteria, or methanotrophs (literally ‘methane-eating’), who utilise methane as both a carbon and energy source.

Transmission electron micrograph of a M. trichosporium OB3b cell showing the intracytoplasmic membranes that house the copper-dependent enzyme pMMO.

Transmission electron micrograph of a M. trichosporium OB3b cell showing the intracytoplasmic membranes that house the copper-dependent enzyme pMMO.

The key enzyme that methanotrophs use to oxidise methane to produce methanol is called methane monooxygenase (MMO). Almost all methanotrophs possess a membrane-bound form of MMO that requires copper (Cu) for activity, called pMMO (some strains also possess an iron-requiring alternative soluble enzyme, called sMMO). Therefore, these bacteria have an unusually high demand for copper, a metal that is essential for most organisms but is used rather sparingly, mainly because it can also be extremely toxic.

Previous studies of methanotrophs have revealed that they utilise unusual mechanisms for acquiring the copper they need for pMMO. For example, they produce and secrete a small, modified peptide called methanobactin that is involved in high affinity copper uptake, analogous to the more familiar siderophore iron uptake systems.

The model methanotroph, Methylosinus trichosporium OB3b, was analysed in the hope of uncovering novel copper proteins. Soluble extracts were resolved by two-dimensional liquid chromatography, with the copper content of resulting fractions monitored. The most abundant copper pool was found to contain a small, cysteine-rich protein that had not been studied previously and Chris Dennison (PI) and I (Co-I) obtained a BBSRC grant to investigate this and related proteins.

The presence of 13 cysteine residues in a mature protein (after cleavage of its signal peptide) with only 122 amino acids was immediately significant, as its thiol sidechain is often found in copper-binding sites. The recombinant protein was extensively studied using a suite of biochemical and biophysical methods to determine its in vitro properties This novel tetrameric protein is capable of binding up to 52 Cu(I) ions with high affinity, consistent with a potential role in the storage of this essential metal and was therefore named Csp1 (copper storage protein 1). A mutant strain of M. trichosporium OB3b that lacks this Csp1 protein (as well as a closely-related protein, Csp2) shows a phenotype consistent with a copper storage role of these proteins in vivo.

The crystal structure shows that the apo-monomer adopts a well-characterised four-helix bundle motif with all 13 cysteine sidechains pointing into the core of the bundle. The protein structure is essentially unchanged in the presence of copper, except that the core of each monomer has filled with 13 Cu(I) ions, bound by the cysteine sidechains. This is an unprecedented structure for metal storage.

The structure of the Cu(I)-Csp1 tetramer, with the 13 Cu(I) ions bound within the core of each four-helix bundle shown as orange spheres.

The structure of the Cu(I)-Csp1 tetramer, with the 13 Cu(I) ions bound within the core of each four-helix bundle shown as orange spheres.

The implications of this discovery could be of wide impact. There is a great deal of interest in using methanotrophs and MMOs in industrial biotechnology. Available methane is on the increase due to ‘fracking’, but importantly methane can also be produced from sustainable sources such as through the degradation of biomatter (biogas). Methanotrophs and the MMOs could in future be exploited using synthetic biology approaches for gas-to-liquid conversion, for the production of liquid fuels as well as bulk and fine chemicals from renewable methane.

Any such biotechnological applications require an understanding of how the production of pMMO is regulated and how this complex enzyme is assembled, including the cellular delivery and insertion of the essential copper cofactor. The work published in Nature shows that Csps are an important piece in that assembly jigsaw.

Furthermore, bioinformatics has shown that cytosolic members of the Csp family are also encoded in other bacterial genomes. Most bacteria are thought not to require copper in their cytoplasm, so the presence of cytosolic Csp homologues in their genomes could re-write our basic understanding of their use and homeostasis of copper.

Links:

Nature article: http://www.nature.com/nature/journal/v525/n7567/full/nature14854.html

News & Views: http://www.nature.com/nchembio/journal/v11/n10/full/nchembio.1918.html

BBSRC website: http://www.bbsrc.ac.uk/news/fundamental-bioscience/2015/150827-pr-bacteria-that-could-protect-our-environment/

ACS Chemical & Engineering news: http://cen.acs.org/articles/93/web/2015/08/Protein-Stores-Copper-Methane-Digesting.html

Press release: http://www.ncl.ac.uk/press.office/press.release/item/could-bacteria-help-protect-our-environment

Pruning the Tree of Life

Dr Tom WIlliams

Anyone who has studied biology has seen an image of the tree of life in the text books.  Most of us think of this as being set in stone, one of the rock solid foundations on which evolutionary biology is built.  However, all is not quite as settled as it seems.  Recently, a Nature article from the laboratory of ICaMB’s Professor Martin Embley challenges the traditional three domain structure of the root of life.  Here, first author on the paper, Dr Tom Williams, tells us the story.

