The ICaMB PhD student symposium: what does it mean to the supervisors?

A strong and vibrant PhD programme is essential for any successful academic department. PhD students bring energy and enthusiasm to their projects (well that’s the idea anyway) that frequently reminds many jaded professors contemplating the hell that is ResearchFish why they went into this business in the first place. Typically a PhD student progresses from hesitant first steps in the laboratory to becoming a confident scientist with ownership of their project. Although in the moments before a PhD viva some of that confidence has been known to slip away. The ICaMB Postgraduate Research Symposium is an important showcase that allows our final year PhD students to demonstrate not just the exciting science they have been doing but also just how far they have come over the last 3/4 years. But there is also a serious side to this for ICaMB. In the last REF (where we <cough> did quite well), our PhD students made a major contribution to our returned papers. Brian Morgan has crunched the numbers and discovered that PhD students were first authors on 30% of our 3*/4* submissions (see Figure), including papers in Cell (x2), Nature, Science, Molecular Cell, Nature Chemical Biology (x2) and PNAS (x3). Moreover, in our UO5 return, 3 out of 4 of our Impact cases were underpinned by PhD student research.

Graph

This year, the first day of the symposium was on March 14th with a second to be held on April 29th. We’ve covered the ICaMB PhD symposium before but this year we thought we’d do something different and ask some of the PhD supervisors what this meant to them. All of us are proud of the PhD students that come through our labs, even if, occasionally, there are some grey hair inducing moments on the way. Seeing a final year student confidently discuss their project and answer questions is an important moment for a PhD supervisor. Below we have a varied group of supervisors, from a definitely not jaded professor discussing their final PhD students, to a newer PI discussing their first.

Harry Gilbert: Ana Luis and Jon Briggs

The two final year students from my laboratory who are contributing to the 2016 Postgraduate Research Symposium are Ana Luis and Jon Briggs. These are my last PhD students and it is great to finish with such excellent scientists. Neither student is on the traditional BBSRC/MRC DTP. Jon is supported by the Faculty to work on my Wellcome Trust Senior Investigator Award and Ana is funded mainly from my overheads and more recently by my ERC grant. Jon did a summer placement with Waldemar and his undergrad project in my lab. I was very impressed with Jon and was delighted he was willing to do a PhD with me. I said to Jon his project could be funded by BBSRC, requiring that he did a PIP (Professional Internships for PhD Students) or the Faculty in which case the three month break was not required. Jon said “I want to do science during my PhD and not be distracted by other activities”. Ana wanted to do a PhD with a glycan lab and came highly recommended by one of my previous PhD students, Carlos Fontes from the University of Lisbon, Portugal. So Ana is doing a three year PhD with no MRes, PIPs etc. Some of us, of a certain age, may remember these type of PhDs.

Harry, Jon and AnaThe two students have worked on glycan degradation by the human gut microbial community, or microbiota. Jon is focussed on the biochemistry of selected enzyme systems and the extent to which there is cross feeding of oligosaccharide products generated during the degradative process. Ana, like Jon, has used molecular genetics and biochemistry to explore the enzymology of these glycan degrading processes, while also using X-ray crystallography to study the structure and function of key enzymes.

Both students are remarkable in that they work on their own project within a largish collaboration. This is fine but on a regular basis, well almost weekly, they are given “the opportunity” by their supervisor to alter the objectives of their project almost on a weekly basis. They adapt to these unusual demands brilliantly. We all have tremendous respect for both students; they work extremely hard, are technically excellent, flexible and, most importantly, think carefully about their science, designing and carrying out a series of decisive experiments to resolve critical components of the glycan degrading process. Maybe the best testimony I can provide is that it is not possible to distinguish Ana and Jon from the postdocs in the lab, they are an inspiration to all of us.

