Tag Archives: sugar

The Science of Baking: Cake

For the next instalment in Science of Baking series, just in time for the Bake-Off
Final, Charlie Wilkinson has looked into the science of making the perfect cake.

Cake is a wonderful thing, there’s nothing quite like the first slice of homemade cake to cheer you up. We use it to celebrate birthdays for a reason! There is science in baking a cake, even if you don’t realise it.

cake

The basic ingredients for cake include the use of flour, eggs, sugar and butter. The flour and eggs are strengthening ingredients for building structure in the cake while the sugar and butter are structure weakening. A good cake feels light in texture, this lightness is due to air bubbles formed throughout the batter which creates a structure of thin layers of cake separated by those air bubbles.

Baking a cake starts with creaming your fat and sugar, this action incorporates all that air which is required to form the light texture of cake. At this point eggs are added to the mixture, beaten egg essentially protects the air bubbles in the cake from collapsing during the baking process. Flour is then gently added into the mixture, gently to protect those precious air bubbles. The addition of flour is essential for the structure of the cake, forming gluten to add structure. This is a delicate process, however – too much gluten creates a heavy consistency like bread. This is why the type of flour used is important, with cake flours with lower protein content and heavy strong bread flours with higher.

As the cake bakes air expands as water vapour and carbon dioxide is released, the egg cooks and coagulates forming a permanent risen form of the cake. Browning reactions take place on the cake surface which enhance the flavour of the cake, creating a final form of browned, risen, light, airy, delicious cake.

#TryThisTuesday: Rock Candy

This weeks Try This Tuesday takes a while, but you end up with a tasty treat!

You will need:

  • A wooden skewer or chopstick
  • Peg
  • 1 cup of water
  • 2-3 cups of sugar
  • A narrow glass or jar

pic

Clip the wooden skewer into the peg so that it hangs down inside the glass and is a couple of centimetres off the bottom.

Put the water into a pan and bring it to the boil. Pour about a quarter of a cup of the sugar into the boiling water and stir until it dissolves.

Keep adding more and more sugar, each time stirring it until it dissolves, until no more will dissolve. This might take quite a while!

When no more sugar will dissolve remove it from the heat and leave it to cool for about 20 minutes.

Pour the sugar solution into the glass or jar almost to the top. Then put your skewer back into the glass so it hangs down and doesn’t touch the sides.1st

Leave your glass in somewhere it won’t be disturbed. The sugar crystals will grow over 3-7 days. Once these have grown you can eat them!finished-product

The Science

By mixing the sugar and water together when they were really hot, you have created a super saturated solution. This means that the water contains much more sugar than in could in normal circumstances. As the water cools back down the sugar leaves the solution (mixture) and becomes sugar crystals again, forming on the skewer.

Supersaturated solutions are used in real life. In a sealed fizzy drink the drink is saturated (full) with carbon dioxide, as the carbon dioxide is put in using pressure. When you open the drink, the pressure of the carbon dioxide is decreased, which causes your drink to be supersaturated as there is much more carbon dioxide dissolved than there would be at normal pressure. The excess carbon dioxide is given off as bubbles.

#TryThisTuesday: Homemade Ice cream!

This week we’re making ice cream but instead of using an ice cream machine, we’re going to make it using science!

You will need:

  • Two Ziploc bags – one small, one large
  • 100ml double cream
  • 50ml milk
  • 40g sugar
  • Vanilla extract
  • Ice
  • Salt

p1020737-2

  1. Measure out the milk, cream and sugar and place them into the smaller Ziploc bag.
  2. Add a dash of vanilla extract  then zip up the bag.
  3. Fill the larger bag 2/3 full with ice.
  4. Pour a generous amount of salt onto the ice.p1020738-3
  5. Making sure the small bag is tightly zipped up, place it inside the bigger bag with the salt and ice.
  6. Gently shake the bag for 5-10 minutes, be careful not to rip the bag!
  7. Leave the ice cream to sit inside the ice and salt bag for another 10 minutes
  8. Open up your bag and enjoy!

p1020740-2Try making different flavours of ice cream by swapping the vanilla extract for strawberry or mint extract or even cocoa powder for chocolate ice cream. You could also try adding chocolate chips.

 

 

 

 

How does this work?

Water, as I’m sure you know, freezes to make ice at 0oC. But your freezer at home is around -18oC, so how are we making the ice cold enough to freeze your creamy mixture? The secret is in the salt.

Ice is in a constant state of melting and refreezing and melting and refreezing. When we add salt, the salt particles block the path of the melted ice, stopping it from freezing back on to the rest of the ice but ice can still melt. Therefore more ice is melting that freezing.

Now you may be thinking that surely if the ice is melting that means it is getting warmer? It’s actually the opposite. For ice to melt it needs to break the bonds that are formed between the H2O molecules. This breaking requires energy which it gets in the form of heat. When a molecule melts away a bond is broken, taking heat away from the surrounding, causing the temperature to drop.

This is also the reason that salt is put on icy roads – it stops water forming ice.

#TryThisTuesday: Honeycomb

honeycomb

Honeycomb or Cinder Toffee not only makes a great Bonfire Night snack, it’s also a fun and quick science experiment! Here’s our simple recipe for the honeycomb reaction:
1. Grease a baking tray with butter and set aside.
2. Mix 100g sugar with 2.5 tablespoons of golden syrup in a pan. Mix the two well before you heat the pan.


3. Gently heat the pan, try not to stir the mixture at this point just let it gently begin to melt.
4. Once you can see the sugar start to melt you can push the sugar around to ensure in melts evenly and doesn’t burn.
5. When all the sugar has melted turn up the heat so the sugar begins to boil and forms an amber coloured caramel
6. Turn off the heat and add one teaspoon of bicarbonate of soda, beat the mixture quickly as it begins to bubble up to incorporated all the bicarb then tip onto the greased baking tray.


7. Leave to set for 30-60 minutes then enjoy!

The Science

The heat causes the bicarbonate of soda (NaHCO3) to break down and release the gas, carbon dioxide (CO2). The gas gets trapped within the sugar, this results in the bubbles in your honeycomb.

honeycomb

#TryThisTuesday: Make your own Sherbet

sherbet

This week we’re taking on the science of sweets! Here is a super easy way to make your own sherbet powder at home.

All you will need is:

  • 7 teaspoons of sugar (either caster sugar or icing sugar)
  • 1 teaspoon of bicarbonate of soda
  • 3 teaspoons of citric acid in powder form

Mix your ingredients in a bowl and then take a small amount on a teaspoon and have a taste. It should fizz in your mouth.

Where does the fizz come from?

When you place the mixture on your tongue it reacts with the water in your mouth and produces carbon dioxide, this causes the fizzy feeling.

sherbet-equation

The reaction occurs because  acids, like the citric acid used here, release charged hydrogen particles when added to water. These particles will attack an alkaline (the opposite of an acid) such as bicarbonate of soda. The reaction produces more stable molecules – water and carbon dioxide.

If you pour water onto your mixture you should be able to see the reaction that’s happening in your mouth. You can actually feel the carbon dioxide gas being released if you hold your hand close to the surface.