By Dr Tom Williams

Our modern understanding of the tree of life began in 1977 when Carl Woese and his colleagues discovered the Archaea, a group of prokaryotes originally isolated from extremely hot or salty environments. Although Archaea looked indistinguishable from Bacteria under the microscope, their gene sequences were at least as different to those of Bacteria as from the eukaryotes – the group of organisms, including fungi, animals and plants, whose cells contain a mitochondrion and a nucleus. According to these analyses, living cells should be classified into three main groups: Bacteria, Archaea and eukaryotes – rather than the two (prokaryotes and eukaryotes) that had previously been established based on cell structure. In 1990, Woese and his colleagues published another seminal paper in which they argued for this “three domains” classification. This three-domains tree has become an iconic image in biology, and is often found in the popular science literature, as well as many textbooks – you’ve probably seen it before. Here it is from a 1997 review by Norman Pace:

The traditional 3 domain Tree of Life. From: A molecular view of diversity and the biosphere. Pace NR Science (1997) 276: 734-740

 

Professor Martin Embley

This was certainly the tree of life that I was familiar with, first as an undergrad and later as a Ph.D. student at Trinity College Dublin. So I was surprised and very intrigued when a certain Martin Embley came to talk at an Irish bioinformatics meeting, claiming that support for the three-domains tree was not as strong as you might expect. New work from his lab instead favoured the “eocyte tree”, in which the eukaryotes (or, at least, some of their genes) actually evolved from within the Archaea. If true, this tree would imply that there were originally only two types of cells – Bacteria and Archaea – and that the eukaryotes (i.e., us!) originated later in a partnership between the two primary domains.

The new model of the Tree of Life proposed by the Embley lab

Fast-forward a couple of years, and I was thinking about where I wanted to do my postdoc. I remembered Martin not only from that talk, but also from some interesting work (2nd link) he had done on a group of parasitic fungi called Microsporidia. I joined his group and began working on microsporidians, but I was still very interested in the tree of life and the origin of eukaryotes. In the meantime, DNA sequencing technology had been improving, and microbial ecologists were beginning to publish genomes from new groups of Archaea that could not be grown in the lab, and so had never been studied before. One of the really exciting findings from these studies was that some Archaea contained genes that looked very similar to fundamental components of our own cells, such as actin and tubulin – two proteins that help to define the microscopic “skeleton” of eukaryotic cells. When we added these new genomes to our analyses, we found even stronger support for the eocyte tree; those findings were reported last year in Proceedings B. At about the same time, a number of other researchers were reporting something similar: as our view of archaeal biodiversity increased, support for the three-domains tree was on the wane. Given the prominent position of the three-domains tree in the literature, and the importance of this question for understanding early life on Earth, we decided to write a review summarizing these recent developments in the field – it came out in Nature this week, and it’s the reason for this blog post!

As we delved back into the 30 years of literature on the molecular tree of life, one of the most interesting discoveries for me was a seam of eocyte literature that I hadn’t been aware of previously. Although many analyses over the past three decades have recovered the three-domains tree, and it appears in all the textbooks, the literature has actually never been unanimous in its support. Nonetheless, it is only in the last five years or so that support for the eocyte hypothesis has reached critical mass, perhaps due to improvements in our statistical methods and, more recently, sampling of archaeal biodiversity.

The Embley lab: Back row, left-to-right: Kacper Sendra, Martin Embley, Tom Williams, Robert Hirt. Front row: Shaojun Long, Ekaterina Kozhevnikova, Andrew Watson, Paul Dean, Maxine Geggie,Alina Goldberg-Cavalleri, Sirintra Nakjang.