 

Paula Salgado: Adam Crawshaw

Paula and Adam

Being your supervisor’s first PhD student can be a mixed bag. You will get a lot of their attention, so help will always be available. But at the same time, as they find their way as independent researchers, any issues will be closer to your own progress than for many of your colleagues. As I saw Adam present his work at the ICaMB Postgraduate Research Symposium, I was reminded of my own journey as a “first student”, several years ago. As I shared my supervisor’s progress, so has Adam shared mine. It has been fantastic seeing him develop, visibly learn and acquire so many skills. Even when his project didn’t go according to plan and experiments were proving hard, he didn’t lose the drive, the enthusiasm. It was with pride that I saw him give a confident talk, answer questions and be humble enough to challenge his own work. He has learned many techniques, from crystallography to circular dichronism, from molecular biology to NMR – he took it all in willingly and enthusiastically. His contribution to understanding several aspects of Clostridium difficile pathogenicity will be in the scientific papers produced, as well as in the future of my “Structural Microbiology” lab. It was great to hear him present all the work he did over the last 3.5 years to our colleagues. Well done!

 

Dianne Ford: Joy Hardyman

 Joy Hardyman’s presentation at the ICaMB Postgraduate Student Research Symposium was on the topic of zinc, which we have studied in our lab for many years. Joy’s PhD research is funded by an MRC studentship, which not only gave Joy the opportunity for research training but also really allowed us to add value to data we collected as part of a BBSRC grant, and generated an additional publication (Hardyman JEJ et al (2016) Metallomics (in press)).

Dianne and Joy

Global zincThe lab’s focus is the basic cell biology of zinc, which is essential to understanding zinc nutrition. Zinc nutrition is a global health challenge, with an estimated 17.3% of the global population at risk of inadequate zinc intake. Also older people, including here in the UK, are particularly at risk of sub-optimal zinc intake or low plasma zinc concentrations.

Zinc rich foodsAt the end of our BBSRC grant we had some intriguing microarray data that we had set aside because we struggled initially to make sense of it. We had depleted cells of a transcription factor known to have a role in zinc homeostasis (MTF1) then challenged them with zinc, with the aim of identifying the gene targets of this transcription factor. However, rather than see gene responses to zinc being attenuated we saw ‘sensitisation’ of the transcriptome response to zinc. We now know that this is because the usual response of the intracellular protein metallothionein, which effectively ‘mops up’ intracellular zinc, was attenuated because this response is under the control of MTF1.

We all need zincInterestingly, we now think this model, where MTF1 is depleted, may allow us to study what happens to zinc homeostasis in cells as they age, because cells from older individuals have higher levels of metallothionein. Thus, cells with MTF1 depleted may represent a ‘younger’ phenotype. We will now explore the suitability of this as a model of zinc balance in the ageing cell with a view to using it in further research to gain a better understanding of zinc dys-homeostasis in older age.

 

Kevin Waldron: Anna Barwinska-Sendra

Anna’s project began as something of a ‘sideline’ of research in my lab, something that I’d originally initiated when I first started my own independent research back in 2010 but then put on the back burner due to limited resources when my ‘lab group’ consisted solely of me. I re-initiated the project when Anna approached me for a short period of work experience in my lab in 2012. It is a tribute to Anna’s drive and enthusiasm that, within just a few days of her being in my lab, I was keen to keep her on in some form, and I was delighted when she later accepted my offer of a PhD studentship to continue this project in my lab. It’s one of the best decisions I’ve made in my short time as a PI.

Kevin's lab

I set Anna the task of determining the metal specificity of the two superoxide dismutase (SOD) enzymes that are encoded within the genome of Staphylococcus aureus. SODs are essential for the bacterial defence against the reactive oxygen species (ROS) superoxide anion, and both of these enzymes were predicted to be manganese-dependent. However it was emerging that, during infection, pathogens such as S. aureus experience host-imposed manganese starvation, a process termed nutritional immunity, which raised the possibility that one or both of these enzymes might be able to use an alternative cofactor for catalysis, most likely iron. Anna has confirmed that one of these enzymes is cambialistic in vitro, which means it is catalytically active with either metal cofactor, something that’s exquisitely rare amongst metalloenzymes. We hypothesise that this cambialistic property of this SOD is a mechanism by which S. aureus is able to circumvent nutritional immunity and resist the onslaught of oxidative attack during manganese starvation.

Anna has been an exceptionally productive student during her time in my lab, and I’ll be sorry to lose her when she completes her studies later this year. She has a bright future in research. Her project also highlights the importance of PhD student projects to a ‘basic research’ lab like mine, as they enable more exploratory, high-risk, high-reward projects such as this, and allow us to take our research in whole new directions that would not be possible within the constraints of traditionally-funded, Research Council grant-based projects.

 

Jeremy Lakey: Alysia Davies

Alysia poster prize

Alysia’s studentship is rather unusual as it is funded by the BBSRC, Bioprocessing Research Industry Club (BRIC) and has a partner company, Pall, who make a huge range of products used in the production and purification of biomolecules. BRIC is a very proactive organisation that meets twice a year for students and post docs to present their work. It also arranges training and skills schools to enhance the employability of the graduates especially those wishing to enter the fast growing bioprocessing industry. This industry is responsible for delivering the next generation of treatments based upon large protein and DNA molecules rather than small molecules such as penicillin. The magic bullets in all this are immunotherapies based upon large proteins called monoclonal antibodies. These are used in the treatment of many conditions such as cancer (Avastin) or rheumatoid arthritis & Crohn’s Disease (Humira). One difference with such large molecules is that they can provoke an immune response which prevents further treatment. Such responses are more common if the proteins stick to each other; a process known as aggregation. Alysia’s project is to develop rapid tests for aggregation so that problem batches can be detected early in the factory and removed. We hope these tests will make the medicines both safer and cheaper.

 

David Lydall: Joana Rodrigues and Marta Markiewicz

Joana Rodrigues, from Portugal, and Marta Markiewicz, from Poland, will complete their EU (Marie Curie) International Training Network funded PhDs very soon.   On this basis I will vote to stay in Europe.

Lydall lab

As a supervisor I have been delighted to have Joana and Marta in my lab.  It is really rewarding to have bright, enthusiastic, international members of the lab.  Very often the most rewarding aspect of my job is observing PhD students gain confidence, experience and strength during their comparatively short time in the lab.  I think this has certainly been the case for Joana and Marta and they both gave excellent talks at the symposium.

As is usual, at least in my lab, the projects Marta and Joana have pursued have drifted substantially from where they started.  It is one of the most fun aspects of supervising PhD students that there are few, if any, “milestones” to be met during a PhD.  Despite this chaos, philosophy usually occurs, doctorates are earned and knowledge improves.

Joana and Marta have each worked in budding yeast on proteins that are conserved in human cells and that affect cancer.  Joana has made substantial inroads to our understanding of how the PAF1 complex interacts with and affects telomere function.  Marta has shown how Dna2 protein, known to be important for DNA replication, may play its most important functions at telomeres.  We are just in the process of submitting papers from both Marta and Joana.  They have also each agreed to stay in the lab for a further year to capitalize on all their hard work.

Joana and Marta were recruited to the Codeage International Training Network, which is centred in Cologne (http://itn-codeage.uni-koeln.de).  For all three of us this was our first involvement in such a network.   It has been a lot of fun and we have networked our way from Cologne, to Crete and Milan.  We are looking forward to the final meeting in Crete in September.

Jeremy Brown: Shiney George and Man Balola

I have 3 PhD students in the final year of their studies. 2 of them, Shiney George and Man Balola gave excellent presentations on their work on translational control of viral gene expression in the Symposium earlier this week. My lab has been dependent on PhD students for the last few years, and I can only thank them for the positive contribution that they have all made to the lab’s research output: without them there would have been little, if any, progress. Nearly all the lab publications in the last few years have had PhD students as first authors, and the current group have generated excellent data for the next papers that we will publish.

Jeremy's lab

My students over the past few years have had very different sources of support, from self-funded through sponsored to Research Council support. This has led me to reflect on the disparities between funding arrangements, and also how this and the structure of PhDs has changed over the years. I was very lucky when I did my PhD – I was the recipient of a Welcome Trust Prize Studentship. These were quite a novelty at that time, a relatively new scheme, with more generous stipend than other studentships, but the same length – 3 years – as most other studentships. At that time pretty much all PhDs were: go to the lab; do the work; learn the trade; write the thesis.