Of course, our latest work is almost certainly not going to be the last word on the relationship between eukaryotes and other cells. Our methods are getting better – in part thanks to the statisticians we are collaborating with here in Newcastle – but there is much room for improvement, and so much about the microbial world that we still have to discover. Still, if the eocyte tree is correct – and it appears to be the best-supported tree on the current evidence – then that has important implications for how we understand early life on Earth and the origin of our own cells. For one thing, it rules out the eukaryotes as a primordial cellular lineage, as old as the Bacteria and Archaea. Instead, it suggests that the Bacteria and Archaea were established and diversifying on Earth before the origin of eukaryotes, resurrecting the concept of an “Age of Prokaryotes” on the early Earth. Of course, when you think about the phenomenal number of Bacteria and Archaea that live in your own body, never mind the wider environment, you might well argue that it never ended…

This work was supported by a Marie Curie postdoctoral fellowship to Tom Williams. Martin Embley acknowledges support from the European Research Council Advanced Investigator Programme and the Wellcome Trust.

Links

The Nature Article: http://www.nature.com/nature/journal/v504/n7479/full/nature12779.html?WT.ec_id=NATURE-20131212

The Proceedings B paper: http://rspb.royalsocietypublishing.org/content/279/1749/4870

The Embley lab website: http://research.ncl.ac.uk/microbial_eukaryotes/

Microsporidia papers: http://www.nature.com/nature/journal/v452/n7187/full/nature06606.html

http://www.nature.com/nature/journal/v453/n7194/full/nature06903.html

IPA Update: What’s it like to work for Nature?

By the IPA committee

Thursday 23rd May saw the IPA’s second Science Lives Seminar. Following on from our first talk about the realities of establishing an independent research group in academia, the IPA wanted to explore what else a post-doc can do. What are our alternative careers?

To start answering this question, we invited Dr Andrew Jermy, a senior editor at Nature, to give us a talk on his career in journal editing.


Postdocs waiting to hear either (a) how to publish their papers in Nature or (b) how to work for Nature

Dr Jermy’s talk started by illustrating his personal experience. Like all of us, he completed a PhD in the biological sciences field and then did two short post-docs before he decided to leave academia to start a career in editing, first at Nature Cell Biology, followed by  Nature Reviews Microbiology and now more recently at Nature. To achieve this, he used his networking skills as he had met someone currently working for Nature at conference. Hint, keep building up your contacts! It was very interesting for us all to understand the motivations that brought him to try a new and alternative career. “Getting bored of waiting for westerns to come out of the developer”, he repeated several times.  Maybe he is not the only one?

Dr Jermy also described the several different job entry levels possible at Nature, something that applies generally to many of the larger scientific journals.  We now have a much better idea of what working for a scientific journal actually entails and where we could slot in. He pointed out that in this kind of career you need a keen interest in all science, as well as being constantly on top of the cutting edge research in your specific editing field. The ability assimilate information quickly and handle up to 40-50 papers per month, while travelling to conferences and universities is also a must. On the other hand, Dr Jermy underlined that his job is not a simple 9-5 job.  However, he can work from home and with the advantage of a permanent position as well as opportunities for career progression, this can make his career more family-friendly than what we post-docs are used to. Ultimately, this career seems ideal for those post-docs who no longer enjoy working at the bench, but still enjoy the other aspects of scientific life, such as reading, writing and networking at conferences.

Andrew demonstrates the Nature ‘secret handshake’

There was however much more to Dr Jermy’s talk than the career side… he gave practical tips to post-docs who want (or maybe its better to say wish) to submit a paper to Nature; from the title to the covering letter, from the abstract to the “style” of writing. Dr Jermy made a clear point that the philosophy of the journal is not to bin 90% of the papers they receive, but to focus on helping the top 10% of the articles emerge and get published. Finally, did you know you can send a pre-submission enquiry to Nature, asking if your scientific results are of interest before going through the long and painful online submission? Helpful for everyone!

After the seminar there was an informal chat-session, useful for post-docs to ask questions in a relaxed environment, helped of course by a beer in our hands!

The IPA wishes everyone a nice Summer and we will see you all for our next social event: a barbecue in September, a perfect occasion to give a warm welcome to new post-docs joining ICAMB as well as for all the current post-docs and final year PhD students to get together for the beginning of a new academic year.

Updates will follow on the website.

IPA Committee

IPA is run by Postdocs, for Postdocs. Get involved!


Links

IPA Facebook page: https://www.facebook.com/groups/462376430446559
Institute for Cellular and Molecular Biosciences: http://www.ncl.ac.uk/camb/
Newcastle University: http://www.ncl.ac.uk/
Nature Journal: http://www.nature.com/nature/index.html
Andrew Jermy’s twitter page: https://twitter.com/jermynation