In the years since my time as a PhD student there has certainly been a shift in how PhDs are organised with alterations to funding for students, various add-ons in terms of knowledge and skill training being tried and in some cases discarded, and a move towards longer, 4 year, training. Some of this could be argued to have diluted the important ‘learn the trade’ part of a PhD, though there are clear pros to enhanced training too. Perhaps more worrying though, there is considerable disparity in the provision for students funded from different sources. One obvious issue is the budget for laboratory costs, which is woefully inadequate for many studentships, but much more adequately costed from others. This has to impact at some level the ambition and scope of PhD projects. Another issue is that while the formal length of PhD (i.e. the time from starting to when the book has to be submitted) is pretty much standard at 4 years, there are differences in the length of funding of PhDs. As we know, as staff in ICaMB we can apply for 4 year BBSRC studentships, 3½ year MRC, and faculty studentships (including this year the Research Excellence Academy) that provide 3 years.

There are few level playing fields in life, but as a PhD is an academic qualification one might naively expect that the duration, resources and other support should, where possible, be similar, at least within a country. Why are there such disparities, how confusing must this be for anyone hoping to employ someone with a PhD? Bioscience needs bodies and PhD students are the backbone and key work-force of a good number of laboratories (mine included). There is then strong competition between academics for studentships each year – evidenced particularly by the very large number (>150) of applications for faculty studentships this year – and disappointment for those who are unsuccessful. Conversely there are many aspiring to a career in bioscience for whom a PhD is a key step. So, there are strong reasons to spread the available resource as broadly as possible, and it is easy to rationalise the way in which resources are being used. I would make the comment (my personal view) that at a time when significant efforts being made to even out opportunities at a number of career stages, we should when possible make sure that we do not undermine this at the early stages, by having some PhD students advantaged over others. And this is before the vagaries of supervision, luck and other factors kick in.

PhD studentships for 2015 – now recruiting!

As final year undergraduate students up and down the country approach the end of their degrees, it’s decision time. For many, postgraduate studies are the chosen route in the topic that has excited them the most during the their undergraduate studies. If you, or a friend/colleague, are one of those that find Cell and Molecular Biosciences the main topic of interest, this post is for you.

A view of Newcastle, taken during ICaMB's annual boat trip - you could join us next year!

A view of Newcastle, taken during ICaMB’s annual boat trip – you could join us next year!

Would you like to do your PhD in one of the top UK Research Institute for Biological Sciences?  In a city that has just been voted as the best city in the UK? Then one of the PhD studentships currently available at ICaMB could be what you are looking for!

As an ICaMB PhD student, you will benefit from being in a dynamic and well funded research environment with access to state of the art technology.  You would be working amongst leading experts in several fields from bacterial cell biology all the way through to eukaryotic cell signalling and cancer research.

paniclogo

We all know that a PhD is not only about your research, so you will also be part of a thriving community of postgraduate students, with many events, both social, scientific and career oriented, organised by ICaMB’s PhD student association PAN!C.  You can read more about PAN!C in a previous ICaMB blogpost.

Here we list MRes/PhD Studentships scheduled to begin in ICaMB in September 2015.  These are also listed on the ICaMB website, where you can also find further details and guidelines on how to apply.  However, if you would like further details about the projects, you can contact the named supervisor directly or the ICaMB Postgraduate Tutor Dr Tim Cheek (email tim.cheek@ncl.ac.uk). In addition, the Institute expects to kick start the careers of several new academic recruits by offering associated postgraduate studentships in the new academic year, September/October 2015. These posts will be advertised before the end of February 2015. If you are potentially interested or would like more details at this stage, please contact Professor Bob Lightowlers, Director of ICaMB. (Robert.lightowlers@ncl.ac.uk)

Newly added:
Title: Investigating the nanoscale structure and function of the bacterial cell division machinery
Sponsor: Newcastle University
Supervisor(s): Dr Seamus Holden, Prof. Jeff Errington
Contact for further details: Dr Seamus Holden (seamus.holden@epfl.ch)
Interested in combining bacterial cell biology with cutting-edge super-resolution microscopy techniques to figure out how bacteria divide?
The structure and dynamics of the bacterial cell division machinery remain mysterious, because this machinery is spatially organized on the nanometre scale, below the resolution of conventional light microscopy. The studentship will focus on using single molecule super-resolution microscopy to study bacterial cell division in living cells, in order to elucidate the physical mechanisms of cytokinesis. Cross-disciplinary training will be provided in advanced microscopy, biophysics, molecular biology and microbiology.
Deadline: This position will be advertised shortly. In the meantime, please contact Dr Seamus Holden for further information.

 

8Pathogens

Title: MRes/PhD Studentship in the Institute for Cell and Molecular Biosciences – Ebola Virus Vaccine: Development of a Salmonella-Based Vaccine Delivery Platform – Ref CB113
Sponsor: Barbour Foundation
Supervisor(s): Dr Anjam Khan (Newcastle), Dr Pietro Mastroeni (Cambridge University) and Dr Gary Kobinger (Manitoba University, Canada)
Contact for further details: Dr Anjam Khan
Interested in contributing towards the development of a novel Ebola virus vaccine?  Ebola is a highly virulent virus causing severe haemorrhagic fever with a high fatality rate in humans. This PhD project will explore the application of Salmonella as a novel oral vaccine delivery system for Ebola.  The studentship will involve designing and constructing new vectors to optimize the expression and immunogenicity of recombinant Ebola antigens.
Cross-disciplinary training will be provided in molecular biology, microbiology, biotechnology, infection, and immunity.  Training will also be provided in the collaborators laboratories in Cambridge.
Further Information

Title: STFC Funded PhD Studentship in Biophysical Chemistry – Creating realistic models of bacterial outer membranes for antimicrobial research and diagnostic assay development – Ref CB114
Sponsor: Science Technology and Facilities Council (STFC) & OJ-Bio Ltd
Supervisor(s): Prof Jeremy Lakey, Dr L Clifton & Dr V Lawson
Contact for further details: Prof J Lakey
This studentship builds up on recent successes in the Lakey research group developing accurate models of the outer membrane of Gram negative bacteria. These will enable more efficient research in antimicrobials and diagnostics. The successful applicant will demonstrate enthusiasm for this cross disciplinary area of research and any science degree including biochemistry, chemistry, physics etc. is suitable. The project involves a collaboration between Newcastle University, the Rutherford Appleton laboratory and OJ Bio, a young diagnostics company. The student will spend time at the neutron source at the Rutherford Appleton laboratory at Harwell.
Further Information
Deadline: The position will remain available until suitable candidates are appointed. Early application is advised.

Title: Sporulation in the human pathogen Clostridium difficile: structural and functional studies – Ref CB115
Sponsor: Medical Research Council (MRC)
Supervisor(s): Dr Paula Salgado and Prof Waldemar Vollmer
Contact for further details: Dr P Salgado
Are you a keen, motivated student, with an interest in microbiology and/or structural biology and an inquisitive, curious approach to research? Interested in bacterial pathogens, antibiotic resistance and in bacteria causing hospital acquired infections? The student will benefit from exceptional training in diverse disciplines: molecular and cell biology, protein purification, structure determination and PG biology to provide new understanding into Cdiff sporulation that would open new therapeutic avenues.
Further Information
Deadline: The position will remain available until suitable candidates are appointed. Early application is advised.

 

Eukaryotic cell biology and ageing

Title: The impact of a senescent-like phenotype in post-mitotic cells and its impact on ageing – Ref CB116
Sponsor: Medical Research Council (MRC)
Supervisor(s): Dr J Passos, Prof D Young & Dr N LeBrasseur
Contact for further details: Dr J Passos
This project aims to understand mechanisms of ageing using mice models, particularly the role of telomeres and mitochondria  and inflammation in the process. It involves a rotation in the Robert and Arlene Kogod Center on Aging, Mayo Clinic (US).
Further Information
Deadline: 28th February

Title: Role of mitochondrial Reactive Oxygen Species in Parkinson’s disease – Ref CB117
Sponsor: Medical Research Council (MRC)
Supervisor(s): Dr A Sanz, Dr A Reeve, Dr V Korolchuk & Prof D Turnbull
Contact for further details: Dr Alberto Sanz
The project aims to better understand the causes of Parkinson’s disease creating new Drosophila melanogaster models and using mammalian cell cultures.

Further Information 

Deadline: The positions will remain available until suitable candidates are appointed.  Early application is advised.

 

BBSRC_DTPlogo

One new aspect of the PhD studentships on offers this year is a renewed partnership with the Universities of Durham and Liverpool, with which we have a joint BBSRC Doctoral Training Partnership. This is a strategic partnership in Biosciences doctoral training between three research-intensive universities in these three northern cities of great industrial heritage.

The Partnership is offering up to 16 four-year fully funded studentships starting in October 2015. A wide range of 28 projects across the Partnership are available for application under the broad themes of Agriculture & Food Security, Bioscience for Health and World Class Bioscience.

As the leading institute in Newcastle carrying out BBSRC-funded research, many of the projects on offer in Newcastle will be based in ICaMB.  Please note that these research projects are in competition for funding with one another. There are two stages to the selection process and usually the projects which receive the best applicants will be awarded the funding.

Projects available at ICaMB, deadline 28th February

Title: Investigating the essential role of copper in biotechnologically important bacteria
Sponsor: BBSRC DTP
Supervisor(s): Prof C Dennison, Prof J C Murrell & Dr K Waldron
Contact for further details:
 Prof C Dennison
Further Information

Title: Communication across the membrane during bacterial cell division
Sponsor: BBSRC DTP
Supervisor(s): Prof R Lewis & Prof W Vollmer
Contact for further details: Prof R Lewis
Further Information

Title: Role of telomere-driven senescence in age-dependent muscle decline
Sponsor: BBSRC DTP
Supervisor(s): Dr J Passos, Dr Aphrodite Vasilaki & Dr Nathan LeBrasseur
Contact for further details: Dr J Passos
Further Information

Title: Interventions that affect fitness of cells and animals with dysfunctional telomeres
Sponsor: BBSRC DTP
Supervisor(s): Prof D Lydall, Dr N Kenneth, Prof A Morgan & Prof C Price
Contact for further details: Prof D Lydall
Further Information

Title: Fungal-specific RNA endonucleases: novel targets for anti-fungal agents
Sponsor: BBSRC DTP
Supervisor(s): Dr C Schneider, Prof M Caddick & Prof J Quinn
Contact for further details: Dr C Schneider
Further Information

Title: The impact of novel chromatin regulators on genome stability
Sponsor: BBSRC DTP
Supervisor(s): Dr L Maringele & Dr S Grellscheid
Contact for further details: Dr L Maringele
Further Information

Title: The identification of key virulence factors involved in the host-bacterial interaction of Salmonella typhimurium ST313
Sponsor: BBSRC DTP
Supervisor(s): Dr P Aldridge & Prof J Hinton
Contact for further details: Prof P Aldridge
Further Information

Title: Virulence factors of human and bird Trichomonad parasites targeting host proteoglycans: integrating evolutionary biology, comparative genomics, biochemistry and cell biology
Sponsor: BBSRC DTP
Supervisor(s): Prof R Hirt, Dr D Bolam & Prof N Hall
Contact for further details: Prof R Hirt
Further Information


Title: Re-engineering the metabolism of the bacterium Bacillus subtilis for the synthesis Mycosporine-like amino acids
Sponsor: BBSRC DTP
Supervisor(s): Professor C Harwood (Newcastle), Dr Malcolm Horsburgh (Liverpool), Dr Douglas Cossar (Croda Europe)
Contact for further details: Professor C Harwood
Further Information

Title: Ammonium sensing in the wheat pathogen Zymoseptoria tritici
Sponsor: BBSRC DTP
Supervisor(s): Dr J Rutherford, Prof B van den Berg and Dr A Sadanandom
Contact for further details: Dr J Rutherford
Further Information

 

ICaMB Postgraduate Research Symposium – students’ views

 

Once a year the final year PhD students in ICaMB have a one day symposium to present their data.  Here we ask some of these students to tell us how they found the occasion and discuss the projects they found particularly interesting.

 By Thomas Kinsman, Alexander Egan, Emma Button and Nichola Conlon

The ICaMB PGR Symposium was held on 25 March 2013. This annual symposium provides not only an excellent opportunity for final year PhD students to present their work to a mixed scientific audience of fellow students, research technicians, post docs and more senior researchers, but is also an excellent demonstration of the diversity of top quality research that is going on in ICaMB labs. The symposium and lunch were generously sponsored by GT Vision.

Session 1 – Reported by Thomas Kinsman (Lewis Lab)

The first session was centred on the study of DNA, yet talks ranged from the molecular biology of DNA polymerase processivity to the role of extracellular DNA in dental plaque biofilms. In addition to enabling me to gain a greater appreciation of the work that goes on in other labs within ICaMB, it was interesting that one of the speakers made a point of saying that preparing their talk had been very useful because it had made them realise they had enough results to write-up their PhD – I had not fully appreciated that this was another value of these talks!

Session 2 – Reported by Alex Egan (Vollmer Lab)

The second session of the symposium featured the work of students who look at various aspects of bacterial cell biology including; cell wall synthesis and cell division, bacterial cell motility, copper transport and storage and DNA replication. What immediately stands out from that list is the vast range of biological problems we work on here in ICaMB, and that’s just a small representation of the bacterial labs here. A positive impact of this vast range is that it creates an excellent centre for diverse knowledge, not just in gross terms, but in the myriad of different cellular and molecular techniques. With use of relatively simple yet elegant microscopy to study biological problems on cellular levels to the use of biochemical approaches to characterise the molecular basis of bacterial processes, it highlights that there’ll always be someone with experience who can provide advice and insight into almost any approach to biology. Having been on both the giving and receiving end of this, I believe it’s one of the great strengths of the symposium.

Session 3 – Reported by Emma Button (Veal Lab)

Session three was an exciting session in which talks ranged from the important interactions between the host and gut microbiota to mathematical equations used to refine a statistical modelling process that identifies subtle interactions involved telomere maintenance. Highlights of the session included a talk on the diverse roles of a peroxiredoxin (PRDX-6) in stress resistance and ageing, and a description of the importance of a DNA licensing protein (Cdt-1) and how it controlled DNA replication during embryo development in the African clawed frog, Xenopus laevis.

Session 4 – Reported by Nichola Conlon (Thwaites Lab)

The final session had talks that were all related to the gut, yet ranged from studies at a molecular level to in vivo human clinical trials. The first talk demonstrated how understanding the structure of mammalian amino acid transporter proteins in the plasma membrane is vital in understanding the pathology of gastrointestinal diseases and in improving drug specificity and targeting. An interesting insight followed into the mystery surrounding the mechanisms by which enteropathogenic E.coli (EPEC) disrupts the intestinal epithelium to cause diarrhoeal disease. The talk described the ways in which EPEC targets host cell proteins and pathways and highlighted the complexity in understanding such a common disease. Focus then shifted to the gut in its entirety with an intriguing description of an in vitro ‘model gut’, which is used to study the effects of various compounds on digestion. This model has proved effective in identifying alginate as a novel lipase inhibitor that can inhibit fat digestion similar to a current commercially available drug that is plagued by unwanted side effects. In vitro then moved to in vivo with the final talk which described a human clinical study in which ileostomy patients were used to assess the ability of alginate-enriched bread to inhibit fat digestion in vivo. Preliminary results revealed that, as observed in the model gut, alginate can also inhibit fat digestion in vivo when added as a supplement to food. The idea is that alginate could be incorporated into everyday foods, such as a loaf of bread, to try and combat obesity in a ‘health by stealth’ manner.

Personally, I found the symposium a complete success: everybody in attendance, students and staff alike, seemed to benefit in different ways from the experience. As a first year student in my lab said to me, they are looking forward to their turn in two years time.